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DL	Algorithms	in	the	Infra	Operation
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• Advantages

– automation

– robustness

– Saving	operator’s	labor

• Example:

– RNN-VAE	for	anomaly	detection



RNN-VAE	Based	Algorithms
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• RNN:	Shallow	&	general

• Dense	layers:	Deep	&	specific



Scalability	is	the	problem	for	large	scale
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• High-Dimensional	Data

– Machines:	in	millions

– KPI:	in	tens

– Time:	Frequent	data	query	(2880	samples/day)

Ø One	model	per	machine:		time
10X	minutes	*	1X	million	machines

Ø One	model	for	all:	accuracy
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• High-Dimensional	Data

– Machines:	in	millions

– KPI:	in	tens

– Time:	Frequent	data	query	(2880	samples/day)

Goal:	devise	scalable	deep	learning	(DL)	algorithms	for	
large-scale	anomaly	detection
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• Intuition:	Cluster	Machines	first,	then	run	DL	for	each	cluster

• Challenge	1:	clustering	 model	training
• Clustering	cannot	run	on	high-dimensional	data
• DL	cannot	run	on	whole	dataset	without	clustering
• Solution:	Synthetic	framework	

Intuition	and	Challenges

dependency

Coarse-grained	model	->	clustering	->	fine-grained	models
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• Intuition:	Cluster	Machines	first,	then	run	DL	for	each	cluster

• Challenge	1:	clustering	 model	training
• Clustering	cannot	run	on	high-dimensional	data
• DL	cannot	run	on	whole	dataset	without	clustering
• Solution:	Synthetic	framework	

• Challenge	2:	High	dimension	of	time	domain
• Hard	to	cluster	even	KPI	is	compressed
• Solution:	compress	sequence	to	z-distribution

• Challenge	3:	Neural	network	training	method
• Solution:	fine-tuning strategy
• Freeze	RNN	and	tune	dense	layers

Intuition	and	Challenges
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RN

N

D
ense layers

	"# $# "#%

RN
N

D
ense layers



Outline

Background Design Evaluation Conclusion

11



Framework	of	model	training
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• Machine	sampling

• Time	sampling
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Wasserstein distance

HAC algorithm
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• Fine-tuning	strategy:

• RNN:	fixed

• Dense	layers:	tuned



System	architecture	
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System architecture 

Data API Online Anomaly 
Detection ( IV-C)

Offline Data

Online Data

Offline Model 
Training ( IV-B)

Model Score

Outlier Alerting
( V-D)

Results & 
Visualization

Data Preprocessing 
( IV-A)

Monitored 
machine entities

1. Data	preprocessing

2. Offline	model	training

3. Online	anomaly	detection



Labeling	tools

18The interface of the labeling tool 
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Dataset & performance metrics
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• Dataset:

– #	Machine	entities: 533

– Dimension of each machine	entity: 49	KPIs	x	37440 time	

points	(frequency: 30s,	13	days)

– Training = first	5	days, Testing = last	8	days

• Metrics:

– F1,	Precision,	Recall: average	of	all	machine	entities.

– Model	training	time



Overall	performance

• Scalability

– Pre-training:	fixed	(5493s)
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The execution time of each step under different 
numbers of machine entities 

F1, Precision, and Recall scores of CTF without 
and with alerting
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Overall	performance

• Scalability

– Pre-training:	fixed	(5493s)

– feature	extraction:	0.3s	/	

machine

– Clustering:	much	smaller

– Fine-tuning:	448s	/	model

• Effectiveness

– F1:	0.830->0.892
24

The execution time of each step under different 
numbers of machine entities 

F1, Precision, and Recall scores of CTF without 
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Overall	performance

• Validating	the	Synthetic	

Framework

– One	model/machine	

– One	model	for	all	

– CTF	w/o	transfer	
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Comparison with model variations

F1 and training time under different numbers of 
epochs for CTF w/o transfer 
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Validating	Design	Choices

• Choice	of	Clustering	Objects

– SPF,	ROCKA,	DCN	

• Choice	of	Distance	Measures

– KL	divergence,	JS	divergence,	

mean	squared	error

• Choice	of	Clustering	Algorithms	

– DBSCAN,	K-medoids
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Conclusion

• CTF:	synthetic	framework,	high-dimensional	time	series	

(machine,	KPI,	time)

• Techniques:	𝒛𝒕 distribution	clustering,	model	reuse,	fine-tuning

• Evaluation:	CTF	scalability	and	effectiveness

• Labeling	tool	+	labeled	dataset
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Thank you!

Q & A

sunm19@mails.tsinghua.edu.cn
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