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Background

Unsatisfying user experience in the Realtime Mobile Multiplayer Games(RMMUQ) is frus-
trating, which could lead to the loss of customers for the game company. We focus on two
metrics in the paper:

e LRC: the number of Location Resynchronizations experienced by a player in a session

e AQ: whether a player quits the session abnormally
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Fig. 1: Location Resynchronizations and Abnormal Quit

Unsatistying user experience in the whild

Based on 12 million real game sessions from a top-tier RMMG, We observe that 13% of
the game sessions suffer from at least one location resynchronization, and 7.12% have been
aborted abnormally before the end of the game.
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Fig. 2: User experience in the whild

ExCause: a general causal analysis framework of
user experience

To study the causes of the unsatisfying experience, our paper proposes, ExCause, a general
causal analysis framework to systematically analyze historical game session records to
1) obtain context factors that cause unsatistying RMMG experience and 2) to recommend
adjustments with quantified QoE improvement expectation.
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Fig. 3: The framework of ExCause

ExCause involves three stages:

1. Factors Classification: According to operators’ experience, we classify the factors into
unadjustable factors and adjustable factors. The adjustable context factors can be used
to make reasonable recommendations to players. In the meantime, we should consider
the impact of unadjustable context factors when we try to locate the causal adjustable
context factor.

2. Identifying the critical sets: We identify the combination of adjustable context
factors, e.g., {TAN = 4G, 1Q = HIGH, PD = XHDPI, OSV = i0S 12, ISP = China Mobile},
which have high ratio of unsatisfying experience, as the critical sets.

3. Recommendation based on causal analysis: We locate the causal context factors
for critical sets using propensity score weighting and make recommendation for the
improvements of the user experience via the historical data.

Why causal analysis?

A simple case to reveal the drawback of correlation-based method.
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Fig. 4: A case based on the real dataset

Based on the real dataset, the mean of the LRC decreases, after we change the access
network type from 3G to 4G. But we still can’'t ensure the change of the LRC is caused by
the access network type, because of the imbalanced distribution of the hard quality of the
mobile devices, which can also impact the LRC.
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Fig. 5: Confounder for Fig. 4

In the case at Fig. 4, we intend to assess how the access network type will cause the
change the LRC. But the quality of the mobile device impact the LRC and has imbalanced
distributions of the two groups were compared. It lead to the quality of the mobile device as
the confounder in the causal analysis context. In the paper, we apply the propensity score
weighting method, which has been widely applied in social and biomedical sciences|1, 2],
to deal with the confounders for two main reasons:

e conducting a controlled experiment at scale is prohibitively hard and expensive, or even
impossible.

e the propensity score weighting can be used on the historical dataset.

Propensity score weighting

Propensity score:
e(X) = P(Z; = 11X) (1)

Comparison result:
i=1 ZiYi(1 —e(Xp)/e(X i=1 — Zj)Y;
A Yi(1 (Xi))/e(Xi) ZN (1 )Y,

ATC = _
Y Nz —e(X))le(X) Y N,(1—2)

X is the confounder, which is the unadjustable factors in our paper. Y is the result in the
causal analysis, which is LRC and AQ in our paper. Z is the cause in the causal analysis,
which indicate the different value for the adjustable factors. The AT C is the comparison
result for the two groups, which help us to determine the best adjustable factors value under
different circumstances.

Result

Recommendation summary:
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Fig. 6: Blue is the recommendation times, Red is the estimated improvement ratio

OS version, image density and pixel density as the most frequent recommended factors who
need to be updated, could be the bottleneck of the unsatisfying user experience.

Benefits of causal analysis:
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Fig. 7/: The LRC for different Android OS version in the whole dataset
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Fig. 8: Recommendation for the Android OS version

Based on the whole dataset, the higher OS version leads to lower LRC. But we find our
algorithm make the recommendation of the downgrade the OS version. Because the low-end

devices is incompatible with the high OS version sometimes. \/\J
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