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Root-Cause Service Localization

’ ‘ ' ' @ ‘ Many related services also behave abnormally due

to the dependency among services
Different services are developed and maintained by
different teams
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When a fault happens, we need to localize the root-
% % % cause service at first before the corresponding
@Mﬂ @m @Mn team’s further investigation
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Challenges in Microservice Systems
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3. Various types and huge volumes of monitoring data
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Our insight utilizes the statistical information
based on both normal and abnormal traces
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Datasets
Microservice Root-Cause
Dataset Benchmark Fault Type Component Level # Faults
Application Bug Microservice 58
Train-Ticket CPU exhausted Microservice 59
A rain- | IeKe Network Delay Microservice 59
[TSE’18] _
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Network Delay APl 14
Production 5 types provided by
B - 22
System the developers

1. There are 11 faults contains more than root causes.
2.0ur dataset is now public at https://github.com/netmanaiops/tracerca
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TABLE III: Comparison of root cause localization on faults of different levels on A

Subject Algorithm A@1 TA@l A@2 TA@2 A@3 TA@3 MAR  {MAR MFR TMFR

TraceRCA 0.83 — 093 — 097 —  1.39 —  1.34 —

MicroScope 056  46.67% 0.62  49.49% 070  37.33% 3.64 61.77%  3.47 61.26%

Microservice MEPFL (RE) 094 -12.00%  0.97 -4.82%  0.97 -0.64%  1.42 1.98% 138 2.71%

Random Walk  0.51 61.96%  0.86 7.25%  0.94 3.00% 1.97 2937% 191 29.51%

RCSF 0.52 60.00% 0.86 7.64% 0.93 3.69% 1.68 16.98% 1.60 16.02 %

TraceAnomaly  0.49 70.85%  0.59 58.14%  0.63 53.11%  4.42 68.54% 4.34 69.13%

TraceRCA 0.80 — 0.80 — 080 — 3380 0% 3.80 —

MicroScope 0.20 300.00% 0.40 100.00% 0.40 100.00%  7.20 47.22% 7.20 47.22 %

Container MEPFL (RF)  0.80 0.00%  0.80 0.00% 1.00  -20.00% 140 -17143% 140 -171.43%

Random Walk  0.40 100.00%  0.60 33.33% 0.60 33.33%  8.40 54.76%  8.40 54.76 %

RCSF 040  100.00% 0.60  3333% 060  3333% 3.60 -5.56%  3.60 -5.56%

TraceAnomaly  0.20 300.00%  0.30 166.67%  0.30 166.67% 7.10 46.48% 7.10 46.48 %

TraceRCA 0.83 —  0.83 —  0.83 — 175 — 175 —

MicroScope 0.58 42.86%  0.67 64.29% 0.92 -9.09%  2.00 12.50% 2.00 12.50%

AP MEPFL (RF)  0.83 0.00% 1.00  -1667% 1.00  -16.67% 1.17 -50.00% 1.17  -50.00%

Random Walk  0.58  42.86%  0.75 11.11% 0.64  29.63%  2.33 25.00% 2.33 25.00%

RCSF 0.42 100.00%  0.58 42.86% 0.67 25.00%  2.58 32.26%  2.58 32.26 %

TraceAnomaly 021  287.33% 036  132.40% 0.50  66.00% 5.86 70.12%  5.86 70.12%

TABLE IV: Comparison of root cause localization on multi-root-cause faults of A

Subject Algorithm A@] TA@1 A@2 TA@2 A@3 TtA@3 MAR tMAR MFR TTMFR
TraceRCA 0.45 — 0.82 — 0.95 — 177 — 1.09 —
multi- MicroScope 0.27 66.67% 0.27 200.00% 0.41 133.33%  5.18 65.79% 2.73 60.00 %
root_canse MEPFL (RF) 0.45 0.00%  0.95 -14.29%  0.95 0.00% 1.64 -8.33% 1.09 0.00%
cases on A Random Walk  0.41 11.11% 0.64 2857%  0.82 16.67%  2.27 22.00% 1.36 20.00%
RCSF 0.23 100.00% 0.50 63.64% (.73 31.25%  2.82 3710% 1.73 36.84 %
TraceAnomaly  0.50 -10.00% 0.73 12.75%  0.82 16.11%  2.50 29.20% 1.00 -9.00%
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TraceAnomaly  0.20 300.00%  0.30 166.67%  0.30 166.67% 7.10 46.48% 7.10 46.48 %

TraceRCA 0.83 —  0.83 — 083 — 175 — 175 —

MicroScope 0.58 42.86% 0.67 64.29% 0.92 -9.09%  2.00 12.50%  2.00 12.50%

AP MEPFL (RF)  0.83 0.00% 100  -16.67% 100  -16.67% 1.17 -50.00% 1.17  -50.00%

Random Walk  0.58  42.86% 0.75 11.11% 0.64  29.63% 2.33 25.00% 2.33 25.00%

RCSF 0.42 100.00%  0.58 42.86% 0.67 25.00%  2.58 32.26%  2.58 32.26 %

TraceAnomaly 021  287.33% 036  13240% 0.50  66.00% 5.86 70.12%  5.86 70.12%

TABLE IV: Comparison of root cause localization on multi-root-cause faults of A

Subject Algorithm A@] TA@]1 A@2 TA@2 A@3 TtA@3 MAR tMAR  MFR TMFR
TraceRCA 0.45 — 0.82 — 095 — 177 — 1.09 —
multi- MicroScope 0.27 66.67% 0.27 200.00% 0.41 133.33%  5.18 65.79% 2.73 60.00 %
root_canse MEPFL (RF) 0.45 0.00%  0.95 -14.29%  0.95 0.00% 1.64 -8.33% 1.09 0.00%
cases on A Random Walk  0.41 11.11% 0.64 28.57%  0.82 16.67%  2.27 22.00% 1.36 20.00%
RCSF 0.23 100.00% 0.50 63.64% 0.73 31.25%  2.82 3710% 1.73 36.84 %
TraceAnomaly  0.50 -10.00% 0.73 12.75%  0.82 16.11%  2.50 29.20% 1.00 -9.00%
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TraceRCA outperforms unsupervised baselines
and perform as well as supervised approaches

under different situations
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