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/T Operations is one of the technology foundations of the

Increasingly digitalized world.
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IT Operations

Responsible for ensuring the digitalized businesses and societies run reliably,
efficiently and safely, despite the inevitable failures of the imperfect underlying
hardware and software.

Large & complex Large & complex Large & complex
access network data center application software




Some IT Operations Companies

All collect IT Operations data and started to offer AIOps (Al for IT Operations) products
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“Internet needs an Al-based knowledge plane”
--- Dave Clark in his SIGCOMM 2003 paper.

A Knowledge Plane for the Internet

David D. Clark*, Craig Partridge®, J. Christopher Ramming’ and John T.

*M.I.T Lab for Computer Science
200 Technology Square
Cambridge, MA 02139

{ddc,jtw}@Ics.mit.edu

ABSTRACT

We propose a new objective for network research: to build a
fundamentally different sort of network that can assemble itself
given high level instructions, reassemble itself as requirements
change. automatically discover when something goes wrong, and
automatically fix a detected problem or explain why it cannot do so.

We further argue that to achieve this goal, it is not sufficient to
improve incrementally on the technigues and algorithms we know
today. Instead, we propose a new construct, the Knowledge Plane, a
pervasive system within the network that builds and maintains high-
level models of what the network is supposed to do., in order to
provide services and advice to other elements of the network. The
knowledge plane is novel in its reliance on the tools of AI and
cognitive systems. We argue that cognitive techniques, rather than
traditional algorithmic approaches, are best suited to meeting the
uncertainties and complexity of our objective.

4®BBN Technologies TSRI
10 Moulton St
Cambridge, MA 02138

craig@bbn.com
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Industry opinions on Al’ s role In IT operations

Huawei CEO Ren Zhengfei:

“Al is the most important tool for managing the networks.
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Jeff Dean Head of Al, Google: E

“We can (use Al to)
improve everywhere in a
system that have tunable
parameters or heuristics”

Anywhere We've Punted to a User-Tunable
Performance Option!

Many programs have huge numbers of tunable command-line
flags, usually not changed from their defaults

Anywhere We're Using Heuristics To Make a

Decision! ) ) )
Compilers: instruction scheduling, register allocation, loop

nest parallelization strategies, ...

Networking: TCP window size decisions, backoff for
retransmits, data compression, ...

Operating systems: process scheduling, buffer cache
insertion/replacement, file system prefetching, ...

Job scheduling systems: which tasks/VMs to co-locate on
same machine, which tasks to pre-empt, ...

ASIC design: physical circuit layout, test case selection, ...



Outline

* IT Operations (Ops) background

* [s machine learning necessary for Ops?

* Case Study Overview
* Unsupervised Anomaly Detection in Ops
* Alert Analysis in Ops

* Lessons Learned



Complex Edge Networks
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Complex and Evolving Data Center Hardwares

Frequent topology changes

10s of thousands of servers
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Complex Software Module Dependences
Application dependency at Uber in 2018




Evolving Techniques Enable Frequent Software Changes,
one major cause of failures

10s of thousands software/config changes per day in a large company

INFRASTRUCTURE CONTAINER APPLICATION FUNCTION SOFTWARE
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/tmp You
Networks IPs & Ports 80/443 Triggers Want
Firewalls Load Balancers Routes Gateways ( to pay for)

Virtual Machines Containers Apps
Disks Volumes /tmp

Low Level Abstraction High Level

Flexibility Velocity

DevOps Enabler Tools v2 (Caution!!!! : Consider only after DevOps mindset is established)

H
A

Cortinuote Infra-as-code clico Test Automation| ~ Container | O D ChatOps
Octopus| @ warr ]
Se docker | FEEIETE * pu

ANSIBLE Jenkins

(55) A plasticsearch
Cucumber @ -

f? MESOS o ‘ 0 )
sopoe | @9 | pocket vamp i e9

Lo oo | o | #xivana| LITA
U l 2u n|k e DBmaestro| @ sumologic [?UG
CHEF Tc.

TeamCity| JMeter ﬁm ?ﬂ
DATADOG '

SALTSTACK :
kloia

Continuous Continuous
Monitoring Testing
DevOps
5C'S
Continuous Continuous
Deployment Delivery

DevOps Continuous Integration/Continuous Delivery




Anomaly

: Largé-scale, complex, cross-layer
Propagation dynamic system’ s digitalized
Graph running status = monitoring data
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TeraBytes of Ops data per day overwhelm Ops engineers

Each offers some clues, but due to complexity and volume,
each is hard to manually analyze, let alone collectively analyze all data sources.

Software module Application Performance
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Probing
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We have no choice but
relying on Artificial
Intelligence to extract
useful signals out of the
Big Ops Data which have
every low signal-to-noise
ratio.

*Volume
*Velocity
* Variety
*Value
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We have no choice but
relying on Artificial
Intelligence to incorporate
(expert or mined)
knowledge (topology, call

graph, causal relationship)
to correlate signals.

THIS IS TRUTH




AlOps Platform Enabling Continuous ITOM

Historical analysis
Logs

Anomaly detection
Vendor-agnostic Metrics Machine _
data ingestion Wire data Learning Performance analysis

Document text Correlation and contextualization

\

Act
(automation)

1D: 340492 © 2018 Gartner, Inc.



Towards Autonomous IT Operations

Manual and few data

Lots ofi data but
manual decision

AlOps Platform Enabling Continuous ITOM

Autonomous

PASSZINGZ

Spaceship Avalon: 5000 passengers and 258 crew members in
hibernation. Flying towards Planet Homestead Il, 120-year trip.



Levels of AlOps

RoadMap of AIOps

AI/MACHINE

LEVELO

LEVEL 1

traditional
Ops

trouble
analysis

trouble
disposal

Anomaly detection

Automatic
scheduling

EYES ON

EYES TEMP OFF

(o

LEVEL 2

partial trouble
analysis

partial trouble
mitigation

Root cause
analysis

\YERIVE]
Action

EYES TEMP OFF
MIND TEMP OFF
HANDS TEMP OFF

(o

Oc 0o

LEVEL 3

manual
decision in
special scene

Automatic
decision

Automatic
Action

EYES OFF
MIND TEMP OFF
HANDS OFF

standard
environment

(o

Jo 0o (o

LEVEL 4

manual
intervention in
special scene

Automatic
decision

Automatic
Action

EYES OFF
MIND TEMP OFF
HANDS OFF

complex
environment

0c 0o 0o o (o

LEVEL 5

Autonomous
operations

HUMAN OFF

complex
environment




Levels of Autonomous IT Operations

« Cores Per Op (CPO) under specific SLA (e.g. 99.5% availability):
The average number of x86 CPU cores managed by an Op (40hours/week)

Level=| Log Cores Per Op Typical Enterprises
(CPO/100) | (CPO)

Level O
Level 1
Level 2
Level 3
Level 4

Level 5

O(100) Finance

O(1K) Medium Internet companies running on public clouds
O(10K) Large Internet companies

O(100K)

O(1M)

O(10M)
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Autonomous IT Operations:
use Artificial Intelligence to automatically deal
with all causes of changes to IT systems

Software & hardware failures Automatic Healing
Software changes Autonomous software deployment

Traffic load changes Automatic Elastic Resource Allocation

Malicious attacks Autonomous Defense




Outline

* IT Operations (Ops) background
* |Is machine learning necessary for Ops?

* Case Study

. Unsuperwsed Anomaly Detection in Ops
Time series anomaly detection (IMC 2015, WWW 2018, IWQoS 2019, INFOCOM 2019a,

INFOCOMZ2019b, ISSRE 2018, IPCCC 2018a, IPCCC 2018b, TSNM 2019, KDD20139,

INFOCOMZ2021)
* Log anomaly detection (IWQoS 2017, 1JCAI 2019, IPCCC2020a, IPCCC2020b, ISSRE2020)

* Trace anomaly detection (ISSRE 2020)
* Zero-day attack detection (INFOCOM2020a)

* Alert Analysis in Ops

* INFOCOM2020b, ICSE SEIP 2020, FSE 2020
* Lessons Learned N



All case studies are from joint work with Industry Collaborators
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Diverse Metrics and Their Diverse Anomalies

Time series algorithms are needed tq parse and make sense of metrics data

(1) Seasonal metrics (5) "Detect too rapid a change
QQFJ/MMMM::MJWM/AE& ..... Dar“/Vwat:Wwaw/lﬁr . T T
(2) Periodicity shift (6) Detect the lack of seasonality.
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM ‘WIJ Ll &iml" JﬁLﬂ‘ "| Liﬁ " I‘IHLJ ‘|‘ [blj“ ’|QL] ‘l |y*wh‘ IJJHL}J
_(3) Adopt to holidays (7) Adapt to trend change

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

(4) Identify variable metrics and obtain extreme threshold (8) Robust against data loss or interruption
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Architecture
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Donut: supervised->unsupervised: smooth KPIs
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Figure 12: 3-d latent space of all three datasets.
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B Opprentice B VAE Baseline BN Donut BN Donut-Prior

Unsupervised KPlI Anomaly Detection
Through Variational Auto-Encoder

AUC

WWW2018

Accuracy of 0.8~0.9, even better than
supervised approach.

Best F-Score

—>log ps(x/z'V))

Eq, (z|x) [log pe(x|z)]

—log pg(x|z£))

po(x|z™))




Buzz: Apply Adversarial Training for non-Gaussian noise

e o
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Unsupervised Anomaly Detection for Intricate KPIs via

Adversarial Training of VAE

 Wasserste

Sws

in Distance

Space X

Space Z

28

INFOCOM 2019

We use two major ideas in Buzz:

* Wasserstein distance: the distance
between the two probability
distributions

* Partitioning from measure theory.
a powerful and commonly used analysis

method for distribution in measure
theory.



Experiment Results WW‘W\H \
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IWQOS 2018

Baseline [Ts

Preprocessing —> Extraction
Baseline for each curve
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Raw time
series data
KPI Clusters |
Cluster centroids \

Clustering + Transfer Learning to reduce training overhead
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>
Extraction

New KPI (raw)

—| Preprocessing

S
Original DONUT [WWW2018]
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Adapt to Concept Drift

ISSRE 2018 Best Paper

score by 203% (0.225 to 0.681)

concept drift adaption improve anomaly detection F-

Observation: Old and New Concept Can Be Linearly Fitted

Value A

Expected Concept Drift

Old Concept e | === New Concept

Trend changes
Amphtude changes
\/ Yal /N \/

Mon. Tue. Wed. Thur. Fri. Tlme

.
/¢

.
.
”,
2,
%

,/(PI Value °

Linear Fit - -

Time of
Day

20
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Value Value Value Value Value Value Value Value

Multivariate Time Series Anomaly Detection
with OmniAnomaly (KDD 2019)

TCPActiveOpens. N e T N F1-best of OmniAnomaly and baselines
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33

Model Architecture of OmniAnomaly

A good z; can represent x; well regardless

of whether x; is anomalous or not.

Reconstructed data
Anomaly of

GRU cells for capturing temporal dependence o ; +/v oo

Stochastic cells for modeling data distribution . 2N 000

-0.1

0.1 ’ 0.08
0.2 —0.1 0.10-0.04

Normal data point

Fig: 3-dimensional z; of x; X,

When x; i1s anomalous, its z; can still
represent its normal pattern and x; will be
normal too.

GRU cells for capturing temporal dependence

OO
D-<DE
(1< (1<)

11111

Input Sequence data



Transfer Learning in Latent Space for MTSAD

training one OmniAnomaly model for each machine costs much time (e.g.,
900s for each machine).

Clustering and fine-tuning could greatly reduce the training time with a
limited accuracy loss.

[ Machine | ( Machine )
i 1 J § 2 J

E M h \ R N ; . .
KPI 1 //{ ac3 ne MaTme : OmniAnomaly: one model 1. Challenes:
[ Mac5hine Y ( Macehine w ];g(r)((j)gli)machlne (e, 8 2. The high dimensionality of
KPIN [echine | (Mechine | multivariate time series with
H \ 8 J E . .
: g noises and anomalies.
Clusterl : Cluster2 .  Cluster 3 * It’s challenging to cluster on x or make
E E dimensionality reduction.
" «  Noises and anomalies may mislead
i i SI?Jit;nro(i s gerrnodels) the measurement of distances.
8 ey €.
Bl Machine [ 34
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Framework of model training

L——————

e

___________

_________________________

1. Pre-training the coarse-

grained model

/

\ 4

Model,

N

-

2. Feature

extraction

N\

1 Sample from partial machines

J

z distributions of M machines

~

s

3. Machine clustering

N

J

K clusters

(4. Model transfer: fine-tuning a )

_________

_________

_________

| fine-grained model per cluster |

S S —

{ Model,

{ Model,

. -{ Modely

_________________________________________________

Framework of model training

1. Sampling strategies in pre-training:
* Machine entity sample
* Time period sample

2. Feature extraction:
* zsample

3. Clustering on z distribution:
* Distance: Wasserstein distance
* Clustering: Hierarchical agglomerative
clustering (HAC) algorithm

4. Fine-tuning fine-grained models:
e Sampling strategies like 1

CTF can reduce the model training time
from about two months (O(M - T,,)) to 4.40

hours (O(M - T¢) + O(K - T) (M > K, Ty, >
Tt)) for one hundred thousand machines. It

achieves an F1-Score of 0.830, with only
0.012 performance loss.



Time Series Anomaly Detection

IPCCC 2018 INFOCOM 2019 IPCCC 2018
Conditional VAE to detect Adversarial Training Semi-supervise learning for fast
seasonality-violating anomalies +VAE anomaly detection of new time

Time series anomaly detection

i Y YT A Y VA ) A
0’ WA | A :/\//01 AR l_,»ﬂ-’ Ve

Statistical methods

Clustering-
Active based transfer
Learning learning for 4
millions of KPls

Transfer

(manual algorithm Supervised

selection and
parameter-tuning)

Ensemble
learning

Learning for
concept drift

. \00ddtaaaad
() Location 1 A I vl 2 - -*-‘uu\\ir:l_:r;ww
INFOCOM 2012 IMC 2015 WWW2018 INFOCOM 2019 IWQOS 2018 :iSpR;Er 2018 Best

Multivariate Time Series Transfer Learning for

Anomaly Detection Multivariate Time Series
(VAE+RNN) Anomaly Detection

KDD 2019 INFOCOM 2021



Outline

* IT Operations (Ops) background
* |Is machine learning necessary for Ops?

* Case Study

. Unsuperwsed Anomaly Detection in Ops
Time series anomaly detection (IMC 2015, WWW 2018, IWQoS 2019, INFOCOM 2019a,
INFOCOM2019b, ISSRE 2018, IPCCC 2018a, IPCCC 2018b, TSNM 2019, KDD2019,

INFOCOM2021)
* Log anomaly detection (IWQoS 2017, [JCAl 2019, IPCCC2020a, IPCCC2020b, ISSRE2020)

* Trace anomaly detection (ISSRE 2020)
* Zero-day attack detection (INFOCOM2020a)

* Alert Analysis in Ops

* INFOCOM2020Db, ICSE SEIP 2020, FSE 2020
 Lessons Learned
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Hundreds of types of logs in a typical enterprise

NLP techniques are needed to parse and make sense of the log data

Application logs

System logs
+  UNIX
e Linux
«  Windows
- JVM

Environment

Logs
*  Power
« A/C

Middleware Logs

*  Message Queue

*  Tuxedo
*  Weblogic
* Tomcat

* Apache

Network Logs

*  Switch
*  Router
* Load Balancer

Security Device Logs

*  Firewal
* IDS

* |PS

*  WAF

DB logs

*  Qracle
e DB2
* Informix

e SQLServer
¢ MySQL

2018-10-10 20:53:51, 194 [JAgentSocketServer. cpp:121] WARN agent 9995 - Listening Port : 205104
2018-10-10 20:53:51, 194 [RequestHandlerService. cpp:189] WARN agent 9995 - RequestHandlerService::handle_input (4CE_HANDLE=38).

2018-10-10 20:53:51,195 [ResponseCOUNT.
2018-10-10 20:53:51,195 [ResponseCOUNT.
2018-10-10 20:53:51,199 [ResponseCOUNT.
2018-10-10 20:53:51,199 [ResponseCOUNT.
2018-10-10 20:53:51, 204 [ResponseCOUNT.

cpp:158] INFO
cpp:302] INFO
cpp:159] INFO
cpp:302] INFO
cpp:159] INFO

agent 9995 - I0: Command (1) INITIALISE_PROCESS .
agent 9995 - ResponseCOUNT: rc=0J

agent 9995 - I0: Command (2) INITIALISE_ROOT !
agent 9995 - ResponseCOUNT: rc=0.

agent 9995 - I0: Command (3) INITIALISE_THREAD .

INFO [WebContainer : 15] - queryForList:IDA_TEMPLATE. LISTDATA_MOST_CLICKY
INFO [WebContainer : 8] - queryForList:IDA_NOTICE. LISTDATA_BY_USER!
com. teradata. ida. auth. dto. SysUserV0@2¢3d3eldy

[8/10/18 8:29:31:581 CST] 00000032 SystemOut

0 INFO [WebContainer : 1] - queryForList:IDA TEMPLATE_AUTH. findTemplateByRoleId!

DEBUG [WebContainer : 7] - 2018-08-10 03:29:32 DEBUG |CsParamSetAction|showhtomsByzid|Start||start=0|1imit=25|page=1|fromIndex=0]toInd
INFO [WebContainer : 7] - queryForList:SEG_BIZ_ATOM_DEF. findAtomByRoleAndShowAreal

EXPLANATION: .

Charnel program °CS_EDI_S’ ended abnormally. |

ACTION: L

Look at previous error messages for channel program “CS_EDI_S’ in the error!
cause of the failure.

files to determine the
————— amgQrmrsa. ¢ : 487
08/07/2018 10:14:54 AN

- Process (29670. 329016) User (mgm) Program(amgrmppa) .
ANQS9513: Maximum number of channels reached. |
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Syslog Messages Under the Type  “SIF’

Interface ae3, changed state to down
Vlan-interface vlan22, changed state to down
Interface ae3, changed state to up
Vlan-interface vlan22, changed state to up
Interface ael, changed state to down
Vlan-interface vlan20, changed state to down
Interface ael, changed state to up
Vlan-interface vlan20, changed state to up
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Syslog Messages Under the Type “SIF"  Before A Failure

B~ L N e

Interface *, changed state to down

Vlan-interface *, changed state to down A template is a
Y combination of

Interface *, changed state to up words with high

Vlan-interface *, changed state to up frequency

mmon practice for syslog pre-processi
tracting templates from syslog messag
atching syslog messages to template




Challenges of Log Analysis

Semantic information
could be lost if only log

Existing log-based

methods cannot detect
anomalies accurately.

template index is used.

Log2V
ogevee LogAnomaly

Services can generate

new log templates

\//i>
: Too few log data for new

LogParse services

LogTransfer



Semantic-aware log representation

Challenges:
1. Out-of-vocabulary (OOV) words

Historical logs:

L,. Interface ae3, changed state to down
L,. Interface ae3, changed state to up

L;. Interface ael, changed status to down
L,. Interface ael, changed status to up

Real-time logs:

Ls. Vlan-interface vlan22, changed state to down
Lg. Vlan-interface vlan22, changed state to up

+ The vocabulary is growing continuously because the service

L

can be upgraded to add new features and fix bugs

Out-of-vocabulary

Vlan-interface

Relation triples

(Interface, changed, state)

Antonym pairs

(down, up)

2. Domain-specific semantic information

Synonym pairs

(state, status)

* Logs contain logs of domain-specific words

Examples of logs and domain-specific information




Semantic-aware log representation

w 05
°
g 0.4 ——— Windows  ---- Spark
8§ = = HDFS =+ Hadoop
O o 0.3
C
55 ‘\\
g,ﬁ,’ 0.2 NeoN -~
Se :
C

ot o o — — —

1. Highlighting the challenge of OOV words N ———

P
o

10% 20% 30% 40% 50% 60% 70% 80% 90%
Percentage of training set

Measurements of OOV words

2. A Log-specific word embedding method T e N

1 ey oy i o) O g
O e 100 @ (O
| oo 19 Q9 o
Q) 10y 19 1O 1O IO
| Q10 10101 101 10

Wi € SYNuw; wy € ANT,, Wi Wics1 Witeo1 Wike h TERy

Log-specific word embedding

3. Semantic-aware representation framework for g i

online log analysis | T bt [ i |
i_'d'r.l;_n;;t'_a;é'_' | Vocabulary IZT.'_' " '_'.T;'.!

Framework of Log2Vec



Adaptiveness of Log Parsing

mGoal: match any types of online logs

Templates:

Historical logs: T,. Interface *, changed state to down

Lo Interface ac3, changed state to down T,. Vlan-interface *, changed state to down
L,. Vlan-interface v122, changed state to down «
T,. Interface *, changed state to up

L. Interface ae3, changed state to up :

— Template update:
L,. Interface ael, changed state to down T. 5 >
Real-time logs: TC;:I late match:
L.. Interface ael, changed state to up P ’

. Li->T,,ae3 L,->T, vI22 L[;->T;, ae3
L,. Vlan-interface v122, changed state to up L->Toael  Lo>Ts ael Lo>5 7 »

adaptiveness

_______________

~

mIntra-service adaptiveness

Intra-service

/ﬁ Update 2ain > [___..__ ]

4

match

|||||‘m

<
®
—t
o

Cross-service

\ 4

match

—

M
N

| |

-

T

;/_’[ ]_> )

Logs Templates Match

\
~
<
)
—t
o

_________________

>
on)



Adaptive Log Parsing Framework

1. LogParse, an adaptive log parsing method
* Intra-service adaptiveness

* Cross-service adaptiveness

2. Improve log applications that requires a
corresponding template for any given log

 E.g., log compression

Drain [%2%) Spell [ IPLoM FT-tree LogSig

037, 330370 34 .

Zookeepef Hadoop -
Results of baselines when only 10% of logs are used for training

Drain w/ LogParse [++4 Spell w/ LogParse [ ] IPLoM w/ LogParse
FT-tree w/ LogParse LogSig w/ LogParse

Zo o eeper Hadoop
Resul‘rs of LogPar'se when only 10% of logs are used for training

Training data Testing data (service B)
(service A) HPC HDFS Zookeeper Hadoop
HPC - 0.983 0.999 0.923
HDFS 0.982 - 0.993 0.974
ZooKeeper 0.993 1.0 - 0.937
Hadoop 0.983 0.999 0.999

Evaluation on cross-service adaptive



Log-based anomaly detection

-Exis‘ring |09 anomaly detection: Quantitative anomalies detection methods

Sliding/session windows

—>

|At | At| At At | At|

Ty Ty Ta To, Ts
«—>

A | At| At| At] At | At

Only comparing template indexes loses the
information hidden in template semantics

mQuantitative pattern based methods

mSequential pattern based methods

Count Matrix

L,->T,, Le->T,,  Lg->T,
Log template index sequence:

|[At| Ac|AtAc|Ag o e amm A e

sequence  next ‘; =0 mv
T T T T T. T T, Ty T3, Ty, Ty < 4 \ ‘4~\
ETOL Y2 PR E PR PR Y “«— > g [titats] =4 ‘V/ \Y’ \Y’

\
T To T To Ta : / A
“«— 3 [titd — t3 3/ ‘ m m
At At| At| At | AtL 1 I I

T T To T Deeplog (CCS'17)
Sequential anomalies detection methods




LogAnomaly

e ———— = — — —

Visj) Visjen)--Y(sjaw-1)
v +

Template
Vector
Sequence

Count
Vector

Visjsw)

template2Vec (O

1

1

1

‘
S—

IExtract Synonyms& sequence

! Antonyms

1

1
S

1

1

1

1

Word Template
Vectors Vectors Model
template2Vec  [template2Vec | ¢),ssification Offfine learning |

1. LogAnomaly, an accurate anomaly detection framework T SRy (L S M

— Online detection
Temporary Temporary Existing
Templates Vectors Vectors

. . | Update
> Template Approximation ES TR ATy
!Match sequence sequence comparison |
e e e e e e e e e e e s e — — — —— [—
* merging templates of new types automatically Design of LogAnomaly
[<] pcA L || LogCluster 7| Deeplog [®3 LogAnomaly
. . 1 LogAnomaly w/o template vector sequence LogAnomaly w/o count vector
3. Best results on public datasets and real-world switch logs Bt s oo L o
3 23 * b . 091 )/0.9% % ’ : TN
0-3’?0.37 d6d ,,* o l 1 : éO.-8§ :;
{ x { | % 079 080 *
1 * 0.7 | * f ) [ A
{ P o # [ *
I kx| 067 [ * ) e A
x A | # ba- fx
N 2N [ * 10q A
% | # ba fx
S [ * ) e A
{ L | | [ *
1 * [ * K ] A
q L | * [ *
A pol [y ¢ 104 [*
Precision Recall F1 Score
Results on public datasets
. ! -59 . . |
gep2® 0000 oct 10 0867;2 13159011315 '50ct 13 7'2'150& 14 0%)'};?19 00:00
| oeg A1 ¥¥X o1t A 1 arAl
Beginning DeepLog IM Traffic LogAnomaly Service were Service

alarmed alarmed dropped alarmed impacted recovered End

Case study on real-world switch logs
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LogTranser

Can we transfer anomalous patterns from one software system to another one?

Challenges: syntax differences, noises

[SIF pica_sif]interface te-1/1/11, changed state to down Sel"Vice Type A LogTransfer — LogAnomaIy ~

[SIF pica_sif]interface te-1/1/11, changed state to up Invariant mining NaYavaYi DeepLog VAPVA

[OSPF]Neighbour(rid:, addr:) on vlan20, changed state from Init to ExStart PCA mess Isolation forest S

[OSPF]Neighbour(rid:, addr:) on vlan20, changed state from ExStart to Exchange R i :
LogCluster

[OSPF]Neighbour(rid:, addr:) on vlan20, changed state from Exchange to Loading
[OSPF]Neighbour(rid:, addr:) on vlan20, changed state from Loading to Full 1
[OSPF]Neighbour(rid:, addr:) on vlan20, changed state from Full to Down
[SIF]VIan-interface vlan20, changed state to down 0.8 -1 ]
[SIF]VIan-interface vlan20, changed state to up
%% 10IFNET/3/LINK_UPDOWN(l): GigabitEthernet1/0/10 link status is DOWN. 0.6
%% 10IFNET/3/LINK_UPDOWN(l): GigabitEthernet1/0/10 link status is UP. 0.4
%%100SPF/3/0SPF_NBR_CHG(l): OSPF 1 Neighbor (Vlan-interface20) from Loading to Full.
%%100SPF/3/OSPF_NBR_CHG(l): OSPF 1 Neighbor (Vlan-interface20) from Full to ExStart. 0.2 b
%%100SPF/3/0SPF_NBR_CHG(l): OSPF 1 Neighbor (Vlan-interface20) from Full to Down. 0 PN
%%100SPF/3/0SPF_NBR_CHG(l): OSPF 1 Neighbor (Vlan-interface20) from Full to Init. o

%%10IFNET/3/LINK_UPDOWN(l): Vlan-interface20 link status is DOWN. Precision Recall F1-score
%% 10IFNET/3/LINK_UPDOWN(I): Vlan-interface20 link status is UP.

Service Type B

1

SIS

7

L
|

3
O

I

X

SRR
LR

KX

SRR

XX

Pafataa0a0u%a%u%% %

IR

Switch log A -> Switch log B accuracy comparison
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 Transfer learning

Fully Connected Network for
anomaly detection (Shared)

Template vector
sequences of
source system

Y - JREpp— . Fully Connected
‘I Network
system I
I LSTM networks to extract the

(
|
|
‘:\ 1 Anomaly
| | Transfer learning M LSTM Networks pGTTer'n Of |Og sequences
for target system (fine-tuning in target system)

Logs of
source

Template | ¢
vectors

Template vector

|

I

, | sequences of : abels of |

i 7] target system abels of target |

1 system I

I ! !
\

\\Representation construction ,’
—————————— -

-

N Transfer learning /
------- ‘ Template
Vector

sequences

Separately-learned template
vector sequences with
syntactic and semantic info.



Outline

* IT Operations (Ops) background
* |Is machine learning necessary for Ops?

* Case Study

. Unsuperwsed Anomaly Detection in Ops
Time series anomaly detection (IMC 2015, WWW 2018, IWQoS 2019, INFOCOM 2019a,

INFOCOMZ2019b, ISSRE 2018, IPCCC 2018a, IPCCC 2018b, TSNM 2019, KDD20139,

INFOCOMZ2021)
* Log anomaly detection (IWQoS 2017, 1JCAI 2019, IPCCC2020a, IPCCC2020b, ISSRE2020)

* Trace anomaly detection (ISSRE 2020)
* Zero-day attack detection (INFOCOM2020a)

* Alert Analysis in Ops

* INFOCOM2020b, ICSE SEIP 2020, FSE 2020
* Lessons Learned .



Software Module Invocation Traces

 Invocation trace: 10s~100s of module-to-module invocations for a unique transaction

« One module failure can manifest itself cross-invocation and cross-transaction

gateway CPU

Table
DB

space
session

S @@ ______

gateway DB




°58884%33g
Sponse time (msec.)

Y
<
Re

/k

Microservice e is invoked

twice, with different
response time

Microservice Call path of microservice s Response time of
3 (s, call path) (s, call path) (msec)
a (a, (start—a)) 222
b (b, (start—a, a—b)) 209
C (c, (start—a, a—b, b—c)) 4
d (d, (start—a, a—b, b—c, b—d)) 44
e (e, (start—a, a—b, b—c, b—d, d—e)) 28 /
e (e, (start—a, a—b, b—c, b—d, d—e, b—e)) 67

52



Design of TraceAnomaly

TABLE III: Online evaluation results of different approaches on four large online services which contain hundreds of
microservices, whose statistics are shown in Table I.

Service-1 Service-2 Service-3 Service-4 Overall
(Union of 4 services)

Precision | Recall | Precision | Recall | Precision | Recall | Precision | Recall | Precision Recall

Hard-coded Rule 0.910 0.800 0.920 0.792 0.911 0.812 0.930 0.800 0.910 0.804
WEFG-based [5] 0.020 0.500 0.012 0.323 0.050 0.410 0.032 0.300 0.031 0.386
DeepLog* [8] 0.270 0.680 0.241 0.560 0.320 0.643 0.302 0.601 0.290 0.628

CPD-based [7] 0.52 0.063 0.43 0.090 0.57 0.110 0.64 0.072 0.531 0.081

CFG-based [6] 0.170 0.610 0.250 0.570 0.102 0.503 0.180 0.630 0.164 0.562

TraceAnomaly 0.980 1.000 0.982 1.000 0.981 1.000 0.973 1.000 0.981 1.000

Offline Training for a service

Posterior Flow

. . SO0 . . fq(:) féz) 559
Service Trace Vector Unsupervised |  O3RR7O Periodically
Traces O ‘

_ . O Retrain
Construction Trainin O ( )( )
g M O d e I o Linear SoftPlus + € Hidd;n(L)ayers
i ' \ 0(z
é E é Hidden Layers
E i ! he(x) Linear SoftPlus + €
Online Detection | | | ; N (,/gx )
N ; i v (ServiceTraceVectors x) ( Reconstructed x )
for a service Unseen Call Path Anomaly Detection
P o Root Cause
New Trace |- ‘- . Likelihood o
Whitelist Localization

Computation
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Service trace vector construction

* Unify response time and call paths of traces in an interpretable way

* Encode the response time and call paths of a trace in a service into a STV
(Service Trace Vector)

Microservice
S

Call path of microservice s
(s, call path)

a

Q

(

, (start—a))

(b

, (start—a, a—b))

(c,

(start—a, a—b, b—c¢))

b
C

(d

, (start—a, a—b, b—c, b—d))

(el

(start—a, a—b, b—c, b—d, d—e))

(e,

(start—a, a—b, b—c, b—d, d—e, b—e))

STV

rt

rt

rt

The dimension ID of
the STV corresponds
to the call path of
microservice s

/

rt

rt

rt

The value of the

dimension corresponds
to the response time of

microservice s

J




Outline

* IT Operations (Ops) background
* |Is machine learning necessary for Ops?

* Case Study

. Unsuperwsed Anomaly Detection in Ops
Time series anomaly detection (IMC 2015, WWW 2018, IWQoS 2019, INFOCOM 2019a,

INFOCOMZ2019b, ISSRE 2018, IPCCC 2018a, IPCCC 2018b, TSNM 2019, KDD20139,

INFOCOMZ2021)
* Log anomaly detection (IWQoS 2017, 1JCAI 2019, IPCCC2020a, IPCCC2020b, ISSRE2020)

* Trace anomaly detection (ISSRE 2020)
* Zero-day attack detection (INFOCOMZ2020a)

* Alert Analysis in Ops

* INFOCOM2020b, ICSE SEIP 2020, FSE 2020
* Lessons Learned .



56
Detecting Zero-day Attacks

Pass

I Benign

* WAF detects those %
known attacks Drop
effectively. Lo s
* filter out known attacks ﬂ,&f Tomem o,
* ZeroWall detects We:;gigl;;:ﬁ“
unknown attacks
ignored by WAF rules. ‘ Ut WAE i
if true positive

ZeroWall

* report new attack
patterns to operators
and security engineers
to update WAF rules.

| Malicious

Update whitelist

if false positive
. > Whitelist

@i

Security Engineer

Figure 1: The workflow of ZeroWall.
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Self-Translate Machine

DETECT LANGUAGE SPANISH ENGLISH

The weather today is really good.

Google Translate
X Text B Documents
DETECT LANGUAGE ENGLISH SPANISH

El clima hoy es muy bueno.

Output deviates significantly from

FRENCH

FRENCH

4N .a
v g ENGLISH SPANISH ARABIC v
X il | e .
El clima hoy es muy bueno Self-translation works well for
normal sentences
v g SPANISH ENGLISH ARABIC v
X The weather today is very good. w
—
Y &

DETECT LANGUAGE SPANISH ENGLISH FRENCH v ENGLISH SPANISH ARABIC v

The weather inject today insert is delete really good X La insercion del clima hoy es eliminar realmente
eval. buena evaluacién.

P < im) @ translate.google.com ¢

the input, when the input is a
sentence not previously seen in the

training dataset of the self-translation

models.

Google Translate

X Text B Documents
DETECT LANGUAGE ENGLISH SPANISH FRENCH v g SPANISH ENGLISH ARABIC v
La insercion del clima hoy es eliminar realmente X The insertion of the weather today is to eliminate

buena evaluacién. really good evaluation.

>

¥

*

=2



|dea One Request

* HTTP request Is a string
fO”OWing HTTP1 and We . . Train Lan uage
can consider an HTTP Historical - —>3 M%de?

Web Logs
request as one sentence onolingua g p
in the HTTP request data | l
fanguage W | bnciitns | | uniemaone
* Most requests are benign, I I
and malicious requests Benign Malicious

are rare.

* Thus, we train a kind of Deployed in the wild

Ianguage model based Over 1.4 billion requests

on historical |OgS to learn Captured 28 different types of zero-day attacks (10K of
) ’ zero-day attack requests)

thIS Ianguage frOm Low overhead

benign requests.



Summary: Unsupervised Anomaly Detection in Ops

Common Idea: somehow capture the “normal” patterns in the historical data, then any new points
that “deviate” from the normal patterns are considered “anomalous”

Domain specific feature engineering (time series, log, trace, etc.)

Sometimes have to assume non-Gaussian distributions in X-space or z-space
* GAN
* Flows in Z-space

Temporal dependency can be captured in x-space or z-space

Reconstruction-based models are more robust than prediction-based models

Clustering + transfer learning in x-space or z-space help reduce training overhead with little accuracy
loss.

Various distance metrics: e.g. Wasserstein distance
Periodic re-training + whitelisting (active learning) for small changes

Transfer learning for concept change.



Outline

* IT Operations (Ops) background
* |Is machine learning necessary for Ops?

* Case Study

. Unsuperwsed Anomaly Detection in Ops
Time series anomaly detection (IMC 2015, WWW 2018, IWQoS 2019, INFOCOM 2019a,
INFOCOM2019b, ISSRE 2018, IPCCC 2018a, IPCCC 2018b, TSNM 2019, KDD2019,

INFOCOM2021)
* Log anomaly detection (IWQoS 2017, 1JCAI 2019, IPCCC2020a, IPCCC2020b, ISSRE2020)

* Trace anomaly detection (ISSRE 2020)
* Zero-day attack detection (INFOCOM2020a)

* Alert Analysis in Ops

* INFOCOM2020b, ICSE SEIP 2020, FSE 2020
 Lessons Learned

60
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Service Components

Service Users &1
}

Front End

Storage Job Resource
Manager  Scheduler =~ Manager

Compute & Storage

Monitoring data

Monitoring System Alert Management System

Valid
Data Y Alerts Alert Alerts
. — Monitoring ‘— U ——
~ Collection Processing

Diagnostics

KPIs;
Logs;
Events;

Alert Rules &1

Time Severity Type

2019-02-20 10:04:32 P2-error Memory

AppName Server Close Time

E-BANK [Pk * * %) 2019-02-20 10:19:45

N Content

Severe

ﬁgﬁﬁi@

On-call
Engineers Tickets

Contact

————————————————————————————————— Service Engineers «------------

Current memory utilization is 79% (Threshold is 60%). <« —— Alert rules

Resolution Record

Contact the service engineers responsible for E-BANK and get a
reply that there is no effect on business, then close the alert.




_Summary

4 N
How to rank alert accurately and How to handle alert storm How to predict incident with
adaptatively, so as to ensure accurate effectively, so as to assist failure alerts, so as to take proactive
and timely failure discovery diagnosis actions to prevent incidents
R O N T T -4
AlertRank Alert Summary eWarn
Feature Extractior —
P + Textual ’-Records
processing § 4’ —(ryethmeprg o o & ks core ‘ o ‘ ‘ Feature engineering @Onllne data
o, e B -G Chy ‘G@ﬁ" LB ] Eé\-ﬁ SO R Q)
iPeriodicU]Jdate ' (s)nl A e e Mm e Al ‘:| lm‘\nem A é.“‘ 3 wx«‘v%\ ?uTmy E“gmmi = ~ ’?1 . E |
i e i Stort el | Incident Feat i arly
It AR i = ||z e i e e S,
000 (2 (o) By « Curent ime
00 = @@ >®> > d — 7 windoww | et | wedow 2
Alert Storm Anomalous Alerts Alert Clusters Alert Summary * T
Arrived alerts Ranking results t=w t t+4 b+ttt Tme
\_ AN 62 AN J

Automatically and Adaptively |dentifying Severe Alerts for Online Service Systems, INFOCOM 2020
Understanding and Handling Alert Storm for Online Service Systems, ICSE SEIP 2020
Real-Time Incident Prediction for Online Service Systems, ESEC/FSE 2020




Alert Rank

B Pre-
processing
i — Data
! Selection
Periodic Update
i
Online Feature
Extraction
Core idea:

Feature Extraction

Templates

Crucial
KPIs

Feature
Vector

e Textual

— ¢ Temporal

¢ Others

e Univariate
e Multivariate

Ranking

\

/

5

Score
\ Feature | |~ Ranking  Offline
i / Vector Model  Learning
Ranking &1 Onlin.e
List Operators Ranking

Model

* Multi-feature fusion: alert features and KPI features
* Learning to rank problem

63

Datasets A B C
Methods P R Fl P R Fl P R F1
AlertRank | 0.85 0.93 0.89| 0.82 0.90 0.86| 0.93 0.92 0.93
Rule-based | 0.43 0.68 0.53| 0.47 0.70 0.56| 0.41 0.74 0.53
Bug-KNN | 0.72 0.76 0.74| 0.79 0.62 0.70| 0.80 0.53 0.64
Datasets A B C
Methods P R Fl P R Fl P R Fl
AlertRank | 0.85 0.93 0.89| 0.82 0.90 0.86] 0.93 0.92 0.93
Alert Only | 0.82 0.79 0.80| 0.75 0.80 0.77| 0.67 0.77 0.72
KPI Only | 0.42 040 0.41| 0.32 0.39 0.35| 0.36 0.31 0.33

*  Our model benefits from the
ensemble features extracted from

multiple data sources

* Alert features are more powerful

than KPI features.



#Alerts

Datasets | Raw | Severity | Denoising Summary

Alert Storm Detection

AI e rts ummar A 0% | 88.7% 6.9% 98.8%
B 0% 85.6% 5.1% 98.2%
* Similarity measurement C 107 ] 8417 | 84%  991%
* Anomaly detection * Textual similarity:
problem Jaccard distance
Featu_res. alert attributes Topological similarity: centroid = arg min - Z’-i— similarity(i, )
* |solation forest graph path iecluster 1 <=1
T D NN UTTTTHaEEEERA DR ana !
E E i Learning-based Ale@énmsmg E ! Clustering-based Alert Discrimination | E Representative Alert Selection |
= [N o == e L :’: Noa D) L —fvz ®
| | 2 — @ T = E O 7 Lk o
' Online Alert  Extreme Value — Alert | ' Feature ]SO]atIOH Anomalous | ! Similarity DBSCAN Alert | i Centroid  Alert Engineers
' Stream Theory Storm | i Extraction  Forest Alerts i i Measurement Clusters | | Selection  Summary E

#Alerts EVT-threshold
1000 - l Alert. . Alert Representati.ve A
n Denoising Discrimination Alert Selection
500 | C £ o
0 s , : : +
10:00 14:00 Timts:oo 2200 Alert Storm Anomalous Alerts Alert Clusters Alert Summary

64



Alert Prediction

/g’ .
Feature engineering x—  Online data
with MIL Predlctlon
Historical EI
= Interpretabl
alert data G @\n \, % Training ’-?1 ann:?/;?sa e
Incident iE Trainmg Feature Feature Classifier Early_
tickets =] data extraction  aggregation warning
Current
_ time 2
Observation :
window w Lead Prediction
Time ¢; window t,,
t—w t t+tl t+tl+tp Time
— Positive: early warning
Time window of an incident Lead time: the minimum time
classification interval that engineers need to
| Negative: no incident react to an early warning 65



Approach [ eWarn AirAlert TF-IDF-LSTM FP-Growth
System j| P R F P R F P R F P R F
S1 086 0.82 0.84 | 046 082 059 | 093 0.73 0382 | 0.08 0.05 0.06

S2 I0.86 097 091 081 09 087 | 0.80 0.88 0.84 | 0.25 022 0.23

. . S3 | 061 083 0.70 I 041 024 031 | 023 0.76 035 | 0.05 0.09 0.07
e a l I re I I I I I e e rI I l 4 092 084 0.88 J034 081 048 | 058 039 046 | 0.16 027 0.20
S5 075 086 0.80 034 029 032 014 031 019 | 012 025 0.17

w

[

S6 ]| 09 100 098 f021 100 035|091 100 095 | 1.00 005 0.09

S7 I 073 071 0.72 | 0.65 053 059 | 067 073 0.69 | 0.00 0.00 0.00

S8 0.56 092 0.69 [ 022 100 036 | 0.17 1.00 030 | 0.13 0.10 0.1

S9 [ 092 098 0.95 loss 100 069 | 092 098 095 | 003 002 002

S10 I 070 079 0.76 | 0.55 086 0.67 | 0.52 090 0.66 | 0.53 006 0.11

S11 0.81 0.69 0.75 028 057 037 | 025 052 034 | 001 006 0.01

Average [| - - o082 - - 051 | - - 060 | - - 010

P == —— | e | == - No symptoms
| Feature engineering I E/ Online data > Negative bags
| with MIL | Predlctlon _

Historical

I [ i | Positive bags ‘ 9
alert data E]\n I E] % Trammgl .?-I Ianr::s;astable |\/|U|tI—IﬂStaﬂCe |eal’ﬂlng a?

Incident iEI /Tralnln g| Feature Feature

Early Negative
lassifi : ga
tickets = data | extraction aggregation ICaSSI er warning window Lead \
___________ N tme .\ Omen alerts .
== | R‘ | | | .
— Server | Non-omen alerts
Positive down
window
— Textual features: Topic model Clustering-based feature aggregation
P Feature
extraction Statistical features: count, Omen alerts: assign larger weight
window time, Inter-arrival _ _
time, etc. Non-omen alerts: assign small weight,

to bypass noisy alerts
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Alert Analysis: Lessons learned

o Ranking instead of manual rules

e Features from multiple data sources instead of alerts alone

e Divide and Conquer: e.g. Storm detection, Storm Clustering, Representative Alert
Selection

° Problem Formulation important: (e.g. MIL in eWarn)
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Outline

* IT Operations (Ops) background
* |Is machine learning necessary for Ops?

* Case Study

. Unsuperwsed Anomaly Detection in Ops
Time series anomaly detection (IMC 2015, WWW 2018, IWQoS 2019, INFOCOM 2019a,
INFOCOM2019b, ISSRE 2018, IPCCC 2018a, IPCCC 2018b, TSNM 2019, KDD2019,

INFOCOM2021)
* Log anomaly detection (IWQoS 2017, 1JCAI 2019, IPCCC2020a, IPCCC2020b, ISSRE2020)

* Trace anomaly detection (ISSRE 2020)
* Zero-day attack detection (INFOCOM2020a)

* Alert Analysis in Ops

* INFOCOM2020Db, ICSE SEIP 2020, FSE 2020
 Llessons Learned
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Pitfalls: use general ML algorithms as Blackbox
to tackle Ops challenges

Fallure Fallure Fallure Fallure

Discovery Mitigation Repalr Avoldance

Huge Gap

General Machine Learning Algorithms

ARIMA, Time Series Decomposition, Holt-Winters, CUSUM, SST,DiD,DBSCAN,
Pearson Correlation, J-Measure, Two-sample test, Apriori, FP-Growth, K-medoids, CLARIONS,

Granger Causality, Logistic Regression, Correlation analysis (event-event, event-time series,
time series-time series) , hierarchical clustering, Decision tree, Random forest, support vector
machine, Monte Carlo Tree search, Marcovian Chain, multi-instance learning, transfer learning,




The capability boundary of current Al technologies

Al is good at solving problems that satisfy the

following five conditions simultaneously:

(1) With abundant data or knowledge

(2) With deterministic Information
(3) With complete Information

(4) Well-defined

(5) Single-domain or limited-domain

——CAS Fellow, Prof Bo Zhang
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Why success only in specific application scenario in specific
area in specific industry?

Industry people Algorithm people familiar
familiar with scenario - with general Al
and industry s?pec'f'_c but not specific industry
\ hearo !or specific scenario
@/o
Al
Applicati
Industry Al

Traditional programming language:
hard-coded logic
Al as a programming language
hard-coded logic + fuzzy logic learned from data



AlOps is still challenging because its interdisciplinary nature

Ops people familiar Algorithm people
with Ops and familiar with general Al,
Industry, but not Ops and
but not Al Industry
\ Ops
AlOps

Industry Al
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Lesson 1 : Divide and Conquer instead of Using Black Box

Using domain knowledge to divide

f modules must be
solvable by existing Igorithms

Brain: Knowledge Graph Brain: Decision
@ @ iiinl
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Al 3.0 : Deep Learning + Knowledge Engineering

Bo Zhang, Jun Zhu, Hang Su, Al 3.0

Raising
Al 2.0 > Al 1.0
Continuous Discrete
feature semantic
vector Guiding symbolic

space < space

Knowledge: text
automatic acquisition

AI 30 = AI 10 + AI 20 still in its early research stage

7

1

Al 1.0 Al 2.0 Speech, image,



Artificial Intelligence for IT Operations (AIOps)

* The major topics of AlOps often coincide with its more general counterparts in Machine
Learning:
1. Anomaly Detection in Time Series, Logs (semi-structured text), Traces (program execution
trace), and Graphs
2. Anomaly Localization
3. Failure/Event Prediction
4. Causal Inference and its application in Root Cause Analysis

» State-of-art Machine Learning Algorithms are applied to solve the unique challenges in AlOps:
1.Deep Neural Networks for Time Series or Sequence
2.Deep Generative Model (VAE, GAN)
3.Deep Reinforcement Learning
4.Natural Language Processing
5.Causal Inference
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Lesson 2: Wide range of Al algorithms for AIOps

Unsupervised Reinforcement Learning

Semi-supervised Learning Transfer Learning

Automated Software using hard-coded logic

1
VAE DBSCAN DTW RLFi

Self-training Transfer Ledrhi

NLP DBSCAN

Brain for IT Operations

KDE, DBSCAN

Decision Algorithm ( using realtime monitoring data and knowledge graph to make decision)

Failure Discovery

Fail\g[e Localization

£o_Lion
CZz=0UCD

multi-KPI Anomalous mutidimensional
1 A"°!“a'y Anomaly Machine KPI angmaly
BEEEiEn Detection Localization localization
Log Anomaly Trace Change-induced Trace Anomaly
Detection Anomaly Apomaly) Localization
Detection PrEEETD
GIVIVAE

SST, DID

Failure Mitigation

Failure Avoidance

EVI

bottleneck

automatic Failover
DRLdeployment N
rollback evaluation
Elastic Rate
g 21Zing o Limiting

capacity
report prediction
Fai!ur_e change risk
prediction evaluation

Ops Knowledge graph (Mining historical Ops data to construct varies

“profiles” )

Association Mining —KPI correlation lom/Ec =y
physical app Flfgiien Corrglatiogideasgal Inferente  mitigation ; - app metric
topology topology propagation profiles profiles scHRUEtS profile profile
log pattern failure omen ck%sa/gty bottleneck trace app health special data| data quality
profile profile profile profile profile profile profile profile
NLP DBSCAN

logs, network, middleware,

Unified Ops Data Platform

atabase, storage, server, application

data sources




Lesson 3: From Practice, Into Practice

1. Discover challenging problems from Practice (specifically, IT Operations)

« 2. Design ML Algorithms to solve a problem

« 3. Deploy the algorithms in practice. If not working perfectly? go to step 1

INFOCOM 2019

Time series anomaly detection

1
YRR R
d L Rvi N

Wed Thy

e R 7
A AT na Ay A
6 v Ml
(I Lo [ [ [
\~f

Supervised

Statistical methods
(manual algorithm
selection and
parameter-tuning)

Ensemble
learning

ARuEERsL

INFOCOM 2012 IMC 2015

s

= A

Unsupervised

Learning (VAE) [y

|PCCC 2018
Conditional VAE to detect Adversarial Training
seasonality-violating anomalies +VAE
Spac 2

AN
A

74

Learning

Figure 2 The everall ramework of Lalel-Less.

INFOCOM 2019

Semi-supervise learning for fast
anomaly detection of new time
) 2 "

’




Lesson 4 : As little labeling as possible

In sharp contrast with computer vision, labeling in Ops cannot be crowdsourced.

Although the users are themselves experts who can label, their preferences are still in
this order:

Unsupervised approaches
Unsupervised approaches + active learning (whitelisting)

Semi-supervised approaches; supervised approaches +transfer learning

W N

Supervised approaches
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Lesson 5: Utilize as many data sources as possible

* Features
* Correlation

* Glues: topology, call graph, causal relationship

THIS IS TRUTH
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Lesson 6: it really takes time and community efforts
to solve real-world IT Operations problems

“‘Most people overestimate
what they can do in one year
and underestimate what they
can do In ten years.”

-- Bill Gates
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AIOps Challenge (http://iops.ai) to bring together community members

2018 AIOps Challenge: time series anomaly detection. Published labeled data from 5 Internet companies.
More than 50 teams participated. Papers based on these data were published in KDD, IWQoS, etc.
Data Downloadable @ https://github.com/NetManAIOps/KPI-Anomaly-Detection)

2019 AIOps Challenge: multi-attribute time series anomaly localization. Published data from an Internet
company. More than 60 teams participated.
Data Downloadable @ co

2020 AIOps Challenge: Anomaly detection and localization in a microservice system. Published data from

a telecom company.
Data Downloadable @ https://github.com/NetManAIOps/AIOps-Challenge-2020-Data




ICNP HDR-Nets Workshop ( Networking + Machine Learning)

The 28th IEEE International Conference on Network Protocols (ICNP 2020)
Madrid, Spam October 13, 2020 Fc 1st Workshop on

\ \ / Harnessing the Data Revolution in Networking
/ Workshop co-located with ICNP 2019 @ Chicago, Illinois, USA, October 7, 2019
/ B ‘,;1»"4;,1 ' n ' ; . i » { g
1 N [T . i
/ P TR ; [ | 1 Lr ‘; A

‘ /

HDR-Nets Workshop

SN T
\
\\g
HDR-Nets 2020: HDR-Nets 2019:
https://icnp20.cs.ucr.edu/hdrnetsprogram.htm| https://aiops.org/icnpworkshop.html
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AlIOps Course (in English) at Tsinghua: http://course.aiops.org

with literature collected and sorted by AIOps topics

L.introduction to the course ] 3. Brief Introduction to assignments.
Week1: Introduction .
2. Introduction to AIOps and projects

1. Learning from text
B Week 8: Log Parsing and
Anomaly Detection (I)

Week 9&10: Log Parsing S. Case study: DeeplLo:
and Anomaly Detection (ll) 7. Case study: LogAnomaly i

2.Similarity

1. Student Seff-Introduction

o 4. Introduction to Visualization
2. ANM website Week2: Visualization
: Assignment 1
3. Storytelling with Visualization e

4. Information Gain M
1. SIGCOMM 2011 Case Stud: . ——————
T i 5. Decision Trees
2. Correlation and Regression Week 3: Correlation
\ 6. SIGCOMM 2013 Case Study
3_Intenet Basics

1. Quick Overview of Event
Prediction case studies.

Week 11:Event Prediction }M

GBDT

Feature Selection

4. Transfer Learning
Week 4: Time Series and its

2. Time series algorithms
Tutorial: TSD; | 7Anfomaly Petecnon (0]

ut

1. CNN
) —
- 1 2. tutorials on Tickets, Tnase Eﬁsmgsrm
Week 12. Incident
3. case study: ticket representation and ticket
- Sl N - Mangemem ~ resolution recommendation (KDD 2017)
1. Project Introduction. . |32DoeD Learning 4 %
Week 5: Time Series 7 4. case study: Incident Triage (ASE 2019)
2. Time-Series Anomaly Detection Anomaly Detection (I Deep Generative Model,
e \ _5.Case stucv: Donut,

1. Monte Carlo Tree Search

. 1. case study: DeepRM
Week 13: Resource 2. Deep Reinforcement Learning
2. Anomaly Local n in multi e N\ 4. Anomaly Localization in multiple M t
attribute KPls: Case Study Week 6: KPI Anomaly KPls: case study1 FluxRank lanagement
HotSpot. N

Locali

3. Case study: Decima: DeepRL
d

+ Graph Neural Network
3.Anomaly Localization in multi- L

attribute KPIs: Case Study 2:
Squeeze
4. case study: Multimodal Deep

1. Microservice Tutorial Week 7: Trace Anomaly
2. Deep Sequence Learning Detection and Localization Learning for Trace Anomaly’ ( )

5. Anomaly Localization in multiple

e KPIs: case study 2: Explainit

3. case study: LSTM+VAE for Trace
ly Detection

3: case study: Kitsune attack detection with stacked
auto encoder

4. Machine Translation and Case
study: Oday attack detection with
machine translation (Guest Lecture)
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Some open-sourced algorithms from

https://github.com/netmanaiops

NetManAlOps

The public codes and datasets of Tsinghua Netman Lab.

@ Tsinghua University c-') http://netman.aiops.org

B Repositories 14

E

) Packages 2 People

1 [ Projects

Grow your team on GitHub

Dismiss

GitHub is home to over 50 million developers working together. Join them to grow your own
development teams, manage permissions, and collaborate on projects.

Pinned repositories

B donut

WWW 2018: Unsupervised Anomaly Detection via
Variational Auto-Encoder for Seasonal KPIs in
Web Applications

@Python Yr292 % 109

B omniAnomaly

KDD 2019: Robust Anomaly Detection for
Multivariate Time Series through Stochastic
Recurrent Neural Network

@Python Yr155 % 71

& TraceAnomaly

ISSRE'20: Unsupervised Detection of
Microservice Trace Anomalies through Service-
Level Deep Bayesian Networks

@Python Yr206 % 40

B LogClass

IWQoS 2018 short paper: Device-agnostic log
anomaly classification with partial labels

@Python Yr124 % 38

B LogParse

An adaptive log template extraction toolkit.

@Python ¥ 203 % 31

B Log2vec

A distributed representation method for online
logs.

Roff Y¥63 %11

NetMan



More community efforts needed

* Many missing pieces for a
representative AlOps testbed:
* Large-enough Industry-grade
microservice based system
* Failure patterns from industry

* Failure injection systems

* Realistic evaluation metrics
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Summary

* Al for IT Operations (AlOps) is an interdisciplinary research field between Al
and Systems/Networking/Software Engineering/Security
* Towards Autonomous IT Operations.

AlOps will be a foundational technology in the increasingly digitalized world

Many deep and challenging research problems to be solved in AlOps

Lessons learned so far:
* Divide and conquer instead of using black box
* Wide range of Al algorithms for AlOps
* From practice, into practice
* As little labeling as possible
* Problem formulation matters
* Utilize as many data sources as possible
Long-term community efforts aré°needed to solve AlOps problems
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