Practical Root Cause Localization for Microservice Systems via Trace Analysis

Zeyan Li¹, Junjie Chen², Rui Jiao¹, Nengwen Zhao¹, Zhijun Wang³, Shuwei Zhang³, Yanjun Wu³, Long Jiang³, Leiqin Yan³, Zikai Wang⁴, Zhekang Chen⁴, Wenchi Zhang⁴, Xiaohui Nie¹, Kaixin Sui⁴, Dan Pei¹

June 26 2021. IWQoS 2021

Outline

Background

Approach

Summary

Microservice architecture: the lasted trend to build systems

- Microservice architecture: the lasted trend to build systems
- What is microservice architecture?
 - Loosely coupled and independently deployed 'micro' services
 - Communicating with other services to realize a user request

- Microservice architecture: the lasted trend to build systems
- What is microservice architecture?
 - Loosely coupled and independently deployed 'micro' services
 - Communicating with other services to realize a user request
- Benefits:
 - Fast delivery
 - Better scalability
 - Greater autonomy

Many related services also behave abnormally due to the dependency among services

Many related services also behave abnormally due to the dependency among services

Different services are developed and maintained by different teams

Many related services also behave abnormally due to the dependency among services

Different services are developed and maintained by different teams

When a fault happens, we need to localize the rootcause service at first before the corresponding team's further investigation

Background **Challenges in Microservice Systems**

1. Complex dependencies among services

2. Dynamic runtime environments

2. Dynamic runtime environments

COMPANY	DEPLOY FREQUENCY	DEPLOY LEAD TIME	RELIABILITY	CUSTOMER FEEDBACK	
AMAZON	23.000/day	minutes	high	high	
GOOGLE	5.500/day	minutes	high	high	
NETFLIX	500/day	minutes	high	high	
FACEBOOK	1/day	hours	high	high	
TWITTER	3/week	hours	high	high	
TYPICAL ENTERPRISE	once every 9 months	months or more	low/medium	low/medium	

From "The Phoenix Project"

2. Dynamic runtime environments

COMPANY	DEPLOY FREQUENCY	DEPLOY LEAD TIME	RELIABILITY	CUSTOMER FEEDBACK	
AMAZON	23.000/day	minutes	high	high	
GOOGLE	5.500/day	minutes	high	high	
NETFLIX	500/day	minutes	high	high	
FACEBOOK	1/day	hours	high	high	
TWITTER	3/week	hours	high	high	
TYPICAL ENTERPRISE	once every 9 months	months or more	low/medium	low/medium	

From "The Phoenix Project"

3. Various types and huge volumes of monitoring data

Background **Metrics or Logs Based Localization Approaches**

Metrics lack detailed contextual information and fine-grained dependencies of invocations

[kafka.log][INFO] Retrying leaderEpoch request for partition __consumer_offsets-15 as the leader reported an err or: NOT_LEADER_FOR_PARTITION [kafka.log][INFO] Retrying leaderEpoch request for partition logs-0 as the leader reported an error: NOT_LEADER_ FOR_PARTITION [kafka.log][INFO] Opening socket connection to server kafka-zookeeper/10.47.244.48:2181. Will not attempt to aut henticate using SASL (unknown error) [kafka.log][INFO] Opening socket connection to server kafka-zookeeper/10.47.244.48:2181. Will not attempt to aut henticate using SASL (unknown error) [kafka.log][INFO] Opening socket connection to server kafka-zookeeper/10.47.244.48:2181. Will not attempt to aut henticate using SASL (unknown error) [kafka.log][INFO] Opening socket connection to server kafka-zookeeper/10.47.244.48:2181. Will not attempt to aut henticate using SASL (unknown error) [kafka.log][INFO] Error sending fetch request (sessionId=839052068, epoch=517118) to node 2: java.nio.channels.C losedSelectorException. [kafka.log][INFO] Retrying leaderEpoch request for partition __consumer_offsets-47 as the leader reported an err or: NOT_LEADER_FOR_PARTITION [kafka.log][INFO] Retrying leaderEpoch request for partition __consumer_offsets-11 as the leader reported an err or: NOT_LEADER_FOR_PARTITION [kafka.log][INFO] Retrying leaderEpoch request for partition __consumer_offsets-41 as the leader reported an err or: NOT_LEADER_FOR_PARTITION

[kafka.log][INFO] Retrying leaderEpoch request for partition __consumer_offsets-5 as the leader reported an erro r: NOT_LEADER_FOR_PARTITION

[kafka.log][INFO] Retrying leaderEpoch request for partition __consumer_offsets-35 as the leader reported an err or: NOT_LEADER_FOR_PARTITION

[kafka.log][INFO] Retrying leaderEpoch request for partition __consumer_offsets-17 as the leader reported an err or: NOT_LEADER_FOR_PARTITION

[kafka.log][INFO] Error sending fetch request (sessionId=1303574239, epoch=127483) to node 0: java.nio.channels. 01----

Logs are usually generated in an arbitrary manner and most log messages contain little information for root cause localization

Background **Metrics or Logs Based Localization Approaches**

Metrics lack detailed contextual information and fine-grained dependencies of invocations

[kafka.log][INFO] Retrying leaderEpoch request for partition __consumer_offsets-15 as the leader reported an err or: NOT_LEADER_FOR_PARTITION [kafka.log][INFO] Retrying leaderEpoch request for partition logs-0 as the leader reported an error: NOT_LEADER_ FOR_PARTITION [kafka.log][INFO] Opening socket connection to server kafka-zookeeper/10.47.244.48:2181. Will not attempt to aut henticate using SASL (unknown error) [kafka.log][INFO] Opening socket connection to server kafka-zookeeper/10.47.244.48:2181. Will not attempt to aut henticate using SASL (unknown error) [kafka.log][INFO] Opening socket connection to server kafka-zookeeper/10.47.244.48:2181. Will not attempt to aut henticate using SASL (unknown error) [kafka.log][INFO] Opening socket connection to server kafka-zookeeper/10.47.244.48:2181. Will not attempt to aut henticate using SASL (unknown error) [kafka.log][INFO] Error sending fetch request (sessionId=839052068, epoch=517118) to node 2: java.nio.channels.C losedSelectorException. [kafka.log][INFO] Retrying leaderEpoch request for partition __consumer_offsets-47 as the leader reported an err or: NOT_LEADER_FOR_PARTITION [kafka.log][INFO] Retrying leaderEpoch request for partition __consumer_offsets-11 as the leader reported an err or: NOT_LEADER_FOR_PARTITION [kafka.log][INFO] Retrying leaderEpoch request for partition __consumer_offsets-41 as the leader reported an err or: NOT_LEADER_FOR_PARTITION

[kafka.log][INFO] Retrying leaderEpoch request for partition __consumer_offsets-5 as the leader reported an erro r: NOT_LEADER_FOR_PARTITION

[kafka.log][INFO] Retrying leaderEpoch request for partition __consumer_offsets-35 as the leader reported an err or: NOT_LEADER_FOR_PARTITION

[kafka.log][INFO] Retrying leaderEpoch request for partition __consumer_offsets-17 as the leader reported an err or: NOT_LEADER_FOR_PARTITION

[kafka.log][INFO] Error sending fetch request (sessionId=1303574239, epoch=127483) to node 0: java.nio.channels. 01----

Logs are usually generated in an arbitrary manner and most log messages contain little information for root cause localization

Background **Metrics or Logs Based Localization Approaches**

Metrics lack detailed contextual information and fine-grained dependencies of invocations

[kafka.log][INFO] Retrying leaderEpoch request for partition __consumer_offsets-15 as the leader reported an err or: NOT_LEADER_FOR_PARTITION [kafka.log][INFO] Retrying leaderEpoch request for partition logs-0 as the leader reported an error: NOT_LEADER_ FOR_PARTITION [kafka.log][INFO] Opening socket connection to server kafka-zookeeper/10.47.244.48:2181. Will not attempt to aut henticate using SASL (unknown error) [kafka.log][INFO] Opening socket connection to server kafka-zookeeper/10.47.244.48:2181. Will not attempt to aut henticate using SASL (unknown error) [kafka.log][INFO] Opening socket connection to server kafka-zookeeper/10.47.244.48:2181. Will not attempt to aut henticate using SASL (unknown error) [kafka.log][INFO] Opening socket connection to server kafka-zookeeper/10.47.244.48:2181. Will not attempt to aut henticate using SASL (unknown error) [kafka.log][INFO] Error sending fetch request (sessionId=839052068, epoch=517118) to node 2: java.nio.channels.C losedSelectorException. [kafka.log][INFO] Retrying leaderEpoch request for partition __consumer_offsets-47 as the leader reported an err or: NOT_LEADER_FOR_PARTITION [kafka.log][INFO] Retrying leaderEpoch request for partition __consumer_offsets-11 as the leader reported an err or: NOT_LEADER_FOR_PARTITION [kafka.log][INFO] Retrying leaderEpoch request for partition __consumer_offsets-41 as the leader reported an err or: NOT_LEADER_FOR_PARTITION

[kafka.log][INFO] Retrying leaderEpoch request for partition __consumer_offsets-5 as the leader reported an erro r: NOT_LEADER_FOR_PARTITION

[kafka.log][INFO] Retrying leaderEpoch request for partition __consumer_offsets-35 as the leader reported an err or: NOT_LEADER_FOR_PARTITION

[kafka.log][INFO] Retrying leaderEpoch request for partition __consumer_offsets-17 as the leader reported an err or: NOT_LEADER_FOR_PARTITION

[kafka.log][INFO] Error sending fetch request (sessionId=1303574239, epoch=127483) to node 0: java.nio.channels. 01----

Logs are usually generated in an arbitrary manner and most log messages contain little information for root cause localization

Service Dependency Graph

contextual information for root-cause service localization

abnormal invocation of an abnormal trace as the root cause.

abnormal invocation of an abnormal trace as the root cause.

abnormal invocation of an abnormal trace as the root cause.

abnormal invocation of an abnormal trace as the root cause.

abnormal invocation of an abnormal trace as the root cause.

 MEPFL[FSE'19] uses a supervised machine learning model to "classify" the root-cause service for an abnormal trace.

- Frontend
- 1 Product
- 0 Cart

. . .

O Ad-Service
Motivation **Existing Trace-Based Localization Approaches**

MEPFL[FSE'19] uses a supervised machine learning model to "classify" the root-cause service for an abnormal trace.

- Frontend
- Product
- Cart 0
- Ad-Service

Supervised approaches rely on training data with high coverage on all fault types and microservices

Motivation **Existing Trace-Based Localization Approaches**

MEPFL[FSE'19] uses a supervised machine learning model to "classify" the root-cause service for an abnormal trace.

- Frontend
- Product
- Cart
- Ad-Service

Supervised approaches rely on training data with high coverage on all fault types and microservices

> It is hard for supervised approaches to handle new faults

The existing trace-based approaches utilize only *single* traces and *abnormal* traces.

The existing trace-based approaches utilize only single traces and abnormal traces.

less normal traces is more likely to be the root cause.

Insight: Intuitively, a microservice covered by more abnormal traces but

The existing trace-based approaches utilize only single traces and abnormal traces.

less normal traces is more likely to be the root cause.

Our insight utilizes the statistical information based on both normal and abnormal traces

Insight: Intuitively, a microservice covered by more abnormal traces but

is more likely to be the root cause.

A microservice covered by more abnormal traces but less normal traces

13

is more likely to be the root cause.

is more likely to be the root cause.

is more likely to be the root cause.

#abnormal traces passing through s support(s) =#abnormal traces $confidence(s) = \frac{\#abnormal traces passing through s}{}$ #traces passing through *s*

is more likely to be the root cause.

#abnormal traces passing through s support(s) =support $\uparrow \Rightarrow$ "more abnormal traces" #abnormal traces $confidence(s) = \frac{\#abnormal traces passing through s}{}$ #traces passing through *s*

is more likely to be the root cause.

#abnormal traces passing throug support(s) =#abnormal traces $confidence(s) = \frac{\#abnormal\ traces\ passing\ throws the set of the set of$ #traces passing through s

gh <u>s</u>	support $\uparrow \Rightarrow$ "more abnormal traces"
ough s	confidence $\uparrow \Rightarrow$ "less normal traces"

gh <u>s</u>	support $\uparrow \Rightarrow$ "more abnormal traces"
ough s	confidence $\uparrow \Rightarrow$ "less normal traces"

gh <u>s</u>	support $\uparrow \Rightarrow$ "more abnormal traces"
ough s	confidence $\uparrow \Rightarrow$ "less normal traces"

ugh s	support ↑	\Rightarrow	"more abnormal traces"
nrough <u>s</u>	confidence	1	\Rightarrow "less normal traces"

	support	confidence
Frontend		
Product		
Recommendation		
Ad-Service		

ugh s	support ↑	\Rightarrow	"more abnormal traces"
nrough <u>s</u>	confidence	1	\Rightarrow "less normal traces"

	support	confidence
Frontend		
Product		
Recommendation		
Ad-Service		

ugh <i>s</i>	support $\uparrow \Rightarrow$ "more abnormal traces	5"
h s	confidence $\uparrow \Rightarrow$ "less normal traces	, 77

	support	confidence
Frontend	3/3	
Product		
Recommendation		
Ad-Service		

ugh <i>s</i>	support $\uparrow \Rightarrow$ "more abnormal traces	5"
h s	confidence $\uparrow \Rightarrow$ "less normal traces	, 77

	support	confidence
Frontend	3/3	
Product		
Recommendation		
Ad-Service		

ugh <u>s</u>	support ↑	\Rightarrow	"more abnormal traces"
h s	confidence	1	\Rightarrow "less normal traces"

	support	confidence
Frontend	3/3	3/4
Product		
Recommendation		
Ad-Service		

ugh <u>s</u>	support $\uparrow \Rightarrow$ "more abnormal traces"
rough s	confidence $\uparrow \Rightarrow$ "less normal traces"

	support	confidence
Frontend	3/3	3/4
Product	3/3	3/3
Recommendation	3/3	3/4
Ad-Service	1/3	1/2

We need to detect abnormal traces

We need to detect abnormal traces

We need to detect abnormal traces

 S_2 S_1

We need to detect abnormal traces

 S_1 S_2

resource exhaustion

We need to detect abnormal traces

We need to detect abnormal traces

response time ↑ accept all new connections

We need to detect abnormal traces

response time ↑ accept all new connections

response rate \downarrow

refuse new connections after the connection pool is exhausted

We need to detect abnormal traces

response time ↑ accept all new connections

response rate \downarrow

refuse new connections after the connection pool is exhausted

We need to detect abnormal traces

Only some features are related to the concerned fault, but there could be also anomalies in other irrelevant features

We need to detect abnormal traces

Only some features are related to the concerned fault, but there could be also anomalies in other irrelevant features

We need to detect abnormal traces

Only some features are related to the concerned fault, but there could be also anomalies in other irrelevant features

The number of anomalies with respect to useful features and irrelevant features are different

The number of anomalies with respect to useful features and irrelevant features are different

Highlight 1: We select useful features by testing whether the distribution of abnormal and normal invocations with respect to a feature changes after the fault happens

Core Idea 1. Multi-Feature Anomaly Detection

CPU usage	Before	After
Normal	99%	90%
Abnormal	1%	10%

The number of anomalies with respect to useful features and irrelevant features are different

Highlight 1: We select useful features by testing whether the distribution of abnormal and normal invocations with respect to a feature changes after the fault happens

Core Idea 1. Multi-Feature Anomaly Detection

Highlight 1: We select useful features by testing whether the distribution of abnormal and normal invocations with respect to a feature changes after the fault happens

CPU usage	Before	After
Normal	99%	90%
Abnormal	1%	10%

The number of anomalies with respect to useful features and irrelevant features are different

Throughput	Before	After
Normal	98%	98%
Abnormal	2%	2%

Highlight 2: (Extending Our Insight) We mine microservice sets with high supports and confidences rather than single microservices

Highlight 2: (Extending Our Insight) We mine microservice sets with high supports and confidences rather than single microservices

Highlight 2: (Extending Our Insight) We mine microservice sets with high supports and confidences rather than single microservices

Highlight 2: (Extending Our Insight) We mine **microservice sets** with high supports and confidences rather than **single microservices**

	support	confidence
Α	4/4	4/6
B	4/4	4/6
С	4/4	4/6
D	2/4	2/6

Highlight 2: (Extending Our Insight) We mine **microservice sets** with high supports and confidences rather than **single microservices**

Only the	ose trad
----------	----------

	support	confidence	
A	4/4	4/6	×
В	4/4	4/6	
С	4/4	4/6	
D	2/4	2/6	

Highlight 2: (Extending Our Insight) We mine microservice sets with high supports and confidences rather than single microservices

	support	confidence
{A, B}	4/4	4/6
{A, C}	2/4	2/4
{B, C}	2/4	2/2
{B, D}	2/4	2/2

Highlight 2: (Extending Our Insight) We mine microservice sets with high supports and confidences rather than single microservices

	support	confidence	
{A, B}	4/4	4/6	
{A, C}	2/4	2/4	
{B, C}	2/4	2/2	
{B, D}	2/4	2/2	

Our insight and the two key metrics are validated on the two systems

Our insight and the two key metrics are validated on the two systems

Target Output: A ordered list of microservices

Target Output: A ordered list of microservices

Target Output: A ordered list of microservices

Target Output: A ordered list of microservices

We have mined **{A, B}**, but which one should be further investigated by operators first?

Existing approaches presume the most upstream service is the root cause (page. 10)

С

Target Output: A ordered list of microservices

We have mined **{A, B}**, but which one should be further investigated by operators first?

Existing approaches presume the most upstream service is the root cause (page. 10)

С

Target Output: A ordered list of microservices

Existing approaches presume the most

We have mined **{A, B}**, but which one should be further investigated by operators first?

Existing approaches presume the most upstream service is the root cause (page. 10)

С

Highlight 2: For any service on an abnormal trace, if it has both in-coming and outcoming abnormal invocations, it is probably just propagating the anomaly.

by abs(#incoming abnormal invocations - #outcoming abnormal invocations)

see details in our paper

Dataset	Microservice Benchmark	Fault Type	Root-Cause Component Level	# Faults
A		Application Bug	Microservice	58
	Train-Ticket	CPU exhausted	Microservice	59
		Network Delay	Microservice	59
		Network Delay	Container	10
		Network Delay	API	14
B	Production System	5 types provided by the developers		22

ype	Root-Cause Component Level	# Faults
on Bug	Microservice	58
austed	Microservice	59
Delay	Microservice	59
Delay	Container	10
Delay	API	14
vided by		つつ
opers		

D	ataset	Microservice Benchmark	Fault Type	Root-Cause Component Level	# Faults
	A		Application Bug	Microservice	58
		Troip Tiolrot	CPU exhausted	Microservice	59
		TCE'12	Network Delay	Microservice	59
			Network Delay	Container	10
			Network Delay	API	14
	B	Production System	5 types provided by the developers		22

Dataset	Microservice Benchmark	Fault Type	Root-Cause Component Level	# Faults
		Application Bug	Microservice	58
A	Train Tialcat	CPU exhausted	Microservice	59
	TCE'121	Network Delay	Microservice	59
		Network Delay	Container	10
		Network Delay	API	14
B	Production System	5 types provided by the developers	У	22

Dataset	Microservice Benchmark	Fault Type	Root-Cause Component Level	# Faults
		Application Bug	Microservice	58
A	Troip Tiolrot	CPU exhausted	Microservice	59
	TCE'12	Network Delay	Microservice	59
		Network Delay	Container	10
		Network Delay	API	14
B	Production System	5 types provided by the developers		22

Dataset	Microservice Benchmark	Fault Type	Root-Cause Component Level	# Faults
A		Application Bug	Microservice	58
	Train-Ticket [TSE'18]	CPU exhausted	Microservice	59
		Network Delay	Microservice	59
		Network Delay	Container	10
		Network Delay	API	14
B	Production System	5 types provided by the developers		22

Dataset	Microservice Benchmark	Fault Type	Root-Cause Component Level	# Faults
		Application Bug	Microservice	58
A	Train-Ticket	CPU exhausted	Microservice	59
		Network Delay	Microservice	59
		Network Delay	Container	10
		Network Delay	API	14
B	Production System	5 types provided by the developers	_	22

Evaluation Overall Performance

Evaluation Overall Performance

TABLE III: Comparison of root cause localization on faults of different levels on

		-									
Subject	Algorithm	A@1	↑A@1	A@2	↑A@2	A@3	↑A@3	MAR	↑МАR	MFR	↑MFR
	TraceRCA	0.83		0.93		0.97		1.39		1.34	
	MicroScope	0.56	46.67%	0.62	49.49%	0.70	37.33%	3.64	61.77%	3.47	61.26%
Mionocomico	MEPFL (RF)	0.94	-12.00%	0.97	-4.82%	0.97	-0.64%	1.42	1.98%	1.38	2.71%
MICIOSEIVICE	Random Walk	0.51	61.96%	0.86	7.25%	0.94	3.00%	1.97	29.37%	1.91	29.51%
	RCSF	0.52	60.00%	0.86	7.64%	0.93	3.69%	1.68	16.98%	1.60	16.02%
	TraceAnomaly	0.49	70.85%	0.59	58.14%	0.63	53.11%	4.42	68.54%	4.34	69.13%
	TraceRCA	0.80		0.80		0.80		3.80	0%	3.80	
	MicroScope	0.20	300.00%	0.40	100.00%	0.40	100.00%	7.20	47.22%	7.20	47.22%
Containan	MEPFL (RF)	0.80	0.00%	0.80	0.00%	1.00	-20.00%	1.40	-171.43%	1.40	-171.43%
Container	Random Walk	0.40	100.00%	0.60	33.33%	0.60	33.33%	8.40	54.76%	8.40	54.76%
	RCSF	0.40	100.00%	0.60	33.33%	0.60	33.33%	3.60	-5.56%	3.60	-5.56%
	TraceAnomaly	0.20	300.00%	0.30	166.67%	0.30	166.67%	7.10	46.48%	7.10	46.48%
	TraceRCA	0.83		0.83		0.83		1.75		1.75	
	MicroScope	0.58	42.86%	0.67	64.29%	0.92	-9.09%	2.00	12.50%	2.00	12.50%
A DI	MEPFL (RF)	0.83	0.00%	1.00	-16.67%	1.00	-16.67%	1.17	-50.00%	1.17	-50.00%
AFI	Random Walk	0.58	42.86%	0.75	11.11%	0.64	29.63%	2.33	25.00%	2.33	25.00%
	RCSF	0.42	100.00%	0.58	42.86%	0.67	25.00%	2.58	32.26%	2.58	32.26%
	TraceAnomaly	0.21	287.33%	0.36	132.40%	0.50	66.00%	5.86	70.12%	5.86	70.12%

TABLE IV: Comparison of root cause localization on multi-root-cause faults of \mathcal{A}

Subject	Algorithm	A@1	↑A@1	A@2	↑A@2	A@3	↑A@3	MAR	↑MAR	MFR	↑MFR
	TraceRCA	0.45		0.82		0.95		1.77		1.09	
multi-	MicroScope	0.27	66.67%	0.27	200.00%	0.41	133.33%	5.18	65.79%	2.73	60.00%
	MEPFL (RF)	0.45	0.00%	0.95	-14.29%	0.95	0.00%	1.64	-8.33%	1.09	0.00%
root-cause	Random Walk	0.41	11.11%	0.64	28.57%	0.82	16.67%	2.27	22.00%	1.36	20.00%
cases on A	RCSF	0.23	100.00%	0.50	63.64%	0.73	31.25%	2.82	37.10%	1.73	36.84%
	TraceAnomaly	0.50	-10.00%	0.73	12.75%	0.82	16.11%	2.50	29.20%	1.00	-9.00%

Λ	
$\mathbf{\Lambda}$	

Evaluation Overall Performance

TABLE III: Comparison of root cause localization on faults of different levels on

Subject	Algorithm	A@1	↑A@1	A@2	↑ A@2	A@3	↑A@3	MAR	↑MAR	MFR	↑MFR	
	TraceRCA	0.83		0.93		0.97		1.39		1.34		
	MicroScope	0.56	46.67%	0.62	49.49%	0.70	37.33%	3.64	61.77%	3.47	61.26%	
Microservice	MEPFL (RF)	0.94	-12.00%	0.97	-4.82%	0.97	-0.64%	1.42	1.98%	1.38	2.71%	
	Random Walk	0.51	61.96%	0.86	7.25%	0.94	3.00%	1.97	29.37%	1.91	29.51%	
	RCSF	0.52	60.00%	0.86	7.64%	0.93	3.69%	1.68	16.98%	1.60	16.02%	
	TraceAnomaly	0.49	70.85%	0.59	58.14%	0.63	53.11%	4.42	68.54%	4.34	69.13%	
	TraceRCA	0.80		0.80		0.80		3.80	0%	3.80		
	MicroScope	0.20	300.00%	0.40	100.00%	0.40	100.00%	7.20	47.22%	7.20	47.22%	
Container	MEPFL (RF)	0.80	0.00%	0.80	0.00%	1.00	-20.00%	1.40	-171.43%	1.40	-171.43%	
Container	Random Walk	0.40	100.00%	0.60	33.33%	0.60	33.33%	8.40	54.76%	8.40	54.76%	TraceRCA outperforms unsupervised base
	RCSF	0.40	100.00%	0.60	33.33%	0.60	33.33%	3.60	-5.56%	3.60	-5.56%	nucerier europenenne uneuperviced suce
	TraceAnomaly	0.20	300.00%	0.30	166.67%	0.30	166.67%	7.10	46.48%	7.10	46.48%	and parform as well as auparvised approx
	TraceRCA	0.83		0.83		0.83		1.75		1.75		and perform as well as supervised approa
	MicroScope	0.58	42.86%	0.67	64.29%	0.92	-9.09%	2.00	12.50%	2.00	12.50%	
Δ	MEPFL (RF)	0.83	0.00%	1.00	-16.67%	1.00	-16.67%	1.17	-50.00%	1.17	-50.00%	under different situations
	Random Walk	0.58	42.86%	0.75	11.11%	0.64	29.63%	2.33	25.00%	2.33	25.00%	
	RCSF	0.42	100.00%	0.58	42.86%	0.67	25.00%	2.58	32.26%	2.58	32.26%	
	TraceAnomaly	0.21	287.33%	0.36	132.40%	0.50	66.00%	5.86	70.12%	5.86	70.12%	

TABLE IV: Comparison of root cause localization on multi-root-cause faults of \mathcal{A}

Subject	Algorithm	A@1	↑A@1	A@2	↑A@2	A@3	↑A@3	MAR	↑MAR	MFR	↑MFR
	TraceRCA	0.45		0.82		0.95		1.77		1.09	
multi- root-cause cases on \mathcal{A}	MicroScope	0.27	66.67%	0.27	200.00%	0.41	133.33%	5.18	65.79%	2.73	60.00%
	MEPFL (RF)	0.45	0.00%	0.95	-14.29%	0.95	0.00%	1.64	-8.33%	1.09	0.00%
	Random Walk	0.41	11.11%	0.64	28.57%	0.82	16.67%	2.27	22.00%	1.36	20.00%
	RCSF	0.23	100.00%	0.50	63.64%	0.73	31.25%	2.82	37.10%	1.73	36.84%
	TraceAnomaly	0.50	-10.00%	0.73	12.75%	0.82	16.11%	2.50	29.20%	1.00	-9.00%

Λ	
$\boldsymbol{\mathcal{A}}$	

TraceRCA handles 10,000 traces per second per core.

24

Fig. 14: Efficiency improvement and performance degradation of *TraceRCA* with trace sampling.

TraceRCA handles 10,000 traces per second per core.

Fig. 13: Comparison of efficiency

Fig. 14: Efficiency improvement and performance degradation of *TraceRCA* with trace sampling.

TraceRCA handles 10,000 traces per second per core.

The running time of TraceRCA is linear to #traces.

Fig. 13: Comparison of efficiency

Fig. 14: Efficiency improvement and performance degradation of *TraceRCA* with trace sampling.

TraceRCA handles 10,000 traces per second per core.

The running time of TraceRCA is linear to #traces.

TraceRCA achieves relative good performance with only 1/10 sampled traces.

Motivation: Trace-based root-cause service localization; our insight and two key metrics

Motivation: Trace-based root-cause service localization; our insight and two key metrics

Solution: TraceRCA, containing trace anomaly detection, microservice set mining, suspicious microservice ranking

Motivation: Trace-based root-cause service localization; our insight and two key metrics

Solution: TraceRCA, containing trace anomaly detection, microservice set mining, suspicious microservice ranking

Evaluation: Experiments based on an open-source benchmark and a production system

