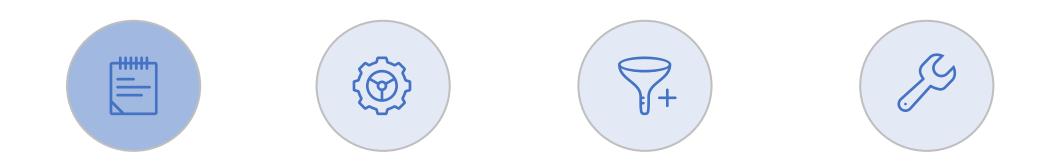


Real-Time Incident Prediction for Online Service Systems

Nengwen Zhao, Junjie Chen, Zhou Wang, Xiao Peng Gang Wang, Yong Wu, Fang Zhou, Zhen Feng, Xiaohui Nie, Wenchi Zhang, Kaixin Sui, Dan Pei

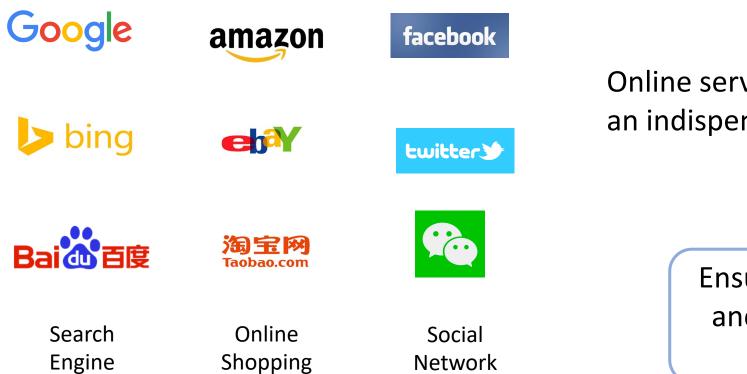
Outline

Background Approach Evaluation Discussion



Background Approach Evaluation Discussion

Online Service Systems



Online service systems have become an indispensable part in our daily life.

> Ensuring service reliability and user experience are vital!

Incidents

Due to the large scale and complexity of online service system, incidents (i.e., unplanned interruption/outage to a service) are still inevitable.

System unavailable

Poor user experience

Huge economic loss

How to reduce the influence of incidents

Incident mitigation Incident prediction and diagnosis Mitigate the already Take some proactive happened incidents actions to prevent as soon as possible incidents

6

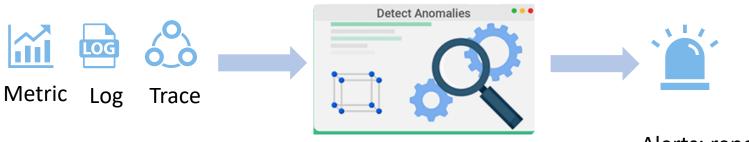
Existing Works

Existing incident/failure prediction works:

1. Target at the prediction of a specific type of failures

2. Extract omen patterns from a large amount of logs or metrics

Incident Prediction with Alerts



Various monitoring data Anomaly detection and alerting rules

Alerts: report anomalies from monitoring data

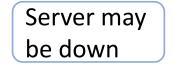
Time	Content	Server	Service	Severity	Туре	Others
2020-02-03 08:24:11	Authentication failure for SNMP request from host P13.	P10	EPAY	3	Network	
2020-02-03 08:25:34	Can't get Weblogic queue (EPAYAPP). Timeout.	P31	EPAY	2	Middleware	
2020-02-03 08:26:04	The utilization of file system /home/etl441 is 82%, exceeding 80%.	P72	EPAY	2	OS	
2020-02-03 08:26:51	Business success rate is 88%, lower than 90%.	P2	EPAY	1	Application	

Related work: AirAlert [WWW19]

Practice of Incident Prediction with Alerts

1 Manual rules

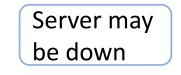
- 1. Keywords: TCP is not responding
- 2. Involved 4 serves
- 3. Duration: >3 minutes
- 4. No software changes



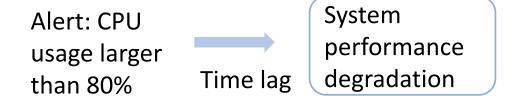
- Time-consuming and tedious
- Require experienced experts with rich domain knowledge
- Not adaptive

Practice of Incident Prediction with Alerts

- 1. Keywords: TCP is not responding
- 2. Involved 4 serves
- 3. Duration: >3 minutes
- 4. No software changes



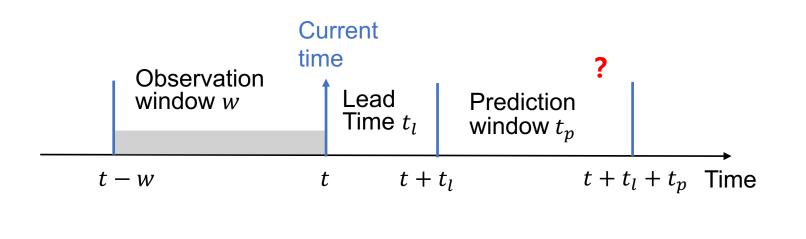
2 Association rule mining: FP-Growth

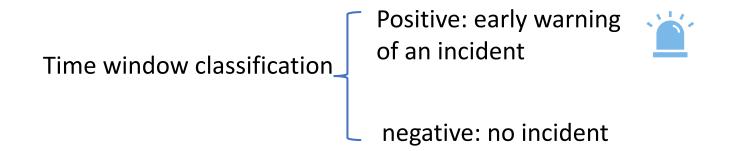


- Time-consuming and tedious
- Require experienced experts with rich domain knowledge
- Not adaptive

• Only cover a very small set of incidents

Problem Formulation



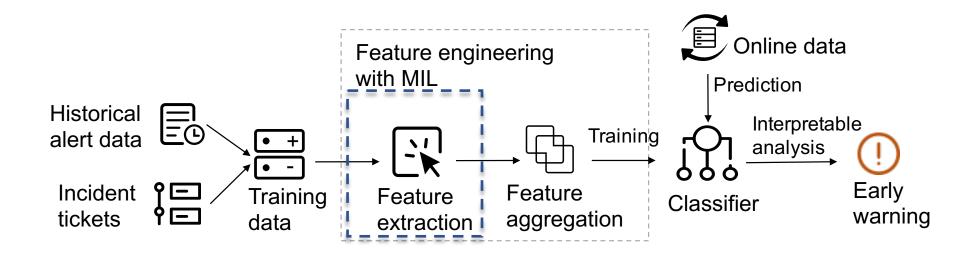


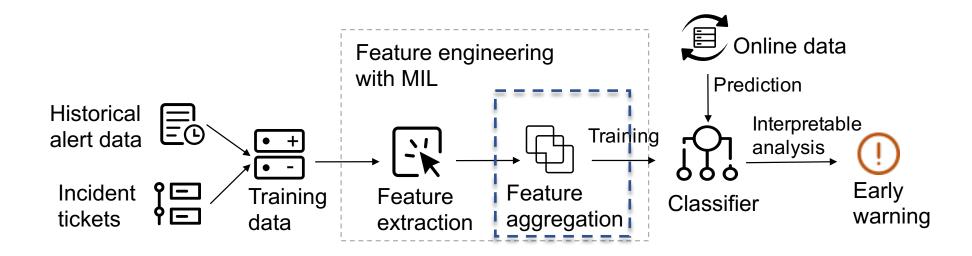
Challenges

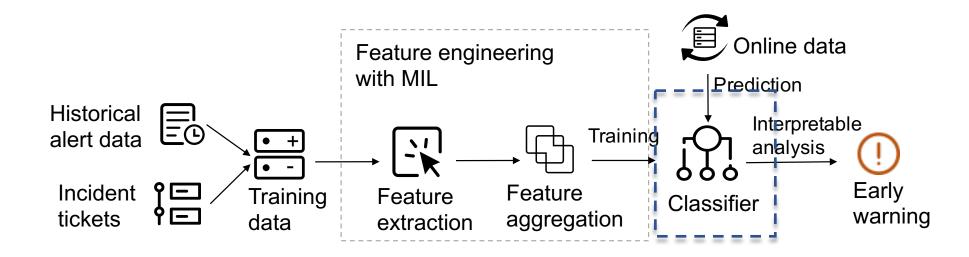
1 How to extract useful information from alert data with tens of attributes 2 How to reduce the influence of noisy alerts

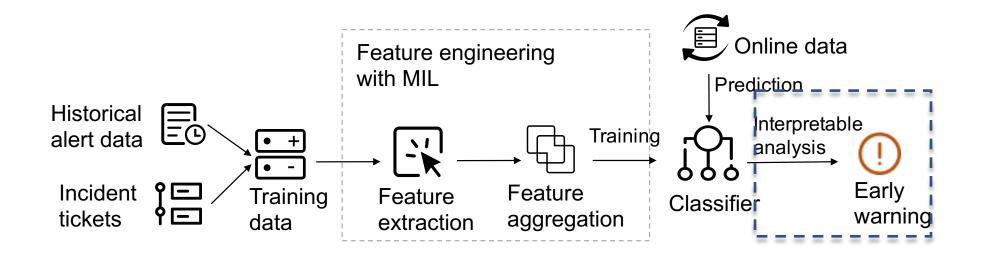
3 Interpretable prediction results, to facilitate them to understand and handle this incident

Background Approach Evaluation Discussion

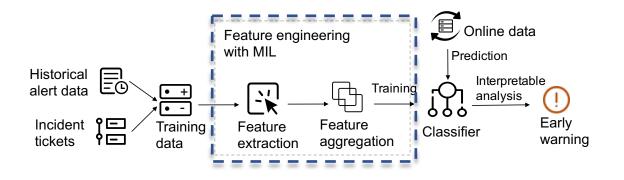




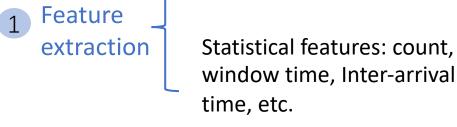




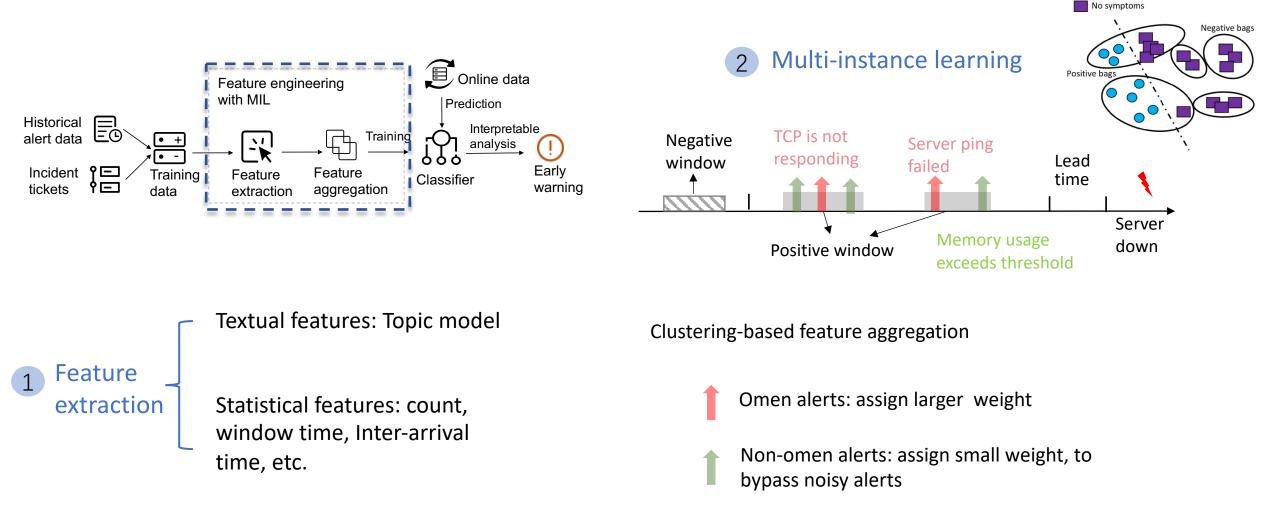
Feature Engineering



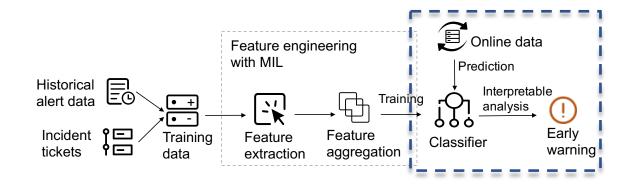
Textual features: Topic model



Feature Engineering



Classifier and Interpretability Analysis



3 Prediction

- Handle class imbalance: oversampling with SMOTE
- XGBoost

4 Interpretable analysis

Current time: 2020-02-22 10:20:00

Warning: There is a probability of **0.76** that incident of "Long response time of this service" will occur during 10:30-11:00. Please take actions!

1 Prediction probability	2 Feature contribution	3 Feature value
	Neg high Pos	Topic#27 0.5
	Topic#27 0.01	Topic#5 0.08
Neg 0.24	Topic#5 0.01 Topic#4 0.01	Topic#4 0.01
Pos 0.76	Level3 0.00	level3 1
	Weekend 0.00	Weekend 0
	Hour10 0.00	Hour10 1
	Server 0.00	Topic#14 0.00
	low	Server 2
4 Topic and keywords		

Topic #27	Oracle, AAS (average active session), SQL, lock, connection
Topic #5	switch, port, unaccessible, network, ping
Topic #4	response, packet, order, accounting, communication

Background Approach Evaluation Discussion

Experiment Setup

Datasets: 11 real-world online service systems

System	#Alerts	#Incidents	#Positive	#Negative
S1	18,821	173	524	8,460
S2	13,315	214	392	7,907
S3	14,211	59	322	4,014
S4	9,499	27	161	6,176
S5	9,592	48	165	7,886
S6	13,811	39	101	8,603
S7	6,766	46	272	3,310
S8	9,808	26	149	1,873
S9	8,770	72	510	6,196
S10	127,619	227	1,125	15,035
S11	69,999	148	1,012	13,057

Baseline methods

- AirAlert
- TF-IDF-LSTM
- FP-growth

Overall Performance

A 1	1	T.4.7			A · A 1							.1
Approach	eWarn			AirAlert TF-IDF-LSTM		IM	FP-Growth					
System	P	R	F	Р	R	F	P	R	F	P	R	F
S1	0.86	0.82	0.84	0.46	0.82	0.59	0.93	0.73	0.82	0.08	0.05	0.06
S2	0.86	0.97	0.91	0.81	0.94	0.87	0.80	0.88	0.84	0.25	0.22	0.23
S3	0.61	0.83	0.70	0.41	0.24	0.31	0.23	0.76	0.35	0.05	0.09	0.07
S4 I	0.92	0.84	0.88	0.34	0.81	0.48	0.58	0.39	0.46	0.16	0.27	0.20
S5	0.75	0.86	0.80	0.34	0.29	0.32	0.14	0.31	0.19	0.12	0.25	0.17
S6	0.96	1.00	0.98	0.21	1.00	0.35	0.91	1.00	0.95	1.00	0.05	0.09
S7	0.73	0.71	0.72	0.65	0.53	0.59	0.67	0.73	0.69	0.00	0.00	0.00
S8	0.56	0.92	0.69	0.22	1.00	0.36	0.17	1.00	0.30	0.13	0.10	0.11
S9	0.92	0.98	0.95	0.53	1.00	0.69	0.92	0.98	0.95	0.03	0.02	0.02
S10	0.70	0.79	0.76	0.55	0.86	0.67	0.52	0.90	0.66	0.53	0.06	0.11
S11	0.81	0.69	0.75	0.28	0.57	0.37	0.25	0.52	0.34	0.01	0.06	0.01
Average	-	-	0.82		-	0.51	-	-	0.60	-	-	0.10
				•								

Precision (P), recall (R) and F1-score (F) comparison between eWarn and compared approaches

Contribution of Each Component

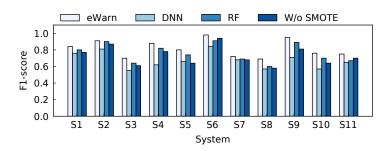
Multi-instance Learning Formulation

Feature Engineering

Classification Model Building

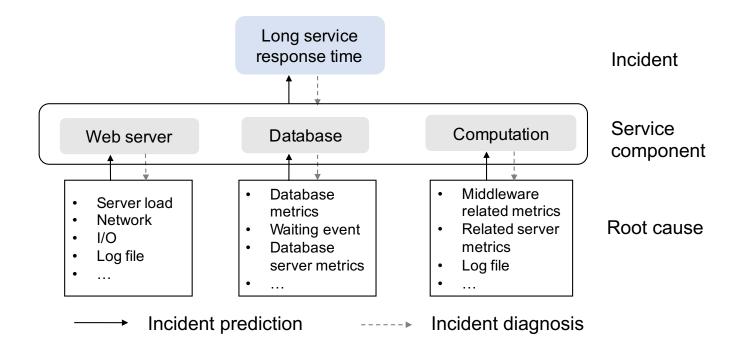
Approach		eWarn		W/o MIL			
System	Р	R	F	Р	R	F	
S1	0.86	0.82	0.84	0.36	0.80	0.50	
S2	0.86	0.97	0.91	0.82	0.97	0.89	
S3	0.61	0.83	0.70	0.50	0.67	0.57	
S4	0.92	0.84	0.88	0.97	0.52	0.68	
S5	0.75	0.86	0.80	0.71	0.39	0.51	
S6	0.96	1.00	0.98	0.96	1.00	0.98	
S7	0.73	0.71	0.72	0.36	0.76	0.49	
S8	0.56	0.92	0.69	0.60	0.61	0.61	
S9	0.92	0.98	0.95	0.91	0.98	0.95	
S10	0.70	0.79	0.76	0.51	0.92	0.66	
S11	0.81	0.69	0.75	0.41	0.53	0.46	
Average	-	-	0.82	-	-	0.66	

System	eWarn	Only Textual	Only sta- tistical	TextCNN	FastText
S1	0.84	0.62	0.51	0.54	0.57
S2	0.91	0.88	0.19	0.34	0.40
S3	0.70	0.48	0.30	0.37	0.43
S4	0.88	0.73	0.26	0.45	0.47
S5	0.80	0.57	0.41	0.50	0.53
S6	0.98	0.90	0.38	0.61	0.65
S7	0.72	0.69	0.44	0.56	0.52
S 8	0.69	0.48	0.37	0.38	0.41
S9	0.95	0.84	0.29	0.42	0.48
S10	0.76	0.70	0.49	0.64	0.69
S11	0.75	0.68	0.35	0.47	0.45
Average	0.82	0.69	0.36	0.48	0.51



Background Approach Evaluation Discussion

Discussion



The relationship between incident prediction and incident diagnosis

Lessons Learned

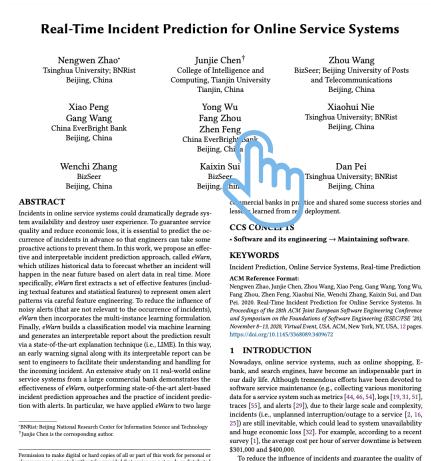
Not all incidents can be predicted well in advance.

Prediction window size is important for incident prediction.

Incremental updating.

More in Our Paper

- Detailed approach
- Parameter analysis
- More discussions
- Threats to Validity



software services, there are two widely-used ways in both academia

and industry [32, 33], i.e., predicting the occurrence of an incident

in advance so that engineers can take some proactive actions to pre-

vent it [18, 43] and mitigate the already happened incident as soon

as possible [14, 15]. Our work focuses on the first way since this

way is able to directly avoid the occurrence of service unavailability

rather than reduce the time of service unavailability.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without for provided that copies are not rande or distributed for profit or commercial advantage and that copies bear this notice and the full claimon on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to list, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org. ESEC/SE: 20, November 8–13, 2020, Virtual Event, USA © 2020 Association for Computing Machinery. ACM ISBN 978-14503-7043-1/2011...515.00 https://doi.org/10.1145/358609.240672

29

Conclusion

Motivation: take proactive actions to prevent the incoming incidents and ensure the quality of software services.

Solution: eWarn, including feature engineering with multi-instance learning, classification and interpretable analysis.

Experiments and deployment in practice.

Thank you !

Q&A