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Abstract. Many approaches to training generative models by distinct
training objectives have been proposed in the past. Variational Autoen-
coder (VAE) is an outstanding model of them based on log-likelihood. In
this paper, we propose a novel learnable prior, Pull-back Prior, for VAEs
by adjusting the density of the prior through a discriminator that can
assess the quality of data. It involves the discriminator from the theory
of GANs to enrich the prior in VAEs. Based on it, we propose a more
general framework, VAE with a Pull-back Prior (VAEPP), which uses
existing techniques of VAEs and WGANs, to improve the log-likelihood,
quality of sampling and stability of training. In MNIST and CIFAR-10,
the log-likelihood of VAEPP outperforms models without autoregres-
sive components and is comparable to autoregressive models. In MNIST,
Fashion-MNIST, CIFAR-10 and CelebA, the FID of VAEPP is compa-
rable to GANs and SOTA of VAEs.

Keywords: Variational Autoencoder· Deep Generative Model · Adver-
sarial Training.

1 Introduction

How to learn deep generative models that are able to capture complex data pat-
terns in high dimension space, e.g., image datasets, is one of the major challenges
in machine learning. Many approaches to training generative models by distinct
training objectives have been proposed in the past, e.g., Generative Adversar-
ial Network (GAN) [6], flow-based models [11], PixelCNN [20], and Variational
Autoencoder (VAE) [10, 21]. GANs achieve SOTA in generative models, but
likelihood of GANs are poor or incalculable.

The likelihood is important for generative models. VAE uses the variational
inference and re-parameterization trick to optimize the evidence lower bound of
log-likelihood (ELBO). In the past, researches [12, 27] focused on enriching the
variational posterior, but recently [26] showed that the standard Gaussian prior
could lead to underfitting. To enrich the prior, several learnable priors have been
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proposed [26, 2, 25]. Most of them focus on approximating aggregated posterior
which is the integral of the variational posterior and is the optimal prior that
maximizes ELBO. However, existing methods based on the aggregated posterior
reach limited performance, and the practical meaning of the aggregated posterior
is ambiguous. We notice that a discriminator can assess the quality of data and
we argue that it is advisable to adjust the learnable prior by the
discriminator, where the discriminator has clear practical meaning.

We propose a novel learnable prior, Pull-back Prior, based on the discrimina-
tor. Firstly, a discriminator D(x) is trained for assessing the quality of images.
Then, we define a pull-back discriminator on latent space, by D(G(z)), where
G(z) is the generator. Finally, we adjust the density of the prior according to
the pull-back discriminator.

We propose a training algorithm for VAE with Pull-back Prior (VAEPP),
based on SGVB [10] with gradient penalty terms, which mixes the discriminator
and the gradient penalty term [7, 28] into VAE. Compared to AAE [18], VAEPP
uses discriminator to adjust learnable prior while AAE uses discriminator to
replace KL(q(z)||p(z)). Langevin dynamics, provided by [13] is used in VAEPP
to improve the quality of sampling.

The main contributions of this paper are in the following:

– We propose a novel learnable prior, Pull-back Prior, which is adjusted by a
discriminator that can assess the quality of data.

– We propose VAEPP framework to use existing techniques of VAE, e.g., flow
posterior, WGAN, e.g., gradient penalty strategy, and Langevin dynamics
to improve the log-likelihood and quality of sampling.

– In MNIST and CIFAR-10, the log-likelihood of VAEPP outperforms mod-
els without autoregressive components and is comparable to autoregressive
models. In MNIST, Fashion-MNIST, CIFAR-10, and CelebA, the FID of
VAEPP is comparable to GANs and SOTA of VAEs.

2 Background

2.1 VAEs and learnable priors

Many generative models aim to minimize the KL-divergence between the em-
pirical distribution p∗(x) and the model distribution pθ(x), which leads to max-
imization likelihood estimation. The vanilla VAE [10] models the joint distribu-
tion pθ(x, z) and the marginal distribution pθ(x) =

∫
pθ(x, z)dz. VAE applies

variational inference to obtain the evidence lower bound objective (ELBO):

ln pθ(x) ≥ Eqφ(z|x)[ ln pθ(x|z) + ln pθ(z)− ln qφ(z|x)] , L(x; θ, φ) (1)

where qφ(z|x) is the variational encoder and pθ(x|z) is the generative decoder.
The training objective of VAE is Ep∗(x) [L(x; θ, φ)] and it is optimized by SGVB
with the re-parameterization trick. In vanilla VAE, the prior pθ(z) is the standard
Gaussian.
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Recently, [26] showed that the simplistic prior could lead to underfitting.
Since then many learnable priors are proposed to enrich the prior. Most of them
focused on the aggregated posterior qφ(z), which was shown to be the opti-
mal prior that maximizes ELBO according to [26]. The training objective with
learnable prior pλ(z) is:

L(θ, φ, λ) = Ep∗(x) Eqφ(z|x) ln pθ(x|z) + Ep∗(x) H[qφ(z|x)] + Eqφ(z) ln pλ(z) (2)

I,J ,K denote 3 terms in eq. (2) respectively for short thereafter. Notice that
pλ(z) only appears in the last term K and the optimal solution of pλ(z) is
qφ(z). [26, 25] obtained an approximation of qφ(z) with their proposed prior, but
reached limited performance.

2.2 GANs and Wasserstein distance

In vanilla GAN [6], a generator is trained to generate samples for deceiving the
discriminator, and a discriminator is trained to distinguish generated samples
and real samples. However, vanilla GAN is unstable during the training process.
To tackle this problem, Wasserstein distance is introduced by WGAN [1]:

W 1(µ, ν) = sup
Lip(D)≤1

{Eµ(x)D(x)− Eν(x)D(x)} (3)

where Lip(D) ≤ 1 means that D is 1-Lipschitz, and µ, ν are measures. WGAN
is optimized by minimizing W 1(p∗, pθ) which can be seen as a min-max opti-
mization.

WGAN makes progress toward stable training but sometimes fails to converge
since it uses weight clipping for the Lipschitz constraint. WGAN-GP [7] and
WGAN-div [28] improved WGAN by gradient penalty techniques, to achieve a
more stable training.

3 Pull-back Prior

3.1 Intuition of Pull-back Prior

Definition 1. The formula of Pull-back Prior is given by:

pλ(z) =
1

Z
pN (z) · e−βD(G(z)) (4)

where pN is a simple prior, D is a discriminator, G is a generator, β is a
learnable scalar, fλ(z) denotes pN (z)e−βD(G(z)), and Z =

∫
Z fλ(z)dz is the

partition function.

A design proposition of Pull-back Prior is that we increase pλ(z) where z
generates better data and decrease pλ(z) where z generates worse data. In Pull-
back Prior, D is a discriminator to assess the quality of x, where smaller D(x)
indicates x being more similar to real data, as shown in fig. 1. Such discriminator
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Fig. 1. The discriminators on above images (generated by linear interpolation of two
sample from qφ(z)), are better at both sides and worse at the middle, which validates
the intuition that a discriminator can assess the quality of images. Moreover, in VAEPP
the density of z which generates better images will increase, and the density of z which
generates worse images will decrease.

D(x) is defined on x, and the pull-back discriminator on z is defined by D(G(z)),
where D(G(z)) represents the ability of z that can generate data with high
quality. To increase pλ(z) at the better z and decrease pλ(z) at the worse z, we
modify pN (z) by βD(G(z)), and then normalize it by Z. Finally, we obtain the
basic formula of Pull-back Prior.

The theoretical derivation for Pull-back Prior is provided in theorem 2. How-
ever, it remains questions about how to obtain D and G, determine β, and
calculate Z.

3.2 How to obtain D and G

In our model, G(z) = Epθ(x|z) x, i.e., the mean of pθ(x|z). In our experiments,
pθ(x|z) is chosen to be a Discretized Logistic [23] or a Bernouli. G(z) is generated
by a neural network and it is set as the mean of pθ(x|z).

D plays an important role in Pull-back Prior. We shall propose two ways to
obtain D in section 4.1 and section 4.2, and compare them later in our experi-
ments.

3.3 How to determine β

To maximize ELBO, we can obtain the optimal β by (λ contains β and ω, where
ω denotes the parameters of D):

β = arg max
β
L(θ, φ, λ) = arg max

β
L(θ, φ, β, ω) (5)

When the training coverages, ∂L/∂β = 0. The gradient ∂L/∂β is:

∂ lnZ

∂β
=

1

Z

∫
Z
pN (z)e−βD(G(z)) · (−D(G(z)))dz = Epλ(z)[−D(G(z))]

∂L
∂β

= Eqφ(z)[−D(G(z))]− ∂ lnZ

∂β
= −Eqφ(z)[D(G(z))] + Epλ(z)[D(G(z))] (6)

The 1st term in eq. (6) is the mean of the discriminator on reconstructed data
(reconstructed data are nearly same as real data in VAE, after few epochs in
training). The 2nd term in eq. (6) is the mean of the discriminator on data
generated from pλ. ∂L/∂β = 0 means that the discriminator can’t distinguish
reconstructed data and generated data when the training converges. It coincides
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with the philosophy of GANs that the discriminator can’t distinguish real data
and generated data when the generator is well-trained.

Noticing that pN is a special case of pλ where β = 0, Pull-back Prior is a
general form of the standard Gaussian. We shall compare their performance in
experiments.

3.4 The upper-bound of Z

It is difficult to calculate the partition function Z exactly. Fortunately for VAEPP,
it is acceptable to obtain an upper-bound of Z, denoted by Ẑ. Using the upper-
bound Ẑ in training and evaluation, we can obtain lower-bounds of log-likelihood
and ELBO (note, p̂θ(x) ≤ pθ(x) indicates ln p̂θ(x) ≤ ln pθ(x)):

p̂θ(x) =

∫
pθ(x|z)fλ(z)

Ẑ
dz ≤

∫
pθ(x|z)fλ(z)

Z
dz = pθ(x)

K̂ = Eqφ(z) ln
1

Ẑ
fλ(z) ≤ Eqφ(z) ln

1

Z
fλ(z) = K

L̂ = I + J + K̂ ≤ I + J +K = L

The upper-bound Ẑ in our model is derived as follows:

Ẑ = Ep∗(x) Eqφ(z|x)
fλ(z)

1
N qφ(z|x)

≥ Ep∗(x) Eqφ(z|x)
fλ(z)

qφ(z)
= Eqφ(z)

fλ(z)

qφ(z)
= Z (7)

The fact that Ẑ is an upper-bound of Z comes from:

qφ(z|x)

N
≤ 1

N

N∑
i=1

qφ(z|x(i)) ≈ Ep∗(x) qφ(z|x) = qφ(z)

In previous VAE literatures [2, 25, 10] and our paper, it is a common practice
to dynamically sample 0/1 binary images (which is exactly the x of our VAE
and many other paper’s) from real-value grayscale images (whose distribution
is denoted by p∗(e)). Each pixel value of e is normalized into [0, 1], and then
is used as the probability of the corresponding pixel of x being 1 (denoted by
p∗(x|e)). In such situation, even when the size M of original grayscale image
dataset is moderate, the size N of the sampled images dataset is exponentially
large. Hence, we shall severely overestimate Z since 1

N qφ(z|x)� qφ(z) if directly
using eq. (7). Therefore, we consider to use p∗(e) instead of p∗(x) to estimate a
lower bound of qφ(z) in such datasets (called Bernouli datasets in our paper).
Given that p∗(x) = Ep∗(e) p∗(x|e), we shall have:

qφ(z) = Ep∗(x) qφ(z|x) = Ep∗(e) Ep∗(x|e) qφ(z|x) = Ep∗(e) qφ(z|e) (8)

where qφ(z|e) denotes Ep∗(x|e) qφ(z|x). eq. (8) suggests that we may train a varia-
tional encoder qφ(z|e) instead of qφ(z|x), along with a generative decoder pθ(x|z),
while the log-likelihood estimator is still correct:

Ep∗(x) log pθ(x) = Ep∗(e) Ep∗(x|e) log pθ(x) = Ep∗(e) Ep∗(x|e) logEqφ(z|e)
pθ(x, z)

qφ(z|e)
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Based on this idea, we then derive Ẑ and ELBO as:

Ẑ = Ep∗(e) Eqφ(z|e)
fλ(z)

1
M qφ(z|e)

≥ Ep∗(e) Eqφ(z|e)
fλ(z)

qφ(z)
= Eqφ(z)

fλ(z)

qφ(z)
= Z

Ep∗(x) ln pθ(x) = Ep∗(e) Ep∗(x|e) lnEqφ(z|e)
pθ(x|z)pλ(z)

qφ(z|e)

≥ Ep∗(e) Ep∗(x|e) Eqφ(z|e) ln
pθ(x|z)pλ(z)

qφ(z|e)
(9)

= Ep∗(x) ln pθ(x)− Ep∗(e) Ep∗(x|e)KL(qφ(z|e), pθ(z|x))

eq. (9) is similar to the original ELBO, and the conclusions in this paper hold for
eq. (9) by repeating derivations for eq. (9). L(θ, φ, λ) denotes eq. (9) in Bernouli
datasets.

Review the estimation of Z. By the theory of importance sampling, pλ is the
optimal choice for the proposal distribution in the estimation of Z. However,
it is intractable to sample from pλ. [2] uses pN as the proposal distribution to
estimate Z but when KL(pN , pλ) is high, the variance of this estimation will be
large.

In our experiments, KL(qφ, pλ) is much smaller than KL(pN , pλ). Therefore,
we choose qφ(z) as the proposal distribution and use 1

N qφ(z|x) as a lower bound

of qφ(z), to obtain Ẑ in eq. (7). The variance of Ẑ is acceptable in experiments. In
training, pN (z) could be used together with qφ(z), as the proposal distributions,
since KL(pN , pλ) is small in the beginning of training.

4 Training and Sampling

In this section, we propose two training methods and a sampling method for
VAEPP. The main difference between two trainings method is how to train the
discriminator.

4.1 2-step training for VAEPP

The discriminator should be obtained by W 1(pθ, p
∗), suggested by WGAN [1].

However in VAEPP, pθ is intractable for sampling, since pθ(x) = Epλ(z) pθ(x|z)
and pλ(z) is intractable for sampling.

When β is small enough, pλ(z) is near to pN (z) which is feasible for sampling.
Then, pθ(x) is near to p†(x), where p†(x) = EpN (z) pθ(x|z) and p†(x) is feasible

for sampling. Therefore, we try to obtain the discriminator byW 1(p†, p∗) instead.
β is limited by a hyper-parameter. In this way, an discriminator D is trained by:

W 1(p†, p∗) = sup
Lip(D)≤1

Ep†(x)D(x)− Ep∗(x)D(x)

The other parameters of VAEPP are trained by SGVB:

max
θ,φ,β

L(θ, φ, β, ω)
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Fig. 2. Training loss of Naive VAEPP and VAEPP on CIFAR-10. Naive VAEPP is
more unstable and nearly crashes at 80 epoch while VAEPP has a little acceptable
gap. From global view, the training loss of VAEPP is more smooth than Naive VAEPP
and is better than Naive VAEPP’s over almost all training process, which validates the
motivation in section 4.2. There are little gaps at per 200 epoch because learning rate
is reduced to half at every 200 epoch.

Above two optimizations run alternatively, as shown in algorithm 1. The model
trained by 2-step training algorithm is called Naive VAEPP.

4.2 1-step training for VAEPP

However, the training process of algorithm 1 is unstable and inefficient, as shown
in fig. 2. We suspect that the two independent optimizations instead of one whole
optimization, may lower the log-likelihood and stability. Therefore, we try to
combine the training for θ, φ, β, ω into a whole optimization. Our solution is to
use SGVB with the gradient penalty term to train VAEPP:

max
θ,φ,β

max
Lip(D)≤1

L(θ, φ, β, ω) (10)

theorem 3 in appendix indicates that it is reasonable to obtain discriminator
D during optimizing eq. (10), and the gradient penalty term should be multiplied
by β. Finally, the optimizations for θ, φ, β and ω are combined into one, as shown
in algorithm 2. The model trained by 1-step training algorithm is called VAEPP.

4.3 Sampling from VAEPP

We apply Langevin dynamics to sample z from pλ(z). It could generate natural
and sharp images and only requires that ∇z log pλ(z) is computable and pλ(z0)
is high enough where z0 is the initial point of Langevin dynamics [24]. Moreover,
[13] has implemented a Metropolis-Adjusted Langevin Algorithm (MALA) for
sampling, where the formula of density also contains a discriminator term. But
how to obtain the initial z0 whose density is high enough is still a problem.

The sampling of VAEPP consists of 3 parts: sample initial z0 by a GAN
modeling qφ(z); generate z ∼ pλ(z) from initial z0 by MALA; generate image
from z with the decoder. This sampling process is similar to 2-Stage VAE [4].
The main difference between them is that VAEPP applies Langevin dynamics
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Algorithm 1: 2-step training algorithm for VAEPP

Input: The gradient penalty algorithm R, the batch size b, the number of critic
iterations per generator iteration nc, the parameters for Adam
Optimizers, τ .

1 while θ, φ, β, ω have not converged do
2 for k = 1, . . . nc do
3 for i = 1, . . . , b do
4 Sample e, x ∼ p∗, z ∼ qφ(z|e), ε ∼ pN ;

5 Z(i) ← 1
2
(e−βD(G(ε)) + fλ(z)

1
M
qφ(z|e)

);

6 L(i) ← ln pθ(x|z) + ln fλ(z)− ln qφ(z|e) ;

7 end

8 θ, φ, β ← Adam (∇θ,φ,β( 1
b

∑b
i L

(i) − ln( 1
b

∑b
i Z

(i))), {θ, φ, β}, τ);

9 end
10 for i = 1, . . . , b do
11 Sample e, x ∼ p∗, z ∼ pN , ê← G(z);
12 get gradient penalty term ζ ← R(e, ê) ;

13 L(i) ← D(x̂)−D(x) + ζ ;

14 end

15 ω ← Adam (∇ω 1
b

∑b
i L

(i), ω, τ) ;

16 end

to sample from the explicit prior but 2-Stage VAE doesn’t, since the prior of
2-Stage VAE is implicit. In experiments, sampling from the explicit prior may
improve the quality of sampling in some datasets.

Accept-Reject Sampling [2] is useless for pλ because it requires that pλ(z)/pN (z)
is bounded by a constant T on the support of pλ, such that a sample could be
accepted in expected T times. But it is hard to ensure that there exists a small
T in VAEPP.

5 Experiments

5.1 Log-likelihood Evaluatoin

We compare our algorithms with other models based on log-likelihood, on MNIST
and CIFAR-10 as shown in table 1, and on Static-MNIST [15], Fashion-MNIST [29],
and Omniglot [14], as shown in table 2. Because the improvement of auto-
regressive components is significant, we separate models by whether they use
an auto-regressive component. The reason of why VAEPP doesn’t use an auto-
regressive component is that VAEPP is time-consuming in training, evaluation
and sampling due to the huge structure (need additional discriminator) and
Langevin dynamics. It is not easy to apply an auto-regressive component on
VAEPP since auto-regressive component is also time-consuming. Therefore, how
to apply an autoregressive component on VAEPP is a challenging practical work
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Algorithm 2: 1-step training algorithm for VAEPP

Input: The gradient penalty method R, the batch size b, the parameters τ for
Adam Optimizers.

1 while θ, φ, β, ω have not converged do
2 for i = 1, . . . , b do
3 Sample e, x ∼ p∗, z ∼ qφ(z|e), ε ∼ pN , ê← G(ε), ζ ← R(e, ê);

4 Z(i) ← 1
2
(e−βD(G(ε)) + fλ(z)

1
M
qφ(z|e)

);

5 L(i) ← ln pθ(x|z) + ln fλ(z)− ln qφ(z|e) + βζ;

6 end

7 θ, φ, β, ω ← Adam (∇θ,φ,β( 1
b

∑b
i L

(i) − ln( 1
b

∑b
i Z

(i))), {θ, φ, β, ω}, τ)

8 end

and we leave it for future work. IvOM [19] of VAEPP reaches 0.018, 0.017 on
MNIST, CIFAR-10, which shows good data coverage.

We compare Naive VAEPP trained by algorithm 1 and VAEPP trained by
algorithm 2 on CIFAR-10, as the gradient penalty algorithm is chosen from 3
strategies: WGAN-GP, WGAN-div-1 (sampling the linear interpolation of real
data and generated data) and WGAN-div-2 (sampling real data and generated
data both) in table 3.

To validate that it is better to use qφ(z) to evaluate Z than pN (z) in sec-
tion 3.4, we calculate the KL(qφ(z)||pλ(z)) and KL(pN (z)||pλ(z)) on CIFAR-10
and MNIST. The former is smaller than L−I [9](180.3 on CIFAR-10 and 12.497
on MNIST), and the latter can be evaluated directly (1011.30 on CIFAR-10 and
57.45 on MNIST). Consequently, qφ(z) is much closer to pλ(z) than pN (z).

To ensure the variance of estimation Ẑ is small enough, the qφ(z|e) is chosen
as truncated normal distribution (drop the sample whose magnitude is more than
2 standard deviation from the mean) instead of normal distribution, which may
reduce the gap between qφ(z) and 1

M qφ(z|x). With 109 samples, the variance of Ẑ
with truncated normal and normal is 0.000967 (truncated normal) and 0.809260
(normal) respectively in MNIST. Therefore, truncated normal is chosen as the
default setting.

5.2 Quality of Sampling

As a common sense, the quality of sampling of VAEs is worse than GANs, and
it is indeed a reason that we involve the techniques of GAN to improve VAE
model: We use the discriminator to adjust learnable prior and a GAN to sample
the initial z0 for Langevin dynamics. These techniques will help VAEPP improve
the quality of samples. The samples of VAEPP gets good FID [8], comparable
to GANs and 2-Stage VAE (SOTA of VAE in FID), as shown in table 4. Some
generated images of VAEPP are shown in fig. 3. It is important to notice that
the GAN in VAEPP only plays the role that generates z0 with high pλ(z0), in
latent space with small dimension, instead of image. The ability of VAEPP that
generates image from z is totally depend on the decoder.
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Model MNIST CIFAR Model MNIST CIFAR

With autoregressive Without autoregressive
PixelCNN 81.30 3.14 Implicit Optimal Priors 83.21
DRAW 80.97 3.58 Discrete VAE 81.01
IAFVAE 79.88 3.11 LARS 80.30
PixelVAE++ 78.00 2.90 VampPrior 79.75
PixelRNN 79.20 3.00 BIVA 78.59 3.08
VLAE 79.03 2.95 Naive VAEPP 76.49 3.15
PixelSNAIL 2.85 VAEPP 76.37 2.91
PixelHVAE+VampPrior 78.45 VAEPP+Flow 76.23 2.84

Table 1. Test NLL on MNIST and Bits/dim on CIFAR-10. The data are from [17, 3,
26, 2, 25]. Bits/dim means − log pθ(x|z)/3072/ ln 2. VAEPP+Flow means VAEPP with
a normalization flow on encoder. The decoder on CIFAR-10 is Discretized Logistic and
the decoder on MNIST is Bernouli. Additional, we compare VAE based on qφ(z|x) and
qφ(z|e) on MNIST, whose NLL are 81.10 and 83.30 respectively. Moreover, evaluation
using importance sampling based on qφ(z|e) has enough small standard deviation (0.01)
with 108 samples altogether. It validates that qφ(z|e) is stable for evaluation and doesn’t
improve the performance. VAEPP reaches SOTA without autoregressive component,
and is comparable to models with autoregressive component.

Model Static MNIST Fashion Omniglot

Naive VAEPP 78.06 214.63 90.72
VAEPP 77.73 213.24 89.60
VAEPP+Flow 77.66 213.19 89.24

Table 2. Test NLL on Static MNIST, Fashion-MNIST and Omniglot.

It is hard to reach best FID, IS [22] and log-likelihood simultaneously with
one setting. We observe the fact that when dimZ (the dimension of latent space)
increases, the trends of FID and IS are greatly different to log-likelihood’s, as
shown in fig. 4. As diagnosis in [4], the variance of pθ(x|z) is chosen as a learn-
able scalar γ, and the dimZ is chosen as a number, slightly larger than the
dimension of real data manifold. In our experiments, VAEPP reaches best FID
when dimZ = 128.

For better understanding, the values of discriminator on training set are
normalized into N (0, 1). To validate the eq. (6), we calculate Epλ(z)D(G(z))

Fig. 3. Examples of generated images from VAEPP on CelebA [16] and CIFAR-10.
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GP Strategy WGAN-GP WGAN-div-1 WGAN-div-2

Naive VAEPP 3.15 3.20 4.47
VAEPP 2.95 2.91 2.99

Table 3. Comparison between Naive VAEPP and VAEPP when gradient penalty
strategy varies on CIFAR-10 with dim Z = 1024. For any gradient penalty strategy
in the table, VAEPP outperforms Naive VAEPP, which validates the our intuition of
algorithm 2. WGAN-div-1 is chosen as the default gradient penalty strategy since it
reaches best performance in VAEPP.

Model MNIST Fashion CIFAR CelebA

Best GAN ∼ 10 ∼ 32 ∼ 70 ∼ 49
VAE+Flow 54.8 62.1 81.2 65.7
WAE-MMD 115.0 101.7 80.9 62.9
2-StageVAE 12.6 29.3 72.9 44.4
GAN-VAEPP 12.7 26.4 74.1 53.4
VAEPP 12.0 26.4 71.0 53.4

Table 4. FID comparison of GANs and VAEs. Best GAN indicates the best FID on
each dataset across all GAN models when trained using settings suggested by origi-
nal authors [4]. VAEPP uses Bernouli as decoder on MNIST and Discretized Logistic
on others. GAN-VAEPP indicates that image is directly sampled from z0, without
Langevin dynamics. In experiments, we found that the FID of VAEPP is usually bet-
ter than GAN-VAEPP, which means that the explicit prior and Langevin dynamics
might be useful for improving the quality of sampling in some datasets.

and Eqφ(z)D(G(z)). They are 0.092 and 0.015 respectively on CIFAR-10, which
means discriminator on generated samples and reconstructed samples are nearly
same as on real data. To validate the assumption in section 7 holds in experiment,
we calculate |Epθ(x|z)D(x)−D(G(z))|, which is an acceptable value (0.019) on
CIFAR-10.

6 Conclusion

We propose a novel learnable prior, Pull-back Prior, for VAE, by adjusting the
prior through a discriminator assessing the quality of data, with a solid deriva-
tion and an intuitive explanation. We propose an efficient and stable training
method for VAEPP, by mixing the optimizations of WGAN and VAE into one.
VAEPP shows impressive performance in log-likelihood and quality of sampling
on common datasets. We believe that VAEPP could lead VAE models into a new
stage, with clearer formula, more general framework and better performance.
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Fig. 4. Comparison of VAEPP with a learnable scalar γ (variance of pθ(x|z)), as the
dimension of latent space varies on CIFAR-10, with metrics BPD, FID and IS. FID
and BPD are better when it is smaller and IS is better when it is larger. When dimZ
is greater than 128, the quality of sampling becomes worse and BPD becomes better as
dimZ increases. It validates the proposition that dimZ should be chosen as a minimal
number of active latent dimensions in [4]. It shows an interesting phenomenon that
trends of FID and IS, are not same as BPD, maybe greatly different.

7 Derivation of Pull-back Prior

For any given θ, φ, search the optimal prior that minimizes the W 1(pθ, p
∗):

min
λ

sup
Lip(D)≤1

{Epλ(z) Epθ(x|z)D(x)− Ep∗(x)D(x)} (11)

We use an assumption Epθ(x|z)D(x) = D(G(z)) and an approximation D to
simplify it. The D in eq. (11) could be replaced by an approximation D in
W 1(p†, p∗), if pλ is near pN , as section 4.1 and section 4.2 does. The simplified
optimization is:

min
λ
{Epλ(z)D(G(z))− Ep∗(x)D(x)} s.t. KL(pλ, pN ) = α,

∫
Z
pλ(z)dz = 1

Theorem 2. The optimal solution for this simplified optimization is the Pull-
back Prior.

Proof. It could be solved by Lagrange multiplier method introduced by calculus
of variation [5]. The Lagrange function with Lagrange multiplier η, γ is:

F (pλ, η, γ) = Epλ(z)D(G(z))− Ep∗(x)D(x) + η

∫
Z
pλ(z)dz + γKL(pλ, pN )

By Euler-Lagrange equation, the optimal pλ satisfies δF
δpλ

= 0. Therefore, we
obtain

δF

δpλ
= D(G(z)) + η + γ log

pλ(z)

pN (z)
+ γpλ(z) ∗ 1

pλ(z)
= 0

Rewritten it into ln pλ(z) = − 1
γD(G(z)) + ln pN (z)− ( ηγ + 1), which is the Pull-

back Prior with β = 1
γ , lnZ = (1 + η

γ ). β is determined by α. In simplified
optimization, α is static and need to be searched, i.e., β need to be searched, as
section 3.3 does.
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Theorem 3. The optimization process of maxLip(D)≤1 L(θ, φ, β, ω) is equivalent

to the maxLip(D)≤1K, which is a lower-bound of βW 1(p†, p∗).

Proof. L = I+J +K, where I+J is independent to D, then I+J is constant.

K = −Eqφ(z) β ∗D(G(z))− lnZ ≤ β EpN (z)D(G(z))− Eqφ(z)D(G(z))

where lnZ = lnEpN (z) e
−β∗D(G(z)) ≥ EpN (z)[−β ∗D(G(z))]. Then

max
Lip(D)≤1

K ≤ β max
Lip(D)≤1

{Ep†(x)D(x)− Epr(x)D(x)} = βW 1(p†, pr)

where pr(x) = Eqφ(z) pθ(x|z) and pr ≈ p∗ is observed in experiments.

Acknowledgments

This work has been supported by National Key R&D Program of China
2019YFB1802504 and the Beijing National Research Center for Information Sci-
ence and Technology (BNRist) key projects.

References

1. Arjovsky, M., Chintala, S., et al.: Wasserstein generative adversarial networks. In:
International conference on machine learning. pp. 214–223 (2017)

2. Bauer, M., Mnih, A.: Resampled priors for variational autoencoders. In: The 22nd
International Conference on Artificial Intelligence and Statistics. pp. 66–75 (2019)

3. Chen, X., Mishra, N., et al.: Pixelsnail: An improved autoregressive generative
model. In: International Conference on Machine Learning. pp. 863–871 (2018)

4. Dai, B., Wipf, P.D.: Diagnosing and enhancing vae models. ICLR (2019)
5. Gelfand, I.M., Silverman, R.A., et al.: Calculus of variations. Courier Corporation

(2000)
6. Goodfellow, I., Pouget-Abadie, J., et al.: Generative adversarial nets. In: Advances

in neural information processing systems. pp. 2672–2680 (2014)
7. Gulrajani, I., Ahmed, F., et al.: Improved training of wasserstein gans. In: NIPS

(2017)
8. Heusel, M., Ramsauer, H., et al.: Gans trained by a two time-scale update rule con-

verge to a local nash equilibrium. In: Advances in Neural Information Processing
Systems. pp. 6626–6637 (2017)

9. Hoffman, M.D., Johnson, M.J.: Elbo surgery: yet another way to carve up the vari-
ational evidence lower bound. In: Workshop in Advances in Approximate Bayesian
Inference, NIPS. vol. 1 (2016)

10. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: ICLR (2014)
11. Kingma, D.P., Dhariwal, P.: Glow: Generative flow with invertible 1x1 convolu-

tions. In: Advances in Neural Information Processing Systems. pp. 10215–10224
(2018)

12. Kingma, D.P., Salimans, T., et al.: Improved variational inference with inverse
autoregressive flow. In: Advances in neural information processing systems. pp.
4743–4751 (2016)



14 W. Chen, W. Liu, Z. Cai, H. Xu, and D. Pei

13. Kumar, R., Goyal, A., et al.: Maximum entropy generators for energy-based mod-
els. arXiv preprint arXiv:1901.08508 (2019)

14. Lake, B.M., Salakhutdinov, R., et al.: Human-level concept learning through prob-
abilistic program induction. Science 350(6266), 1332–1338 (2015)

15. Larochelle, H., Murray, I.: The neural autoregressive distribution estimator. AIS-
TATS pp. 29–37 (2011)

16. Liu, Z., Luo, P., et al.: Deep learning face attributes in the wild. In: Proceedings
of the IEEE international conference on computer vision. pp. 3730–3738 (2015)

17. Maaløe, L., Fraccaro, M., et al.: Biva: A very deep hierarchy of latent variables for
generative modeling. NeurIPS (2019)

18. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, J.I.: Adversarial autoencoders.
CoRR (2015)

19. Metz, L., Poole, B., et al.: Unrolled generative adversarial networks. ICLR (2017)
20. Van den Oord, A., Kalchbrenner, N., et al.: Conditional image generation with pix-

elcnn decoders. In: Advances in neural information processing systems. pp. 4790–
4798 (2016)

21. Rezende, D.J., Mohamed, S., et al.: Stochastic backpropagation and approximate
inference in deep generative models. In: ICML (2014)

22. Salimans, T., Goodfellow, I., et al.: Improved techniques for training gans. In:
Advances in neural information processing systems. pp. 2234–2242 (2016)

23. Salimans, T., Karpathy, A., Chen, X., Kingma, P.D.: Pixelcnn++: Improving the
pixelcnn with discretized logistic mixture likelihood and other modifications. ICLR
(2017)

24. Song, Y., Ermon, S.: Generative modeling by estimating gradients of the data
distribution. In: Advances in Neural Information Processing Systems. pp. 11895–
11907 (2019)

25. Takahashi, H., Iwata, T., et al.: Variational autoencoder with implicit optimal
priors. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 33,
pp. 5066–5073 (2019)

26. Tomczak, J., Welling, M.: Vae with a vampprior. In: International Conference on
Artificial Intelligence and Statistics. pp. 1214–1223 (2018)

27. Tomczak, J.M., Welling, M.: Improving variational auto-encoders using house-
holder flow. arXiv preprint arXiv:1611.09630 (2016)

28. Wu, J., Huang, Z., et al.: Wasserstein divergence for gans. In: Proceedings of the
European Conference on Computer Vision (ECCV). pp. 653–668 (2018)

29. Xiao, H., Rasul, K., et al.: Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms (2017)


