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Abstract—Microservice architecture is applied by an increasing
number of systems because of its benefits on delivery, scalability,
and autonomy. It is essential but challenging to localize root-
cause microservices promptly when a fault occurs. Traces are
helpful for root-cause microservice localization, and thus many
recent approaches utilize them. However, these approaches are
less practical due to relying on supervision or other unrealistic
assumptions. To overcome their limitations, we propose a more
practical root-cause microservice localization approach named
TraceRCA. The key insight of TraceRCA is that a microservice
with more abnormal and less normal traces passing through it
is more likely to be the root cause. Based on it, TraceRCA is
composed of trace anomaly detection, suspicious microservice
set mining and microservice ranking. We conducted experiments
on hundreds of injected faults in a widely-used open-source
microservice benchmark and a production system. The results
show that TraceRCA is effective in various situations. The
top-1 accuracy of TraceRCA outperforms the state-of-the-art
unsupervised approaches by 44.8%. Besides, TraceRCA is applied
in a large commercial bank, and it helps operators localize root
causes for real-world faults accurately and efficiently. We also
share some lessons learned from our real-world deployment.

I. INTRODUCTION

Microservice architecture is the latest trend in software
service and is used by an increasing number of systems due to
its faster delivery, better scalability, and greater autonomy [1].
A modern microservice system consists of dozens to thou-
sands of microservices deployed on hundreds to thousands
of servers [2], [3]. Although extensive efforts have been de-
voted to quality assurance, microservice systems are typically
fragile due to their large scale and complexity [1]. Moreover,
microservice system faults could cause enormous economic
loss and damage user satisfaction. For example, the loss of
one-hour downtime for Amazon.com on Prime Day in 2018
(its biggest sale event of the year) is up to $100 million [4].
Therefore, once a fault happens for microservice systems, the
urgent demand is to localize and mitigate it as soon as possible.

Over the years, many approaches have been proposed in
the field [5]–[12], including invocation-based and trace-based
approaches. The invocation-based approaches assume that the
adjacent microservices with abnormal invocations are more
likely to be the root causes [5], [8]–[10], [12]. However, due
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to the complex dependencies and fault propagation among
microservices, the anomaly invocations between adjacent mi-
croservices are not sufficient to reflect the locations of root
causes (see Section V). The trace-based approaches over-
come the above limitation by correlating all the microser-
vices involved in a trace instead of just the adjacent ones.
Here, all the invocations realizing the same user request
form a trace. However, the existing trace-based approaches
(i.e., MicroScope [7], TraceAnomaly [13], and MEPFL [11])
still suffer from some practical issues. More specifically,
MicroScope uses directed acyclic graphs to represent the
dependency among microservices, but in practice, there often
exist dependency cycles. For example, we confirmed many in
the production system studied in Section V, and Train-Ticket
studied in Section IV. TraceAnomaly focuses on detecting
structural or latency anomalies of traces but ignores other
metrics. Both TraceAnomaly and MicroScope localize root-
cause microservices by assuming a fixed anomaly propagation
pattern. MEPFL trains a supervised machine learning model
to predict the root-cause microservices with a training corpus
built by fault injection. Its effectiveness heavily depends on the
high coverage of all fault types, achieving which is impractical.
Therefore, it is still required for a more practical and better
root-cause microservice localization approach.

In this paper, we propose a practical trace-based root-
cause microservice localization approach called TraceRCA.
The insight of TraceRCA is that a microservice with more
abnormal traces and less normal traces passing through it
is more likely to be the root-cause microservice. Similar
insights are widely and successfully used in other domains
such as spectrum-based program debugging [14]–[19] and
multi-dimensional root cause localization [20], [21]. We also
directly validated it in microservice systems (see Fig. 4). To
apply the insight into root-cause microservice localization,
we firstly detect abnormal traces. Here, TraceRCA infers
trace’s normality based on its member invocations’ normality,
which is detected by our designed unsupervised multi-metric
anomaly detection method. Since not all metrics are related to
the concerned fault and irrelevant anomalies could exist in any
metrics, we adaptively select useful metrics by testing whether
each metric’s underlying distribution changes after the fault.
The second stage in TraceRCA is to mine suspicious root-cause
microservice sets satisfying the insight. Mining suspicious978-0-7381-3207-5/21/$31.00 ©2021 IEEE
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Fig. 1: Relationship of some basic concepts

microservice sets rather than microservices makes TraceRCA
more practical because some faults only affect traces that pass
through a specific set of microservices. Finally, TraceRCA
calculates a suspicious score for each microservice in the
mined suspicious microservice sets. Based on the number of
traces containing incoming and outcoming abnormal invoca-
tions, we dynamically infer the anomaly propagation pattern
for calculating the suspicious scores rather than assume a fixed
one. Based on the suspicious scores, TraceRCA ranks all the
microservices so that operators can mitigate faults earlier.

We conducted an extensive study to evaluate TraceRCA
based on a popular open-source microservice benchmark
(Train-Ticket [22]) and an Internet service provider’s pro-
duction microservice system. Train-Ticket is one of the most
extensive open-source microservice benchmarks. We used 222
faults of 10 different categories in total. To our best knowl-
edge, this is the most large-scale study in the field w.r.t. the
number of faults, the number of fault types, and the scale
of benchmarks. The experimental results show that TraceRCA
ranks the root-cause microservices at top-1 in 83% of all faults
and significantly outperforms the state-of-the-art unsupervised
approach by 44.8%. We applied TraceRCA to a large service-
oriented production system in a large commercial bank and
share the lessons learned from our deployment in Section V.

The main contributions are summarized as follows:
• Based on a straightforward and simple insight, we design a

novel unsupervised and lightweight root-cause microservice
localization approach via trace analysis.

• We design an unsupervised multi-metric trace anomaly
detection method, which adaptively selects useful features
for each fault and conducts invocation anomaly detection
and trace anomaly inference based on the selected features.

• We conduct the most large-scale experimental study based
on 2 benchmarks with 222 faults in 10 different categories.
The experimental results demonstrate the effectiveness and
efficiency of TraceRCA. We share lessons learned from the
deployment of TraceRCA in a large production system.

II. BASIC CONCEPTS

This section introduces some basic concepts, the relation-
ship of which is shown in Fig. 1.

A microservice system is a system structured with mi-
croservice architecture. Microservice architecture is an ar-
chitecture style that organizes a system as many lightweight,
loosely-coupled, and independently-deployed services, called
microservices [23]. For example, Train-Ticket [22] is orga-
nized as many microservices, such as UI, seat, train, sta-
tion, order, and price. Each microservice has one or more
instances hosted on nodes (physical or virtual machines).

Each node can host many containers and microservices. Each
microservice can also be hosted on different nodes.

When a microservice system realizes a user request, mi-
croservices invoke each other with some specific application
programming interfaces (API). A microservice could contain
tens to hundreds of APIs. An invocation (a.k.a. span) belongs
to a specific microservice caller→callee pair (referred to
as microservice pair). All invocations realizing the same
user request form a trace. An industrial microservice sys-
tem is commonly equipped with distributed tracing systems,
which tracks the execution of a request across services, i.e.,
traces [24]. For example, when the button Buy is clicked in
Train-Ticket, a user request is sent to buy a ticket. First, mi-
croservice UI makes an API call to microservice verification.
This API call is an invocation belonging to the microservice
pair UI→verification. Each click on the button Buy will trigger
an invocation belonging to UI→verification, i.e., there may
exist many invocations belonging to a microservice pair. After
that, UI would call other microservices (e.g., payment) and
trigger many other invocations. All the invocations triggered
by a click on the button Buy, which realize the same user
request, form a trace.

III. APPROACH

In this section, we present the detail of TraceRCA. By ana-
lyzing many real faults and summarizing the manual diagnosis
process, we obtain the key insight of TraceRCA: a microser-
vice with more abnormal traces and less normal traces passing
through it is more likely to be the root cause. It is simple and
effective, and it holds in various situations. In particular, our
insight holds for partly faulty microservices (e.g., only one
container of the root cause occurs faults) and multi-root-cause
faults, which are validated by our experiments (see Table III
and Table IV). Though we focus on microservice systems, our
insight can also successfully applied in similar architectures
like service-oriented architectures (see Section V).

As shown in Fig. 2, TraceRCA contains three stages. When
a fault happens, TraceRCA is triggered to localize the root-
cause microservices. First, TraceRCA detects abnormal traces
(Section III-A) with our unsupervised multi-metric anomaly
detection method. Then, we propose using a unified metric
to measure how much a microservice set satisfied the insight
(Section III-B). TraceRCA utilizes frequent pattern mining
techniques to reduce the search space. Finally, TraceRCA
ranks all microservices based on the mined suspicious sets
(Section III-C). In this way, operators can check microservices
one by one according to our ranking so that the root cause can
be identified more rapidly.

A. Trace Anomaly Detection

We first design a multi-metric invocation anomaly detection
method to obtain the normality of each invocation and then
infers trace’s normality according to its member invocations’
normality. Here, TraceRCA detects abnormal traces through
inference from abnormal invocations rather than directly detect
abnormal traces because traces are variable-length, leading to
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Fig. 2: Overview of TraceRCA. There are five traces, and the red dotted arcs represent abnormal invocations. The microservice
set {SA, SB} is mined as the most suspicious set. Then the microservices are ranked based on our suspicious scores.

low efficiency or low accuracy if transforming them to fixed-
length vectors. In particular, our anomaly detection method is
unsupervised to avoid the limitation of supervised approaches
and make TraceRCA more practical.

1) Multi-Metric Invocation Anomaly Detection: In a mi-
croservice system, there are various metrics (a.k.a features).
For example, in Train-Ticket (see Section IV-A), we use
latency and HTTP status of each invocation, and CPU usage,
memory usage, network receive/send throughput, and disk
read/write throughput of each microservice as the features for
trace anomaly detection. However, when a fault occurs, not
all of the features are affected by the concerned fault. Due to
wrong user inputs or just random fluctuation, some anoma-
lies of irrelevant features could exist and become noise for
anomaly detection, which harms the detection accuracy. There-
fore, our method is designed with two steps: 1) adaptively
selecting useful features for each fault; 2) detecting abnormal
invocations based on the selected features. An overview of our
invocation anomaly detection method is shown in Fig. 3.
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Fig. 3: Overview of our invocation anomaly detection method

Intuitively, if a feature is related to the concerned fault, there
should be more abnormal invocations with respect to it after
the fault occurs. Therefore, we determine whether a feature
is useful by testing whether the distribution of normal and
abnormal invocations with respect to it changes after the fault
occurs. For this purpose, we need to determine the normality of
each invocation with respect to each feature. Note that we only
consider the historical invocations of the same microservice
pair (see Fig. 1) to which this invocation belongs because the
underlying distributions with respect to the same feature can
vary vastly for different microservice pairs.

For a feature of a specific microservice pair (denoted as
f ), we use the mean and standard deviation of the historical
invocations to model its normal state, which has been proved
to be effective and is widely used in previous works [20], [25]–
[29]. The mean (denoted as µf ) defines the expected normal
value of f , and the standard deviation (denoted as σf ) is used
to determine the probability that actual values deviate from
the mean. With µf and σf , how much the feature value of an
invocation (denoted as vf ) deviates from its normal state can
be denoted as α= |vf−µf |

σf
, which is called anomaly severity.

Hence the larger α is, the more likely it is abnormal.
We use the following techniques to ensure the calculation

of µf and σf robust and efficient. First, the historical data
used to calculate µf and σf is twofold: all the historical
invocations of the same microservice pair 1) in the last slot
and 2) in the same slot of the last period (e.g., last day or
week). Last-slot historical data capture the normal state of the
feature in just a few minutes before the fault happens, and last-
period historical data captures that in previous days or weeks.
Small dip or spike could deviate from their last-period normal
states insignificantly due to the variation among periods [30].
However, the deviation should be obvious compared with
last-slot data; otherwise, they are not dips or spikes. If the
abnormal metric changes gradually, the last-slot normal state
can be biased since the metrics already change in the last
slot. However, the last-period normal states, which are too far
from the fault and thus not affected, should not be biased.
Thus utilizing both last-slot and last-period invocations makes
TraceRCA more robust and practical. In our implementation,
the slot length is always the same as that of the current
analyzing fault, and the period is chosen to be a day since
daily periodicity is very common due to the periodicity of user
behaviors. Second, to eliminate bias introduced by historical
anomalies, we exclude invocations in all known previous faulty
durations. Third, for the sake of efficiency, µf and σf are
maintained in an online manner rather than calculated after
a fault happens. More specifically, we update µf and σf
periodically (typically per minute) with the latest coming data.

As mentioned before, if a feature is useful, there should
be more abnormal invocations with respect to this feature,
which should have large anomaly severities. Thus the average
anomaly severity of all invocations with respect to this feature
should be large. Therefore, the average anomaly severity of
all invocations after the fault happens with respect to a useful
feature, which is denoted as αafter, should be larger than that of
the historical invocations, which is denoted as αbefore. As a re-
sult, a feature is considered useful if αafter−αbefore>δfs·αbefore,
where δfs is a given threshold. The default value of δfs is 10%,
and its impact is discussed in Section IV-D.

Finally, based on the selected useful features, we detect
abnormal invocations. An invocation is abnormal if it is
abnormal with respect to any useful feature. For this purpose,
we need to determine the normality of all invocations with
respect to each useful feature. Utilizing the anomaly severity
mentioned above, TraceRCA considers an invocation abnormal
with respect to a feature if the anomaly severity is greater than
a given threshold, i.e., α>δad. The default value of δad is 1,
and its impact is discussed in Section IV-D.



2) Trace anomaly inference: Based on the detected abnor-
mal invocations, we infer the normality of traces. If at least
one member invocation of a trace is determined abnormal in
the last stage, this trace is determined abnormal. In this way,
we can take as many abnormal traces into consideration for
root cause localization as possible, which makes TraceRCA
robust while keeping efficient enough (see Section IV-E).

B. Suspicious Root-Cause Microservice Set Mining

After trace anomaly detection, we mine suspicious microser-
vice sets satisfying our insight rather than microservices. It
is because in practice, sometimes only those traces that pass
through a specific microservice set are affected by a fault.
For example, a buggy API in microservice S1 is triggered
only by invocations from S2, but many other microservices
also invoke S1. In such a case, the fractions of abnormal
traces passing through S1 or S2 would be small, but that of
abnormal traces passing through both would be large. We did
not emulate such cases in Section IV due to the limitation
of fault injection. Besides, we do not mine microservice
sequences or subgraphs since TraceRCA focuses on localizing
root cause microservices, and mining sequences or subgraphs
is redundant for this purpose and harms the efficiency.

Specifically speaking, we propose two key metrics to evalu-
ate how a microservice set satisfies the insight: 1) the support
of a microservice set in abnormal traces (denoted as P (X|Y )
where X and Y denote the sets of those traces passing through
all microservice in the set and all abnormal traces respectively,
and P (·) denotes probability), which represents the percentage
of those traces passing through all microservices in the set
among all abnormal traces; 2) the confidence of a microservice
set (denoted as P (Y |X)), which represents the percentage of
abnormal traces among all traces passing through all microser-
vices in the set. Note that “support” always refers to P (X|Y )
in this paper unless otherwise specified. Based on these two
metrics, we propose that a microservice is a root-cause mi-
croservice if it has both high P (X|Y ) and high P (Y |X). We
validate the relationship between these two metrics and root-
cause microservice sets based on two benchmarks: 1) 25 faults
based on Google Online Boutique [31] (not used to evaluate
TraceRCA in Section IV to avoid circle in proving) 2) 22 faults
from a production system (B in Section IV-A). We estimated
the distribution of P (X|Y ) and P (Y |X) of root-cause and
non-root-cause microservice sets by kernel density estimation.
As shown in Fig. 4, the two metrics of root-cause microservice
sets concentrated on the right-top corner, which means both
metrics are larger than non-root-cause microservice sets. The
good performance in Section IV-B also supports our insight.

The number of potential root-cause microservice sets is
exponential to that of potential microservices, and thus evalu-
ating the two metrics on all microservice sets is impractical.
To reduce the search space, we first identify those microser-
vice sets with high supports by an efficient frequent pattern
mining algorithm, FP-growth [32]. FP-Growth skips the time-
consuming candidate generation process entirely and uses a
divide-and-conquer strategy plus a special data structure called

0.0 0.5 1.0
P(X|Y)

0.0

0.5

1.0

P(
Y|

X)

other
root cause

(a) Google Online Boutique

0.0 0.5 1.0
P(X|Y)

0.0

0.5

1.0

P(
Y|

X) other
root cause

(b) Production System B
Fig. 4: The distribution of P (X|Y ) and P (Y |X)

FP-Tree. A frequent pattern is a pattern that appears in a
dataset frequently [32]. In other words, every microservice
set (i.e., pattern) whose support (P (X|Y )) is greater than a
given threshold (i.e., appearing frequently), denoted as δspt,
is frequent. For example, in Fig. 2, the abnormal traces are
{SA, SB , SD, SE}, {SA, SB , SC , SD} and {SA, SB , SC , SE},
and thus the most frequent microservice set is {SA, SB}, the
support of which is 1. We set δspt to be 10%, which is rela-
tively low to ensure localization accuracy. If any microservice
set has a support less than 10%, it can hardly contain root
causes because most abnormal traces are unrelated to it. The
impact of δspt is discussed in Section IV-D.

Then, in the reduced search space, we mine microservice
sets satisfying our insight by a unified metric, Jaccard Index
(JI) [33]. We choose JI rather than any other SBFL (spectrum-
based fault localization, see Section VI) technique because
1) JI combines support and confidence (as discussed below),
which two perfectly match our insight 2) JI is one of the
best SBFL techniques [14]. The intuition of JI is measuring
the similarity between X (the traces containing the set)) and
Y (the abnormal traces). JI is defined as the fraction of the
intersection of X and Y to the union of them. A high JI
means X and Y are almost overlapped. JI is a monotoni-
cally increasing function of the harmonic mean (denoted as
H) of P (X|Y ) and P (X|Y ): JI:=P (X∩Y )

P (X∪Y )
=

H(P (X|Y ),P (Y |X))
2−H(P (X|Y ),P (Y |X))

.
Therefore, we can mine those microservice sets satisfying our
insight, i.e., microservice sets with high P (Y |X) and high
P (X|Y ), by sorting with JI in descending order and taking
top-k sets. We set k to 100 by default, which is large enough
to include enough microservice sets for the next step while
keeping TraceRCA fast enough. The impact of k is discussed
in Section IV-D.

C. Microservice Ranking

Although we have suspicious microservice sets that are
highly likely to contain root causes, operators need to in-
vestigate microservices one by one. Therefore, we calculate
a suspicious score for each microservice to rank them. The
suspicious score is the combination of each suspicious set’s JI
score and an in-set suspicious score for each suspicious set.

First, we give an in-set suspicious score for each microser-
vice within each suspicious set containing it. It is calculated
by the difference between the numbers of traces that contain
incoming/outcoming abnormal invocations on the microservice
among all those traces containing the suspicious set. For
example, in Fig. 2, in the set {A,B}, the in-set score of
B is IS(B)=0=|3−3|, and that of A is IS(A)=3=|3−0|.
Considering a trace containing the suspicious set, if it contains



both incoming and outcoming abnormal invocations of a
microservice, then this microservice is highly likely to be just
affected by other microservices, i.e., it is not a causal anomaly,
and the anomaly is just propagated through this microser-
vice. Otherwise, if a trace contains only incoming/outcoming
abnormal invocations on a microservice, the microservice is
highly likely to be the root cause of this trace. The latter
would contribute more to the difference than the former,
and thus the difference indicates how likely a microservice
is a causal anomaly within a suspicious set. Previous trace-
based unsupervised approaches [7], [13] assume that the most
upstream abnormal service (in call dependency or causal
dependency graph) is most likely to be the root cause. For
example, in Fig. 2, they would assume SC , SD, SE are the
root-cause microservices for the abnormal traces. However, in
practice, the propagation of anomaly can be either upwards
(e.g., upstream services receive wrong parameters from a
downstream service) or downwards (e.g., downstream services
wait too long for an upstream service). Our method overcomes
the limitation by inferring the anomaly propagation pattern
of each fault rather than assume a fixed one. Though our
method is limited when the anomaly propagates both upstream
and downstream, such cases are so rare in our scenarios (we
mainly focus on infrastructure faults) that our method can meet
operators’ requirements.

For every suspicious set containing a microservice, we com-
bine the set’s JI score and the in-set score of the microservice
by multiplication. Both multiplication and sum are simple and
efficient combination methods, but these two scores are of
different scales, and thus, sum is inappropriate. Based on the
combination, the final suspicious score of a microservice
is the maximal combination among all suspicious sets. Al-
though more than one suspicious set can contain a root-cause
microservice, a root-cause microservice only affects traces
through one suspicious set, and thus we use the maximal
combination among all suspicious sets. For example, in Fig. 2,
both {SA, SB} and {SA} contain the root cause SA, but
SA only affects traces containing {SA, SB} rather than those
containing either {SA, SB} or {SA}.

IV. EXPERIMENT

A. Study Data

We use two microservice systems as subjects, i.e., a widely-
used open-source microservice benchmark system (Train-
Ticket) and a large Internet service provider’s production
microservice system.

1) Open-source Microservice System: Train-Ticket [22] is
one of the largest open-source microservice systems, which
has been widely used in the existing work [11], [22], [35],
[36]. It contains 41 microservices. We deployed it with Kuber-
netes [37] on 7 physical machines, each of which has a 12-core
2.4GHz CPU, 12 GB RAM. Each service is deployed with
multiple instances. We continuously ran a workload generator,
which simulated the real-world user access pattern observed
from our cooperating bank (see Section V).

Following the existing work [7], [11], [13], we constructed
faults for Train-Ticket by fault injection. We adopted three fault
types following the existing work [7], [11], [13], i.e., appli-
cation bugs, CPU exhausted, and network jam. Furthermore,
to evaluate performance in various situations, we considered
faults on three different levels of components, i.e., microser-
vice, container, and API. In total, we have 5 fault injection
strategies, as summarized in Table I. To inject a fault of a
specific type into the target of a specific level, we first chose a
container/microservice/API randomly and then applied the cor-
responding injection strategy on it. Regarding multi-root-cause
faults, we selected multiple containers/microservices/APIs of
a specific level and injected faults of the corresponding type
simultaneously. Each fault lasted for about 5 minutes. In total,
we constructed 200 faults of 5 categories, along with 242,259
traces, 22,675 (9.36%) of which are affected by the faults. In
particular, to sufficiently investigate whether TraceRCA can
work for both single-root-cause faults and multi-root-cause
faults (although the latter is rare in practice [22], [38]), we
constructed 11 faults that have more than one root-cause
microservices among the 200 faults. For ease of presentation,
we call the Train-Ticket dataset A.

2) Production Microservice System: This system is a real-
world microservice system with 13 microservices in a large
ISP with more than 50 million users (part of its whole system).
In particular, developers provided us 22 faults of 5 categories
(i.e., CPU exhaustion, memory exhaustion, host network error,
container network error, and database failures), along with
1,136,825 traces, 17,041 (1.50%) of which are affected by
the faults. We call the dataset from this production system B.

In total, there are 222 faults, 1,379,084 traces, 39,728
(2.88%) of which are affected by the faults. The datasets
have been published anonymously to promote future re-
search1. Since our compared approaches contain supervised
approaches, for each fault, we randomly selected 20% traces
as the training set and the remaining traces as the test set.
Note that there are the same fault types in the training and
test sets and the same ratio of abnormal traces to guarantee the
effectiveness of supervised approaches. All the unsupervised
approaches only use the test set for each fault.

B. Overall Performance on Root Cause Localization

We used the following metrics to evaluate its effectiveness
following the existing work [7], [11]:
• Top-k accuracy (A@k) refers to the probability that the root

causes are included in the top-k results. We chose k=1, 2, 3.
• Mean average rank (MAR) refers to the mean of the average

of all root-cause microservice ranks in each fault.
• Mean first rank (MFR) refers to the mean of the first root-

cause microservice rank in each fault.
We compared TraceRCA with the state-of-the-art (SOTA)

trace-based unsupervised approach MicroScope (MS) [7]
and TraceAnomaly (TA) [13], and the SOTA trace-based
supervised approach MEPFL [11]. Besides, we compared

1https://github.com/NetManAIOps/TraceRCA



TABLE I: Summary of fault injection strategies on Train-Ticket
Fault Type Description Level #Cases
Application

Bug
If there is an application bug, the responses from the faulty microservices can be incorrect. We use
Istio [34] to randomly substitute some responses with wrong responses.

Microservice 58

CPU
Exhausted

Due to configuration errors or bursting requests, CPU can be exhausted, which causes long latency, low
throughput or no response.,We use stress-ng, a popular stress test tool, to exhaust CPU.

Microservice 59

Network
Delay

When there is network jam, packet transmission requires more time, so latency of responses becomes
longer. We use Istio to randomly delay requests.

Microservice,
Container, API

59,
10, 14

TABLE II: Overall effectiveness comparison of root cause localization
Subject Algorithm A@1 ⇑A@1 A@2 ⇑A@2 A@3 ⇑A@3 MAR ⇑MAR MFR ⇑MFR

A

TraceRCA 0.82 — 0.91 — 0.95 — 1.54 — 1.50 —
MicroScope 0.55 51.02% 0.61 49.28% 0.70 34.88% 3.70 58.49% 3.55 57.92%
MEPFL (RF) 0.92 -10.72% 0.97 -5.48% 0.98 -2.79% 1.40 -9.72% 1.37 -9.35%
Random Walk 0.51 61.93% 0.84 8.42% 0.90 5.34% 2.32 33.66% 2.26 33.87%
RCSF 0.50 63.91% 0.83 10.31% 0.90 5.79% 1.83 16.27% 1.77 15.48%
TraceAnomaly 0.45 81.22% 0.56 63.23% 0.61 56.38% 4.65 66.90% 4.58 67.28%

B

TraceRCA 0.88 — 1 — 1 — 1.12 — 1.12 —
MicroScope 0.82 7.32% 0.88 13.64% 0.88 13.64% 2.12 47.17% 2.12 47.17%
MEPFL (RF) 0.94 -6.38% 1 0.00% 1 0.00% 1.06 -5.66% 1.06 -5.66%
Random Walk 0.82 7.32% 0.94 6.38% 1 0.00% 1.24 9.68% 1.24 9.68%
RCSF 0.47 87.23% 1 0.00% 1 0.00% 1.53 26.80% 1.53 26.80%
TraceAnomaly 0.68 20.27% 0.68 33.47% 0.77 22.94% 2.32 33.57% 2.32 35.29%

* A@k means top-k accuracy, and ⇑ means the improvement rate (%) of TraceRCA over compared approaches.

TABLE III: Comparison of root cause localization on faults of different levels on A
Subject Algorithm A@1 ⇑A@1 A@2 ⇑A@2 A@3 ⇑A@3 MAR ⇑MAR MFR ⇑MFR

Microservice

TraceRCA 0.83 — 0.93 — 0.97 — 1.39 — 1.34 —
MicroScope 0.56 46.67% 0.62 49.49% 0.70 37.33% 3.64 61.77% 3.47 61.26%
MEPFL (RF) 0.94 -12.00% 0.97 -4.82% 0.97 -0.64% 1.42 1.98% 1.38 2.71%
Random Walk 0.51 61.96% 0.86 7.25% 0.94 3.00% 1.97 29.37% 1.91 29.51%
RCSF 0.52 60.00% 0.86 7.64% 0.93 3.69% 1.68 16.98% 1.60 16.02%
TraceAnomaly 0.49 70.85% 0.59 58.14% 0.63 53.11% 4.42 68.54% 4.34 69.13%

Container

TraceRCA 0.80 — 0.80 — 0.80 — 3.80 0% 3.80 —
MicroScope 0.20 300.00% 0.40 100.00% 0.40 100.00% 7.20 47.22% 7.20 47.22%
MEPFL (RF) 0.80 0.00% 0.80 0.00% 1.00 -20.00% 1.40 -171.43% 1.40 -171.43%
Random Walk 0.40 100.00% 0.60 33.33% 0.60 33.33% 8.40 54.76% 8.40 54.76%
RCSF 0.40 100.00% 0.60 33.33% 0.60 33.33% 3.60 -5.56% 3.60 -5.56%
TraceAnomaly 0.20 300.00% 0.30 166.67% 0.30 166.67% 7.10 46.48% 7.10 46.48%

API

TraceRCA 0.83 — 0.83 — 0.83 — 1.75 — 1.75 —
MicroScope 0.58 42.86% 0.67 64.29% 0.92 -9.09% 2.00 12.50% 2.00 12.50%
MEPFL (RF) 0.83 0.00% 1.00 -16.67% 1.00 -16.67% 1.17 -50.00% 1.17 -50.00%
Random Walk 0.58 42.86% 0.75 11.11% 0.64 29.63% 2.33 25.00% 2.33 25.00%
RCSF 0.42 100.00% 0.58 42.86% 0.67 25.00% 2.58 32.26% 2.58 32.26%
TraceAnomaly 0.21 287.33% 0.36 132.40% 0.50 66.00% 5.86 70.12% 5.86 70.12%

TABLE IV: Comparison of root cause localization on multi-root-cause faults of A
Subject Algorithm A@1 ⇑A@1 A@2 ⇑A@2 A@3 ⇑A@3 MAR ⇑MAR MFR ⇑MFR

multi-
root-cause
cases on A

TraceRCA 0.45 — 0.82 — 0.95 — 1.77 — 1.09 —
MicroScope 0.27 66.67% 0.27 200.00% 0.41 133.33% 5.18 65.79% 2.73 60.00%
MEPFL (RF) 0.45 0.00% 0.95 -14.29% 0.95 0.00% 1.64 -8.33% 1.09 0.00%
Random Walk 0.41 11.11% 0.64 28.57% 0.82 16.67% 2.27 22.00% 1.36 20.00%
RCSF 0.23 100.00% 0.50 63.64% 0.73 31.25% 2.82 37.10% 1.73 36.84%
TraceAnomaly 0.50 -10.00% 0.73 12.75% 0.82 16.11% 2.50 29.20% 1.00 -9.00%

TraceRCA with two SOTA invocation-based unsupervised
approaches, RCSF [6] and Random Walk (RW) [5], [8]–
[10], [12]. As MS, TA, and MEPFL localize root causes
trace-by-trace, the final results are voted by all abnormal
traces. We ran MS based on our anomaly detection approach
because they did not describe theirs. We adapted MEPFL on
our collected features and selected RF (random forest) since
RF performs well, runs fast compared with KNN (k nearest
neighbor), and easy to train compared with MLP (multi-layer
perceptron) [11]. We used RW with self and backward edges
following the previous work [5], [8]–[10], [12] while using the
anomaly severity of each microservice pair as weights because
these previous approaches based on RW either only handles

single metric ( [5], [8], [10]) or relies on user participation (
[9], [12]), which makes it unrealistic to use correlations with
the alerting metric as weights. Original TraceAnomaly [13]
utilizes only one metric (latency), which poorly performs since
we inject faults in multiple metrics, and thus we applied
TraceAnomaly on all metrics as TraceRCA.
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Fig. 5: Influence of the coverage of faults types and microser-
vices in training data on A (shared y-axis).
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Table II compares the overall effectiveness. From this ta-
ble, TraceRCA outperforms all the compared unsupervised
approaches on both A and B. The top-1 accuracy of Trac-
eRCA outperforms the compared unsupervised approaches by
51.02%∼81.22% on A. Most approaches perform well on B
due to its smaller number of microservices and less com-
plicated dependency among microservices. Nevertheless, the
top-1 accuracy of TraceRCA still outperforms the compared
unsupervised approaches by 7.32%∼87.23% on B. On average
across all the faults, the top-1 accuracy of TraceRCA achieves
83%, and the MAR achieves 1.50. TraceRCA outperforms the
compared unsupervised approaches by 44.8%∼66.1% in top-1
accuracy, and 17.2%∼78.7% in MAR by further calculation.
The unsupervised trace-based approaches, MicroScope and
TraceAnomaly, assume a fixed pattern of anomalies propa-
gation while TraceRCA dynamically infers it, and thus they
are less robust. Besides, TraceAnomaly performs poorly on
anomaly detection since it is initially designed for latency only
(see Section IV-C), which harms its performance a lot.

Table III and Table IV present the results of root cause
localization on different levels of faults and multi-root-cause
faults in A, respectively. From Table III, TraceRCA performs
better than all unsupervised baselines in most cases across all
the three levels. For example, the top-1 accuracy of TraceRCA
achieves 0.80∼0.83 and outperforms other unsupervised ap-
proaches by 42.86%∼300% across all levels, and the MAR
outperforms by 12.50%∼70.12%. From Table IV, TraceRCA
largely outperforms all the compared unsupervised approaches
w.r.t most metrics on multi-root-cause faults. For example, the
top-2 accuracy of TraceRCA achieves 0.82 and outperforms
other unsupervised approaches by 12.75%∼200%, and the
MAR outperforms by 22.00%∼65.79%.

Conclusion 1 TraceRCA significantly outperforms the SOTA
unsupervised approaches in all the three studied levels of
faults and both single-root-cause and multi-root-cause faults.

Compared with the SOTA supervised approach (RF), Trac-
eRCA is inferior but not too much. On average across all
the faults on A and B, TraceRCA underperforms RF by
10.3% in top-1 accuracy and 9.4% in MAR. The inferiority of
TraceRCA is expected since supervised approaches have much
more knowledge than unsupervised ones in general. Besides,
by analyzing failed cases, we find that the intermediate step
of anomaly detection may incur noise, which also affects
the overall effectiveness (see Fig. 10). However, supervised
approaches heavily rely on high coverage of fault types and
microservices in training data. To demonstrate it, we con-
structed modified training sets by removing faults of a specific
type or microservice from original datasets. It simulated the

cases that in training data, there are missing fault types (e.g.,
new fault types) or microservices (e.g., microservices in which
it is hard to inject faults). From Fig. 5, the effectiveness of RF
indeed degrades quickly as the number of missed fault types
and microservices increasing, while unsupervised approaches
perform stably and outperform RF eventually. In practice, it
is hard to guarantee high-quality training data, and thus our
unsupervised approach TraceRCA is more practical and stable.

Conclusion 2 TraceRCA performs almost as well as the
SOTA supervised approach, but the latter relies on training
data with high coverage of all fault types and microservices.

C. Effectiveness of Our Trace Anomaly Detection Method

Following the existing work [11], we used three widely-
used metrics, i.e., precision, recall, and F1-score, to evaluate
the effectiveness of the trace anomaly detection method in
TraceRCA (denoted as TraceRCA-AD). We compared Trac-
eRCA-AD with the SOTA supervised approach MEPFL (the
same model as that for root cause localization can also be
used for trace anomaly detection and achieves the SOTA
performance [11]), and the SOTA unsupervised trace-based
approach TraceAnomaly (the part of anomaly detection, de-
noted as TA-AD), and a widely-used unsupervised invocation-
based method IF (isolation forest [39]). For MEPFL, we also
used RF (denoted as RF-trace) as the representative due to the
same reason in Section IV-B. For IF, we treated all feature
values of an invocation as a multi-dimensional sample and
applied IF on all the samples of each microservice pair to
detect abnormal invocations, based on which we detected
abnormal traces following Section III-A2.

As shown in Fig. 6, both TraceRCA-AD and RF-Trace
achieve over 0.8 in F1-score. Note that our unsupervised
method, TraceRCA-AD, is competitive with the supervised
method, RF-Trace, while IF and TraceAnomaly performs
poorly. It is because our datasets contain multiple features,
and some are noisy and misleading. Thus the unsupervised
approaches are hard to perform well without feature selection.

Although the supervised method, i.e., RF-Trace, achieves
the best effectiveness, it relies on high coverage of fault types
and microservices in training data. In Fig. 9, we investigated
the effectiveness of RF-Trace with different numbers of missed
fault types and microservices in training data (following the
experiment process of Fig. 5). The F1-score of RF-Trace
degrades very quickly as the number of missed fault types
or microservices increases, while the F1-score of unsupervised
methods tends to be stable and stay competitive in this process.
It is hard to guarantee high-quality training data in practice,
and thus TraceRCA-AD is more practical and stable.
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Fig. 9: Influence of coverage of fault types and microservices
in training data on anomaly detection (shared y-axis).

As adaptive feature selection is an important step in Trac-
eRCA-AD, we then investigated its contribution by comparing
TraceRCA-AD and TraceRCA-AD without feature selection
(denoted as NoSelection). As shown in Fig. 7, when δad
(the threshold of anomaly severities) is high, both have low
F1-scores since they have many false negatives. But when
δad is low, feature selection helps reduce false positives, and
thus, TraceRCA-AD has a higher F1-score. Therefore, adaptive
feature selection is helpful to make TraceRCA more practical.
Conclusion 3 The anomaly detection method in TraceRCA
performs almost as well as the SOTA supervised method but is
more practical. Also, adaptive feature selection in TraceRCA
is helpful to ensure good performance.

As mentioned in Section IV-B, the intermediate step of
trace anomaly detection affects the effectiveness of TraceRCA.
Here, we investigated its influence by randomly reversing
the anomaly detection results with probability noise ratio,
which simulates ineffective anomaly detection. The results
are shown in Fig. 10. The supervised approach, i.e., RF-
Trace, does not rely on anomaly detection, and thus their
results are not affected. When the noise ratio is less than 4%,
the performance of TraceRCA does not degrade obviously.
When the noise ratio goes larger than 8%, as well as all
other unsupervised approaches, the performance of TraceRCA
degrades but keeps outperforming others. That further demon-
strates the contribution of our trace anomaly detection method.
However, a more advanced anomaly detection approach is
still required for further improving TraceRCA, which is not
the target of this paper but can be regarded as our future
work. Besides, TraceRCA is not able to detect structurally
abnormal traces, which refers to traces that have invocations
corresponding to unexpected microservice pairs while these
invocations’ monitoring metrics are expected. According to
our interviews with several domain engineers, such structural
anomalies are much less prevalent but may be related to severe
issues like attacks. We keep this as part of our future work.
Conclusion 4 The effectiveness of all unsupervised ap-
proaches, including TraceRCA, relies on the effectiveness of
anomaly detection, but TraceRCA is more insensitive and
consistently outperforms the SOTA unsupervised approaches.

D. Impact of Main Parameters

We investigated the impact of main parameters (i.e.,
δspt, k, δad and δfs). In Fig. 11 and Fig. 12, the top-1 accuracy
and MAR of TraceRCA keep high while δspt (microservice
sets with supports greater than it are frequent, see Sec-
tion III-B) and k (the number of microservice sets taken for
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Fig. 11: Influence of δspt on A (left) and B (right)

microservice ranking in Section III-B) change in a large range.
As shown in Fig. 7, even if δad (invocations with anomaly
severities greater than it are abnormal, see Section III-A)
is lower than the best threshold (i.e., 2 in Fig. 7), with
the help of our adaptive feature selection, the F1-score of
TraceRCA-AD does not degrade. In Fig. 8, the F1-score of
TraceRCA-AD keeps good performance even if δfs (features
whose distributions change greater than it are useful, see
Section III-A) varies.
Conclusion 5 For each of the main parameters, TraceRCA
is insensitive to it in a large range.

E. Scalability

Here, we investigated the efficiency of TraceRCA. Our
experiments were conducted on a server with 12 cores and
64G RAM. TraceRCA and all baselines are implemented with
Python. Fig. 13 shows how many traces each approach can
handle per second per core. TraceRCA is not the fastest one,
but it is efficient enough. For a system with 100,000 traces per
minute (a typical number from the large production system
studied in Section V), TraceRCA takes only about 60 seconds
to localize the root cause for a 5-minute fault. Although
TraceRCA performs feature selection and trace anomaly de-
tection on different microservice pairs separately, the overall
time complexity is only related to the number of traces. In
Fig. 14a, we present the relative running time (compared
with the median running time without trace sampling) with
different trace sampling proportions, by which we found that
the running time is almost linear to the number of traces.

In large production systems, trace sampling is widely used
to reduce system load since the number of traces can be
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Fig. 14: Efficiency improvement and performance degradation
of TraceRCA with trace sampling.

extremely large. TraceRCA is able to achieve relatively good
performance with trace sampling. In Fig. 14b, we plot the
performance degradation with different sampling proportions,
where the band refers to the standard deviation (we repeated
the experiment three times). With only 1

16 of all traces,
TraceRCA can achieve about 80∼90% of the best performance.

Conclusion 6 TraceRCA has good scalability for practice.

V. DEPLOYMENT AND LEARNED LESSONS

TraceRCA has been successfully deployed in a production
service-oriented system containing over 80 services of a large
commercial bank. Since it is not a microservice system, the
number of services seems small. However, it is large-scale
w.r.t. the number of traces (over 100,000 traces per minute).
We used the parameters of TraceRCA described in Section III.
Based on the operators’ feedback, TraceRCA helps them
accurately and efficiently localize root-cause microservices in
practice many times and saves much effort. In this section, we
share some learned lessons from the deployment.
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Fig. 15: Two real-world faults. Irrelevant services are omitted.
The numbers on each microservice pair represent the numbers
of abnormal/total traces passing through it.

First, traces are really necessary for root cause localization.
Invocation indicates the relationship between only adjacent
microservices, while trace provides the relationship among all
microservices on the same trace. For example, in Fig. 15a,
PLS either calls SC or SD directly, or calls ECT before
calling them. A fault happened in ECT, and it affected the
invocations of PLS→ECT and the following ones of PLS→SC
or PLS→SD. Without traces, the relationship among ECT,
SC and SD is uncertain, and thus we can hardly infer which
downstream microservice of PLS is the root cause. But with
traces, TraceRCA can easily observe that all abnormal traces
intersect at ECT. In Fig. 15b, all microservice pairs are
abnormal, and root-cause microservices are SSP and NPS.
Without traces, the anomaly in NPS is highly likely to be
considered as caused by SSP, since NPS relies on SSP and
the invocations of NPS→SSP are all abnormal. With traces,
TraceRCA can easily confirm that SSP and NPS are two
independent root causes because most traces containing NPS
do not contain SSP.

Second, abnormal metrics vary on different microservices
even for one fault. For example, if a microservice encounters
resource exhaustion, its response rate goes down. For its
upstream microservices, the response latency will increase if
they have to wait until timeout. The response latency may also
keep steady or decrease if the faulty service refuses connection
immediately, and in such cases, the success rate will decrease.
Thus, a multi-metric anomaly detection approach is necessary.

Third, the interpretability of a root cause localization ap-
proach is important for operators to accept its results and
take action. On the one hand, following a wrong localization
result makes mitigation take a longer time. On the other
hand, different microservices are usually in the charge of
different operators or different departments, so the result of
an approach affects the distribution of responsibility among
operators or departments. In most cases, TraceRCA’s results
can be understood well by displaying abnormal traces with
invocations’ normality and highlighting their intersection.

VI. RELATED WORK

Recently, a great deal of effort has been devoted to localiz-
ing root-cause microservices. There are also many approaches
on root cause localization for service-oriented system, compo-
nent based system, and cloud native system. The underlying
intuitions of them are similar to that of microservice systems,
and thus, most such approaches can also be applied to root-
cause microservice localization. Many approaches [5], [8]–
[10], [12] are based on random walk. The intuition is that
if microservices are visited in a sequence by picking up the
next one with the highest probability of causal anomaly among
all neighbors, the more visits of a microservice, the more it
explains the anomalies of all microservices [5]. To address the
problem of naive random walk, second-order random walk [8],
self and backward edges [5], [9], [10], and combination of
multi metrics [9], [12] are proposed. RCSF [6] mines frequent
sequential patterns [32] as root causes directly among all call
paths (thus, it is not trace-based) from abnormal services to the
alerting service. Some approaches [11], [40] utilize historical
faults or injected faults to build a supervised algorithm. The
intuition is that similar faults have the same root causes.
However, historical faults are inadequate, and fault injection
in production systems is impractical due to 1) the cost of
maintaining a benchmark with similar architecture and scale
2) and the limited types of fault injection. Unsupervised trace-
based approaches [7], [13] utilize traces to improve fault
diagnosis. They detect abnormal traces in an unsupervised
manner and infer the root-cause microservice based on a mined
causal graph or dependency graph.

Spectrum-based fault localization (SBFL) is popular and
useful in program debugging [14]–[19]. A typical SBFL
collects coverage information for program elements (e.g.,
statements and methods) while running test cases and then
employs a predefined scoring function to compute the sus-
picious scores for program elements. The intuition is that
a program element covered by less passed tests and more
failed tests is more likely to be the root cause, which is



similar to our insight (see Section III). But SBFL uses user-
defined test cases and need not anomaly detection, and SBFL
directly mines suspicious program elements while TraceRCA
mines suspicious microservice sets for robustness and ranks
microservices at the further step.

VII. CONCLUSION

In this paper, we propose TraceRCA, a practical root-cause
microservice localization approach via trace analysis, which is
composed of trace anomaly detection, suspicious microservice
set mining, and microservice ranking. The key insight of
TraceRCA is that a microservice with more abnormal traces
and less normal traces passing though it is more likely to be the
root cause. Based on a widely-used open-source microservice
benchmark and a production system, we conduct the largest
experimental studies in the field, and the results show Trac-
eRCA can localize the root cause accurately and efficiently.
We also share learned lessons from our deployment in a large
commercial bank.
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