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Abstract

With the booming of online service systems, anomaly de-
tection on multivariate time series, such as a combination
of CPU utilization, average response time, and requests per
second, is important for system reliability. Although a col-
lection of learning-based approaches have been designed for
this purpose, our empirical study shows that these approaches
suffer from long initialization time for sufficient training data.
In this paper, we introduce the Compressed Sensing technique
to multivariate time series anomaly detection for rapid ini-
tialization. To build a jump-starting anomaly detector, we
propose an approach named JumpStarter. Based on domain-
specific insights, we design a shape-based clustering algo-
rithm as well as an outlier-resistant sampling algorithm for
JumpStarter. With real-world multivariate time series datasets
collected from two Internet companies, our results show that
JumpStarter achieves an average F1 score of 94.12%, signifi-
cantly outperforming the state-of-the-art anomaly detection
algorithms, with a much shorter initialization time of twenty
minutes. We have applied JumpStarter in online service sys-
tems and gained useful lessons in real-world scenarios.

1 Introduction

In recent years, online service systems based on cloud com-
puting, e.g., online office, e-commerce, are becoming increas-
ingly popular. For example, the number of daily meeting par-
ticipants of the video conferencing app Zoom jumps to over
300 million before May 2020 [31]. Due to the complexity and
the large scale of online service systems, automatic anomaly
detection is of ultimate importance to guarantee their relia-
bility [36]. To closely monitor the quality of service, online
service providers or cloud computing platforms, such as Mi-
crosoft and AWS, continuously collect the monitoring data
of each performance metric (e.g., CPU utilization, average
response time, and requests per second) at equally spaced
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intervals [3, 33]. The monitoring data of a metric form a uni-
variate time series, and thus that of a service system, which
has multiple metrics, constitutes a multivariate time series.

Traditional multivariate time series anomaly detection ap-
proaches are typically based on detecting univariate time
series [15, 32, 36]. However, operators are concerned about
the status of the overall service rather than that of a specific
metric [28]. Because the univariate time series anomaly de-
tection cannot capture the complex temporal relationships
among different univariate time series [28], they tend to
cause alert storms [5]. To address this problem, recent works
[12,22–24,28,34] use deep learning techniques to build learn-
ing models for multivariate time series anomaly detection. For
example, the state-of-the-art approach, OmniAnomaly [28],
utilizes a stochastic recurrent neural network model to learn
the temporal relationships of multivariate time series.

Learning-based approaches are hardly applicable in prac-
tice because they usually require a long period of training
data. Online service systems are deployed or changed very
frequently to deploy new features, fix bugs [35], etc. In large
service providers, such as Google [3] and Baidu [35], it is
reported that thousands of software changes are deployed ev-
ery day. Due to these software changes, the data distribution
of multivariate time series can change dramatically, which
is called the expected concept drift [17]. For example, when
operators conduct a software change to deploy a service to
more instances, the metric “Requests Per Second” in each
instance will drop significantly as shown in Figure 1. This is
expected to operators, and they do not need to roll back the
software change. After the change, this will cause a lot of
false alarms or false positives, since it invalidates the learning-
based anomaly detection models trained based on the data
before the change [17]. It is because the common assumption
in deep learning that the data distribution must remain the
same across training and test set [10] is violated. Therefore,
these learning-based approaches have to be retrained. This
retraining process, however, can consume tens to hundreds of
days [28, 32] before reaching steady state.

To quantitatively measure how long it takes to “initialize”
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Figure 1: The multivariate time series (selected as examples)
of an online service system before and after a software change.
The red segment is labeled anomalous.

an anomaly detection model for multivariate time series, we
first define initialization time, as the time lag between when
the model is launched and when it becomes well trained. We
then conduct an empirical study based on the datasets col-
lected from real-world online service systems. Through this
study, we summarize two key findings: (1) The average ini-
tialization time of existing learning-based approaches ranges
from ten days to one hundred days. (2) The state-of-the-art ap-
proaches (i.e., OmniAnomaly [28] and MSCRED [34]) do not
achieve a satisfactory performance when they are improved
with incremental retraining [15]. When the period of training
data is short, the accuracy of these approaches are low. There-
fore, we aim to design a robust anomaly detection approach
for multivariate time series with small initialization time.

In this paper, we propose a novel multivariate time se-
ries anomaly detection approach, called JumpStarter, that is
based on Compressed Sensing (CS). CS is a signal processing
technique where high-energy components in a matrix (mul-
tivariate time series) are sparse (i.e., have few high-energy
components) [4]. Hence, the difference between the origi-
nal and the reconstructed multivariate time series, comprised
only of low-energy components, should resemble white noise,
when the original time series contains no anomaly. The intu-
ition behind using CS for anomaly detection is that anomalies
in multivariate time series, such as jitters, sudden drops or
surges, usually manifest themselves as strong signals that
contain high-energy components, which would differ signif-
icantly from white noise [16]. Hence we can tell whether a
time series contains anomalies by checking whether the differ-
ence between the original and the reconstructed multivariate
time series in a sliding window [32] looks very differently
from white noise. Since CS only uses a fixed-length window
to “train” an anomaly detection model, the initialization time
of JumpStarter depends on the window size, which is typi-
cally twenty minutes. It is much shorter than the initialization
time of learning-based approaches. We now provide an in-
tuitive explanation of why CS-based JumpStarter requires

much less training data than those learning-based approaches.
A learning-based approach has to explicitly learn the “be-
havior" (probability distribution) of a normal multivariate
time series in order to detect anomalies. In comparison, in
JumpStarter the reconstructed multivariate time series of im-
plicitly inherits this normal behavior without involving any
explicit learning. Due to the complexity of real-world scenar-
ios, however, it is challenging to apply CS to implement a
jump-starting multivariate time series anomaly detection in
the following situations:

Large number of time series. In large-scale online ser-
vice systems, tens of time series are monitored for each sys-
tem forming a multivariate time series [17]. Typically, it is
time-consuming for CS to reconstruct a large number of time
series, because it needs to solve a convex optimization prob-
lem whose time complexity depends on the number of time
series. To tackle this challenge, we cluster these time series
based on shape. Since the time series in the same group ex-
hibit a similar shape, they can be reconstructed efficiently
without losing temporal relationships [14].

Sampling from random anomalous segments in time
series. CS typically uses a Gaussian distribution to sample
from the original time series to guarantee Restricted Isome-
try Property (RIP). Nevertheless, it may inevitably generate
reconstructed time series sampled from some long-lasting
anomalous segments. The anomaly detection model based
on these reconstructed time series can cause some false posi-
tives and/or false negatives. Therefore, we design an outlier-
resistant sampling algorithm to sample from normal time
series segments rather than anomalous ones.

We conducted a comprehensive study to evaluate the per-
formance of JumpStarter based on three datasets from 28 and
30 large-scale industrial online service systems of two Inter-
net companies, respectively. The first dataset, from company
A , is a 5-week-long time-series open dataset. The other two
datasets are from a top-tier global content platform company
B , which provides service for more than 800 million users
around the world. These datasets contain 7-week-long time
series. Our experimental results illustrate that JumpStarter
outperforms both the state-of-the-art learning-based multi-
variate time series anomaly detection approaches (i.e., Omni-
Anomaly [28] and MSCRED [34]) clustering-based LESINN
[20]. Also, JumpStarter is more suitable than RRCF [11]
used in AWS CloudWatch. The average F1 score of Jump-
Starter is 94.12%, while those of the other four approaches
are 86.51%, 59.64%, 82.5%, and 36.01% respectively. Also,
our results demonstrate that the main components in Jump-
Starter (i.e., shape-based clustering and outlier-resistant sam-
pling) significantly contribute to the overall performance of
JumpStarter. JumpStarter achieves good accuracy with an
initialization time as short as twenty minutes, open sourced at
https://github.com/NetManAIOps/JumpStarter. We ap-
plied JumpStarter to B and it indeed achieved a good anomaly
detection performance in practice. We also present two cases



Figure 2: The initialization time of an anomaly detector

and gain lessons for both academia and industry.

2 Background and Empirical Study

2.1 Background

Multivariate time series. In an online service system, oper-
ators continuously collect monitoring data of multiple met-
rics or extract numerical values from logs [37]. A service
level metric (e.g., average response time), or a machine level
metric (e.g., CPU utilization, memory utilization), is usually
collected by equal interval, forming a univariate time series.
Any univariate time series alone, however, cannot capture all
types of system’s performance issues [28]. Because a sys-
tem typically has a collection of monitoring metrics, it can
be denoted as a multivariate time series [17], which includes
diverse types of univariate time series and thus track various
aspects of performance issues. With the scale and complexity
of the system increasing, it is becoming more difficult to man-
ually inspect system anomalies. Therefore, multivariate time
series anomaly detection is of great importance [28, 34]. We
denote a multivariate time series at time t as Xt = [x1

t ,x2
t ...,

xn
t ]

T, where xi
t = [xi

t−w+1,x
i
t−w+2, ...,x

i
t ] is the univariate time

series of the ith monitoring metric, n is the number of metrics,
and w is the observation window size. We apply the sliding
window, which is a common practice in time series anomaly
detection [32, 35], to construct Xt .

Anomaly detection. Anomaly detection using multivariate
time series [28] is important in online service systems. In
previous anomaly detection works [12, 22–24, 28, 34], op-
erators have a rough consensus on the following points: 1)
A multivariate time series anomaly is a data point or a data
segment that significantly deviates from operators’ expec-
tations of normal behavior, and it can be visually observed
(e.g., in Figure 1). 2) An anomaly indicates something might
have gone wrong, although further investigation may still be
needed for verification. 3) Anomaly detection is often used
as a failure discovery mechanism. Formally, we define mul-
tivariate time series anomaly detection: for time t, given its
multivariate time series Xt , we determine whether an anomaly
occurs (e.g., jitter, sudden drop or surge), which is denoted by
yt = 1 if yes and yt = 0 otherwise.

Table 1: Comparison of the initialization time (days) on three
datasets (S1∼S3) used in their works. * denotes univariate
time series anomaly detector, which can be used for multivari-
ate time series by combining it with majority vote [28].

Approach S1 S2 S3 Avg.

MSCRED [34] 7 13 - 10
OmniAnomaly [28] 17 15 17 16.3
LSTM-NDT [12] 69 36 - 52.5
* Opprentice [15] 56 56 56 56

* Donut [32] 102 110 99 103.6

2.2 An Empirical Study on Initialization Time

Anomaly detection initialization time. With a new ser-
vice being deployed or updated, operators usually launch an
anomaly detection approach for it. The initialization time of
the anomaly detection approach is the time lag between when
it is launched (t1) and when it becomes effective (t2), as shown
in Figure 2. Many prior approaches, e.g., [12, 22, 23, 28, 34],
use a learning-based workflow to detect anomalies. Typically,
they are periodically trained based on historical data [15]. The
initialization time of these approaches, e.g., tens of days, is rel-
atively long, because they usually need to offer a lot of histori-
cal data for training. In Table 1 we list the suggested initializa-
tion time of five learning-based anomaly detection approaches
on different datasets. For example, OmniAnomaly [28] used
two robot system datasets (denoted as S1, S2) and a server
dataset (S3, which also used in our experiment as D1). From
the last column of Table 1, we can see that the average initial-
ization time of these approaches ranges from 10 days to more
than one hundred days, indicating that it is unsuitable to use
these approaches for newly deployed or updated systems.
Incremental retraining. Considering the long initialization
time of learning-based anomaly detection approaches, one
may suggest incremental retaining, i.e., gradually (incremen-
tally) adding a short-period (say one day) of data to train these
approaches. In this way, we can improve the performance of
these approaches step by step. Adding one day’s data each
time is because these learning-based approaches need at least
thousands of data points to converge [32]. We then try to apply
incremental retraining to the state-of-the-art multivariate time
series anomaly detection approaches, i.e., OmniAnomaly [28]
and MECRED [34]. The dataset is the same as what is used
in OmniAnomaly (see §4.1 for more details). We gradually
enlarge the training set from one day’s data to 13 days’ data
(i.e., the largest training set of this dataset), and the testing set
remains as the data collected after the 13th day.

This sounds ideal, but anomaly detection using incremen-
tal retraining cannot ensure satisfactory performance. Fig-
ure 3 shows the average F1 score and training time of Om-
niAnomaly and MECRED as the period of training data in-
creases (day by day), respectively. From Figure 3(a), we can
see that the average F1 scores of both OmniAnomaly and ME-
CRED increase along with more training data being used, and
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Figure 3: Performance of OmniAnomaly [28] and MECRED
[34] by incremental retraining.

they do not converge until 10 days’ data is used for training.
One primary reason is that these learning-based approaches
have to explicitly learn the probability distribution of a mul-
tivariate time series from a large amount of training data to
capture its normal behavior. Figure 3(b) shows that the train-
ing time of both OmniAnomaly and MECRED increases lin-
early with the size of training data. When the training dataset
contains 10 days of data, it takes about 35 minutes to train
OmniAnomaly or MECRED. Therefore, these approaches are
not suitable for newly deployed or updated systems due to
their non-robustness and considerable training cost.

3 JumpStarter Approach

3.1 Key Idea and Challenges
To deal with the aforementioned limitations of learning-based
approaches, we propose to use Compressed Sensing (CS) [9]
for multivariate time series anomaly detection. CS is a signal
processing technique for reconstructing a signal from a se-
ries of sampling measurements [8]. The signal reconstructed
from these samples preserves the high-energy components of
the original signal with high probability under some mild as-
sumptions [8]. As explained earlier, we can detect anomalies
in a multivariate time series by checking whether the recon-
structed signal differs from the original signal (multivariate
time series) by more than white noise. Since CS does not
require any training, the initialization time of the CS-based
anomaly detection for Xt is the window size w.
Two Strawman Solutions using CS. Intuitively, we can ap-
ply CS to reconstruct Xt in two ways: treating Xt as a whole
n×w matrix, or as n separate univariate time series. In the
former way, we randomly sample some data from Xt and
then reconstruct it following [26] (more details to be provided
in §3.5). Figure 4(a) shows the reconstructed multivariate
time series. As shaded in Figure 4(a), there is a significant
difference between the original (blue lines) and the recon-
structed multivariate time series (dashed brown lines) when an
anomaly occurs. This is a desired behavior (of CS). However,
the first two reconstructed time series fluctuate frequently all
the time, whereas both original time series are stable except
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Figure 4: Examples of CS-based anomaly detection when
the multivariate time series is reconstructed as a whole n×w
matrix (a) or as n separate univariate time series (b). The red-
shaded regions denote the anomalies labeled by operators.

during the anomaly window (shaded). This is an undesired
behavior that indicates inaccurate reconstruction. In the lat-
ter way, as shown in Figure 4(b), the difference between the
original and reconstructed univariate time series manifests as
white noise in normal segments and as large fluctuations in
anomalous ones, which accurately captures the anomalies for
each univariate time series. However, it cannot capture the
complex relationships among multivariate time series [28].
Moreover, due to the challenge of a large number of univariate
time series, the separate reconstruction is more computation-
ally expensive.
Problem of Random Gaussian Sampling. The first step of
our CS approach is to sample from a multivariate time series.
The sampled matrix needs to guarantee Restricted Isometry
Property (RIP) [4] so that it can reconstruct the original mul-
tivariate time series properly. It has been shown that random
Gaussian sampling satisfies RIP [9]. Random sampling, how-
ever, samples some data points also from anomalous segments.
In this case, the reconstructed multivariate time series will not
be significantly different from the original one when a system
becomes anomalous. Thus it inevitably degrades the anomaly
detection performance.

3.2 Overview of JumpStarter
The JumpStarter approach, which consists of both offline and
online processing procedures, is shown in Figure 5. To tackle
the challenge of a large number of time series, we adopt a
shape-based clustering method to group the univariate time
series of a multivariate time series into several groups in the
offline processing. The sliding window technique is applied
to multivariate time series in the online anomaly detection.
For each group of univariate time series, we propose a novel
outlier-resistant sampling algorithm to solve the challenge
introduced by sampling from anomalous segments, and apply
compressed sensing to reconstruct them. After that, we con-
catenate these reconstructed time series, measure the differ-



Figure 5: JumpStarter approach consists of offline processing
and online processing, of which output is whether anomaly
or not.

ence between the original and the reconstructed multivariate
time series as an anomaly score, and detect anomalies using
EVT threshold against the anomaly score.

3.3 Shape-Based Clustering
While each strawman solutions has its advantages and draw-
backs, we find a way to combine them to get the better of
both. Specifically, we split Xt into several clusters of time
series and reconstruct each cluster. The question is, how this
splitting should be done. Recall the first strawman solution
cannot deal with time series of different shapes. Hence, we
choose to split Xt based on their shape. This solution can
achieve both high accuracy and high efficiency.

We adopt shape-based distance [21], a cross correlation-
based method, to measure the distance between two univari-
ate time series. It can achieve high computational efficiency
when dealing with high-dimensional time series. Different
from ROCKA [14], we use hierarchical clustering, which
is efficient and need not manually configure the number of
clusters, as the base clustering algorithm. Table 2 illustrates
an example of clustering results. The nine univariate time
series of a multivariate time series are grouped into three
clusters. In each cluster, the time series are correlated to the
physical meaning of their corresponding monitoring metrics,
demonstrating that our method is intuitive.

We cluster univariate time series for every multivariate
time series based on one-day worth of data, because most
univariate time series are roughly periodical with a 24-hour
cycle that coincides with customers’ diurnal usage pattern
[17]. Moreover, we observe that the shape of a univariate time
series usually remains unchanged after a software change [38].
As a result, it has no need to re-cluster after a software change.

3.4 Outlier-Resistant Sampling

Insight. To solve the problem of random Gaussian sampling,
we gain insight from the investigation of a large number

Table 2: An example of clustering the multivariate time series
into three clusters. Each univariate time series is named based
on its corresponding monitoring metric.

# Cluster of Univariate Time Series Explanation

1 rx-pkts-eth0, rx-bytes-eth0 # received packets/bytes
2 tcp-insegs, tcp-outsegs, tx-pkts-eth0 TCP network metrics
3 cpu-ctxt, cpu-user, cpu-system, cpu-nice CPU utilization metrics

of online service systems and the discussion with operators.
Anomalies rarely occur in real-world scenarios [15, 32]. That
is, anomalies are usually outliers in an observation (sliding)
window [16]. If an anomaly lasts longer than the window size,
it can be captured from the beginning since it is significantly
different from the normal pattern. Therefore, we can adopt
a simple outlier detection algorithm to obtain the sampling
confidence of each data point. The higher a data point is likely
to be an outlier, the lower its sampling confidence is, and the
less likely it will be selected. Based on this insight, we design
an outlier-resistant sampling algorithm, i.e., one-dimensional
random Gaussian, which not only guarantees RIP but also
resists outliers.
Algorithm. We describe the design of outlier-resistant sam-
pling in Algorithm 1 and show the main steps in Figure 6.
After the shape-based clustering, for each cluster, we can ob-
tain an w∗ k matrix, which is constituted of k univariate time
series. We also configure a sampling ratio, θ, as the input of
the algorithm. To begin with, from Line 1 to 4 of Algorithm 1,
we initialize a zero m∗w matrix T, where m = dw∗θe. φ is
initialized as a vector containing m random Gaussian sample
timestamps ranging from 0 to w. Motivated by [20], we adopt
a light-weight algorithm LESINN to calculate the sampling
confidence vector sc, which determines the sampling confi-
dence of each timestamp. Nevertheless, as demonstrated in
§4.2, LESINN itself cannot effectively handle multivariate
time series anomaly detection because it cannot capture the
complex temporal relationships among these time series. Fig-
ure 6(a) shows one example of the original time series (blue
line) with a window size of 20 and its sampling confidence
(orange dotted line) for each timestamp.

Then, we perform value sampling (Line 5 to 14). We first
normalize sc to make its values sum up to one, and create
R equal-width steps. Each step is mapped to a timestamp
t based on the normalized sc (Line 8). For each step, we
randomly sample a value from (0,1), and compare it with the
probability of a similar version of Gaussian distribution:

Pi(step) = ρ · exp(− (φi− step)2

2σ2 ) (1)

Note that ρ is a parameter representing the max sampling
points (height in Figure 6(b)). For more theoretical details,
please refer to the work of Barranca, et al. [2]. σ is the stan-
dard deviation of the distribution. If the random value is
smaller than P(step), we add one to T[i][t]. Note that after
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Figure 6: A toy example of outlier-resistant sampling. In (a), to make it simple, we just plot one time series whose values are
normalized, and it has an anomalous segment ranging from (timestamp) 9 to 12. We set m = 2 in this example. In (b), the small
black dot is steps, and the purple and green marks are “selected” steps. (c) shows two sampled data points.

all the iterations, the randomly sampled timestamps in φ may
not be “shot” by t. Therefore, we add one to T[i][φi] for each
sampled timestamp i. Figure 6(b) shows a concrete example
of sampling values. In this figure, there are R = 42 steps (the
small points in the bottom), and the normalized sc (the orange
box) is shown in its original temporal order, which represents
a timestamp.

Finally, we normalize each column of T (Line 15 to 18).
The sampling matrix B is the dot product of T and Xc

t . As
shown in Figure 6(c), the purple dot and green cross are the
sampled data points in B. We can see that our algorithm is
resistant to anomalous data points because the sampled green
cross point represents “normal pattern” even though its corre-
sponding point in the original time series is anomalous. Note
that although we apply LESINN to calculate the sampling
confidence vector, which is of great importance to the resis-
tant outlier, our algorithm is also robust to other sampling
confidence measurements beyond LESINN.

3.5 Compressed Sensing Reconstruction

Here we provide a quick introduction to the signal reconstruc-
tion step in compressed sensing, using this anomaly detection
problem as the context. The objective of compressed sensing
reconstruction is to “solve” [4]:

AX′t = B (2)

where X′t is the multivariate time series to be reconstructed
from B that is sampled from the original Xt . We put quotations
around the word “solve”, since this equation is not solvable
in the usual sense, as it is under-determined. Rather, ideally
we would like to compute the sparest (i.e., containing the
smallest number of nonzero components) such X′t . However,
this computation, known as L0 minimization, is NP-complete.
A classic CS result is that, when Xt is sparse, minimizing the
L1 of X′t (while satisfying Equation 2) results in the same
solution as the L0 minimization with high probability [4].

Algorithm 1: Outlier-Resistant Sampling
Input: Xc

t (w∗ k): k univariate time series of Xt in cluster c,
θ: Initial sampling ratio

Output: Sampling matrix B(m∗ k)
1 m← dw∗θe
2 T(m∗w)← 0
3 φ(m∗1)← randomly sampling m timestamps from [0,w]
4 sc(w∗1)← SamplingConfidence (Xw)
5 sc← sc

∑
w−1
j=0 sc j

6 step = 0
7 while step≤ 1 do
8 t← arg min

0≤a<w
step < ∑

a
j=0 sc( j)

9 foreach i ∈ [0,m) do
10 if random(0, 1) < Pi(step) then
11 T[i][t]← T[i][t] + 1
12 step← step+1/R
13 foreach i ∈ [0,m) do
14 T[i][φi]← T[i][φi]+1
15 foreach i ∈ [0,m) do
16 T[i]← T[i]/∑

w
j=0 T[i][ j])

17 B← T ·Xc
t

18 return B

The sampling matrix A is calculated as:

A = φ(D⊗DT) (3)

where D is the inverse discrete cosine transform [13] of the
original time series Xc

t , and ⊗ is the Kronecker product [29].
To solve Equation 2 (by L1 minimization), we adopt

CVXPY [7], an efficient convex optimization tool set, to cal-
culate the L1 minimum [8]. CVXPY may return no result in
some edge cases because the equation is non-homogeneous.
Therefore, we gradually increase θ by 0.1 to avoid such a
scenario. We set θ = 0.2 based on the evaluation experiments
as shown in §4.4. Reconstructing each cluster of univariate
time series in a multivariate time series is much more efficient
than reconstructing the whole multivariate time series (§4.4).



Anomaly score. We first obtain the reconstructed time se-
ries for each cluster of univariate time series to form an
original multivariate time series. We then concatenate the
reconstructed univariate time series to form a reconstructed
multivariate time series X′t . Note that the original and re-
constructed multivariate time series have the same order of
univariate time series. Intuitively, an anomaly score is needed
to measure the similarity between the original and the re-
constructed multivariate time series. We measure the differ-
ences of the n time series between Xt and X′t using euclidean
distance [15]: di

t = |xi
t − x′it |, where x′it is the reconstructed

univariate time series of xi
t . To avoid an anomaly score be-

ing dominated by a single significant spike in a univariate
time series, we calculate st using the harmonic mean of di,
i.e., st = n/(∑n

i=1 di
t
−1
).

Choosing threshold. To properly generate anomaly alerts,
we need to accurately choose a threshold to determine whether
an anomaly score is high enough to trigger an alert. A
static threshold does not work well since the data distribu-
tion changes over time. Because an extreme value of the
anomaly score generated by JumpStarter usually represents
an anomaly, we adopt the widely used Extreme Value The-
ory (EVT) [27] to tailor the anomaly threshold automatically.
EVT is a statistical theory aiming to find the law of extreme
values, and it does not assume data distribution. It has been
demonstrated to accurately choose the threshold for anomaly
detection methods [17,28]. Note that EVT for choosing thresh-
old is not the main contribution of our work.

4 Experiments

In the study, we address the following research questions:
RQ1: How well does JumpStarter perform in multivariate
time series anomaly detection?
RQ2: Does each component contribute to JumpStarter?
RQ3: How do the major parameters of JumpStarter influence
its performance?

4.1 Experimental Design
4.1.1 Datasets

We conduct experiments on three datasets, including one open
dataset1 – D1 from a large Internet company A , and two
datasets (D2, D3) collected from a top-tier global content
platform B providing services for over 800 million daily ac-
tive (over 1 billion cumulative) users across all of its content
platforms. Specifically, D1 is a five-week-long dataset col-
lected from 28 online service systems, and it is sampled once
per minute. These 58 online service systems are located in
different servers, which provide services such as searching,
ranking, and data processing, etc. D2 and D3 are two datasets

1https://github.com/NetManAIOps/OmniAnomaly

Table 3: The detailed information of the datasets (# Train-
ing/Test Points = # Online Services * n * # Days * collected
data points per day)

Dataset # Online n # Training Points # Test Points Anomaly
Services (# Days) (# Days) ratio

D1 28 38 19,835,340 (13) 19,835,760 (13) 4.16
D2 30 19 3,283,200 (20) 4,104,000 (25) 5.25
D3 30 19 3,283,200 (20) 4,104,000 (25) 20.26

collected from 30 online service systems over two different
seven-week-long periods, respectively. They are both sampled
once every five minutes.

This work studies metrics for a single service hosted on
one or multiple machines. These metrics are equally impor-
tant and have no hierarchy among them. The ground truth of
anomalies in all the three datasets are manually labeled by
operators based on performance issues and failure tickets. The
point-wise anomaly rates ( # anomaly data points

# total data points ) are diverse in
these datasets. For example, the anomaly rate of D3 (20.26%)
is much higher than those of D1 (4.16%) and D2 (5.25%),
mainly because D3 contains a severe outage that lasted a long
time. Table 3 lists the detailed information of each dataset,
including the number of metrics (n), the scale of the training
and test sets, and the anomalies ratio. For each service, the
monitoring metrics constitute its multivariate time series. The
numbers of metrics monitored in D1, D2 and D3 are 38, 19
and 19, respectively. Monitoring tens of metrics is a typical
setting for online service systems.

4.1.2 Compared Approaches

We compare JumpStarter with two learning-based unsuper-
vised approaches for multivariate time series anomaly detec-
tion, namely, MSCRED and OmniAnomaly. We also compare
it with two other anomaly detection algorithms: robust ran-
dom cut forest (RRCF) and least similar nearest neighbors
(LESINN). Since it has been demonstrated [28] that univari-
ate time series anomaly detection approaches are not suitable
for multivariate time series, we do not compare JumpStarter
with the baseline methods designed for univariate time series.

RRCF [11]. RRCF is the base anomaly detection algorithm
used in AWS CloudWatch, which improves the robustness of
original random cut forest probabilistic data structure when
detecting anomalies in streaming data. It is open-sourced2.

LESINN [20]. LESINN is a time series outlier detection
algorithm. For each data point, it calculates the least similar
nearest neighbors of it in a time window. If the data point
does not have any similar nearest neighbor, it is an outlier.

MSCRED [34]. MSCRED first encodes the temporal corre-
lations among the time series using an attention-based Con-
vLSTM network, and then reconstructs time series to detect
anomalies using a convolutional decoder.

2https://github.com/aws/random-cut-forest-by-aws
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Figure 7: The average F1 score for the three datasets D1, D2, and D3 as a function of the training dataset size in segments.

OmniAnomaly [28]. OmniAnomaly is an unsupervised deep
learning based approach. It glues GRU and VAE to model the
temporal dependence and stochasticity of time series.

4.1.3 Implementation

JumpStarter is implemented using Python 3.7. For the hyper-
parameters, ρ = 0.1 and σ = 0.5 are used in all settings. The
detection window size w = 20 and the sampling rate σ = 0.2
are used in §4.4. Our study is conducted on a Dell R420 server
with 16 * Intel Xeon E5-2420 CPUs and a 64GB memory.

4.1.4 Evaluation Metrics

The output of a multivariate time series anomaly detection
approach for a specific timestamp is either anomalous or not.
We use True Positive (TP), True Negative (TN), False Positive
(FP), and False Negative (FN) to label an anomaly detection
result according to the ground truth. A TP is an anomaly both
confirmed by operators and detected by the approach. If an
anomaly is labeled by operators but not detected by the ap-
proach, we label the item as an FN. An FP is an “anomaly"
that is detected by the approach but is actually normal. An
item is TN, if neither the operators nor the approach considers
it an anomaly. We use three metrics for evaluating the perfor-
mance of JumpStarter and related approaches: Precision = TP
/ (TP + FP), Recall = TP / (TP + FN), F1 score = 2 * Precision
* Recall / (Precision + Recall). The accounting of the three
metrics is point-adjusted. That is, if any point in an anomalous
segment in the ground truth is detected, we consider the entire
segment, or all anomalous points therein, as detected correctly.
Point-adjusted metrics are widely adopted in anomaly detec-
tion [28, 32], since operators care more about anomalies in a
contiguous segment than point-wise anomalies.

4.2 RQ1: Performance of JumpStarter
We evaluate two aspects of the performance of anomaly de-
tection each using a different partitioning of training and test
sets. First, we conduct service anomaly detection in the on-
line mode and evaluate it as an online experiment. In addition,
we collect ten software changes from B for evaluating the
performance of these approaches in reacting to a software

change. Second, in the offline experiment, we adopt the same
experiment settings as used in previous work.

Online experiment. We evenly split the training set of D1
into 13 segments (1-day-long data per segment and each has
a similar number of anomalies), and D2 and D3 each into 5
segments (4-day-long data per segment and each has a similar
number of anomalies). D2 and D3 have a longer segment be-
cause they have fewer anomalies per day. For each dataset, the
test set remains the same for a fair comparison (see Table 3).
Figure 7 shows the average F1 score of JumpStarter and four
baseline methods as the amount (scale) of training data in-
creases from 1 segment to 13 consecutive segments for D1,
and to 5 consecutive segments for D2 and D3. As for Jump-
Starter, RRCF and LESINN, they conduct anomaly detection
without any training data. Therefore, their performance stays
the same when the scale of training data varies.

We can see that JumpStarter performs significantly better
than the four baseline approaches across all segments on all
the three datasets. RRCF is less accurate than the other ap-
proaches because it aims to detect the anomalous behavior
of a single data point, which is not suitable in our scenario
where the anomalous behavior of a time series segment is
studied. The F1 scores of learning-based approaches, namely
OmniAnomaly and MSCRED, increase as the scale of train-
ing set increases, and approach 90% and 60% respectively
toward the end. OmniAnomaly achieves higher accuracy than
LESINN when the amount of training data is sufficient. MS-
CRED does not perform well because it mainly focuses on the
inter-correlations rather than the overall performance of mul-
tivariate time series. For all approaches except RRCF, they
achieve the best performance on D3 because the anomalous
patterns in D3 are easier to capture than those in the other
two datasets. The outperformance of JumpStarter will be ex-
plained next, when we will perform experiments concerning
software changes.

Anomaly detection after software changes. Recall that soft-
ware changes occur frequently in online service systems. We
evaluate the performance of the five approaches during ten
software changes deployed on two service systems. We do
so using the average false positive rate (FPR), defined as FP /
(TN + FP), as the metric. FPR measures the burden of false
alarms, which is an appropriate metric here since anomalies



Table 4: Average Precision (P), Recall (R), and F1 Score (F) of JumpStarter and related approaches

Method D1 D2 D3 Avg.
P R F P R F P R F P R F

RRCF [11] 40.26 54.45 39.54 44.06 39.02 30.10 28.33 75.33 38.38 37.55 56.27 36.01
LESINN [20] 75.49 77.40 76.43 77.50 87.15 82.04 87.02 90.95 88.94 80.00 85.17 82.50

MSCRED [34] 46.19 56.16 50.69 46.91 58.26 51.97 68.21 86.47 76.26 53.77 66.96 59.64
OmniAnomaly [28] 78.19 95.03 85.79 77.24 85.84 81.31 89.59 95.02 92.23 81.67 91.96 86.51

JumpStarter 90.35 94.31 92.29 92.05 94.51 93.26 94.14 99.60 96.79 92.18 96.14 94.12
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Figure 8: The average False Positive Rate (FPR) during ten
software changes. We plot the software changes starting at
the seventh minute. The top figure is a constituent univariate
time series representing Requests Per Second (RPS).

rarely occur in a short period.
Figure 8 shows the average FPR of the five approaches dur-

ing the 10 software changes, all of which occur at the seventh
minute in the figure. Some constituent univariate times series
of the multivariate time series witness level shifts [17]. We
observe that all five approaches produce false positives after
these software changes. However, JumpStarter suffers from
high FPR only for about five minutes, after which its FPR
becomes quite low. RRCF and LESINN detect anomalies by
calculating outliers in a relatively long period, and hence their
FPRs do not start to decrease until 17 minutes after software
changes. Both OmniAnomaly and MECRED perform well
only when the joint distribution of multivariate time series
remains unchanged. Consequently, they produce false alarms
for a long period after software changes.

Offline experiment. Now we study the potential performance
in the offline setting using best F1 score. Since we need a
long time to train models of learning-based anomaly detec-
tion approaches, we split the dataset into training and test set
following the settings in [28]. Then, we calculate the best F1
score of each approach by grid searching their parameters and
anomaly thresholds. Table 4 lists the average best F1 scores
of JumpStarter and baseline approaches on each dataset, as
well as their corresponding Precision and Recall. The aver-
age best F1 score of JumpStarter across the three datasets

Table 5: The average initialization time (IT) and detection
time (DT) of JumpStarter and baseline approaches

Approach RRCF LESINN MSCRED Omni- JumpStarter
Anomaly

IT (min) 20 20 >86400 >86400 20
DT (ms) 41.24 118.63 122.82 191.86 127.13

is 94.12%, significantly higher than those of the other four
approaches, which are 86.51%, 59.64%, 82.50%, and 36.01%,
respectively. This is because D2 contains a large quantity of
noises, and none of the other four approaches is robust to such
noises. In contrast, JumpStarter reconstructs an anomaly-free
time series with outlier-resistant sampling, making it robust
to such noises in each dataset.

Efficiency. Table 5 lists the average initialization time and de-
tection time of the five approaches. The initialization time of
JumpStarter, as demonstrated in §4.4, is only twenty minutes,
much shorter than those of other approaches. Although RRCF
and LESINN achieves the same initialization time as Jump-
Starter, they suffer from low accuracy as shown in Table 4.
The detection time of JumpStarter for each multivariate time
series is 127.13 ms, similar to that of the other approaches.
In JumpStarter, the shape-based clustering step takes at most
500ms on all three datasets.

4.3 RQ2: Contributions of Components

In this section, we evaluate the relative contributions of two
component techniques in JumpStarter, namely shape-based
clustering and outlier-resistant sampling, to its outperfor-
mance. To this end, we reconfigure JumpStarter to create
three variants. The first two variants concern JumpStarter
without shape-based clustering. The first variant, called w/o
Clustering: As a Whole, is to treat all time series as a whole,
whereas the second variant, called w/o Clustering: Separately,
is to sample and reconstruct time series separately. The third
variant, called w/o Sampling, is JumpStarter without outlier-
resistant sampling.

Figure 9 shows the comparison results of JumpStarter and
its three variants on three datasets in terms of average best F1
scores. JumpStarter performs better than all its three variants.
Specifically, JumpStarter improves the average best F1 score
of w/o Clustering: As a Whole, w/o Clustering: Separately,
and w/o Sampling by 5.81% ∼ 14.90%, 2.58% ∼ 9.96%, and
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Figure 9: The average F1 score of JumpStarter and its three
variants on three datasets

4.69% ∼ 18.34%, respectively. The results demonstrate that
both shape-based clustering and outlier-resistant sampling
contribute significantly to a more accurate JumpStarter. In
addition, w/o Clustering: Separately outperforms w/o Clus-
tering: As a Whole, because separate reconstruction of time
series more accurately captures anomalous patterns than re-
construction as a whole, as shown in Figure 4.

To compare the computational efficiency of different meth-
ods, we compare their detection times. For each multivariate
time series, the detection time of w/o Clustering: As a Whole,
w/o Clustering: Separately, w/o Sampling, and JumpStarter is
7891.45 ms, 2056.56 ms, 121.75 ms, 127.13 ms, respectively.
This demonstrates that the shape-based clustering technique
significantly improves the computational efficiency of Jump-
Starter. In conclusion, the combination of the shape-based
clustering and outlier-resistant sampling facilitates an accu-
rate and efficient JumpStarter.

4.4 RQ3: Parameter Sensitivity

Recall that our goal is to shorten the initialization time of
anomaly detection. The initialization time of JumpStarter
depends on the detection window size w. We empirically in-
crease the window size from ten minutes to sixty minutes.
Figure 10(a) shows how the average best F1 score and point-
wise detection time of JumpStarter changes as the window
size increases. The accuracy of JumpStarter increases be-
fore the window size reaches 20 minutes, after which it be-
comes stable, whereas the detection time increases gradually.
Therefore, the window size is preset as twenty minutes, which
makes JumpStarter both accurate and efficient. Note that for
those anomalies lasting longer than 20 minutes, JumpStarter
is still able to detect them because it can easily capture these
anomalies when they start.

Another important parameter of JumpStarter is σ, the initial
sampling rate. Figure 10(b) shows how the average best F1
score and point-wise detection time of JumpStarter changes
as σ increases. Similarly, when we increase the sampling rate
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Figure 10: The average F1 score (green line with error bounds)
and average point-wise detection time (dotted blue line) of
JumpStarter under different parameters.

from 0.1 to 0.2, the F1 score of JumpStarter increases, and it
becomes stable after that. The point-wise detection time of
JumpStarter decreases with an increase in the sampling rate
from 0.1 to 0.2, and it then increases after that. That is because,
if the sampling rate is too low (e.g., 0.1), reconstruction is
likely to fail, which in turn increases the number of retries.
Therefore, we set the sampling rate to 0.2.

5 Deployment and Discussion

5.1 Success Story

Case study. We applied JumpStarter into 30 online service
systems in a top-tier global content platform B , which has
more than 800 million users around the world. Operators can
register a multivariate time series monitor task by ingesting
these time series from influxDB and Kafka. From the monitor-
ing dashboard of these services, we can see the multivariate
time series of service monitoring. Figure 11 shows some time
series of two technical outages.

Case I: Long service response time caused by network
issue. As illustrated in Figure 11(a), we observed jitters in
time series tcpext_listendrops and tcp_attemptfails.
In the meantime, time series such as cpu_user and load_one
drastically dropped. JumpStarter successfully pinpointed this
anomaly and generated an alert. After diagnosing the anomaly,
operators found that it was a network issue of a database node.

Case II: Service hang-up due to software change. As illus-
trated in Figure 11(b), time series tcp_retrans_percentage
witnessed significant jitters and cpu_idle plunged to zero.
After that, cpu_sintr, cpu_ctxt, rx_byptes_eth0 and



tx_pkts_eth0 increased significantly. JumpStarter detected
and reported this anomaly to operators. Operators conducted
software changes and a configuration error occurred in the
new version. Thanks to JumpStarter, operators found out this
error in time and quickly rolled out the software change.

Help with root cause diagnosis. JumpStarter can help with
root cause diagnosis in two aspects. First, hundreds of multi-
variate time series need to be monitored. After shape-based
clustering in JumpStarter, operators can focus on limited
time series groups with a similar shape of variations. Sec-
ond, JumpStarter respectively calculates the distance between
the original univariate time series and the reconstructed ones.
Therefore, it can output a rank list of time series’ contributions
to the overall anomaly. For example, tcpext_listendrops
in Figure 11(a) is detected as the most anomalous time series
in this figure. It can explicitly indicate the issue caused by the
network component.

5.2 Lessons Learned

Different services may prefer precision and recall differ-
ently. With collaboration with different services teams, we
found that their preferences on precision and recall are diverse.
For example, recall weighs more than precision does in a user
interactive core service since operators do not want to miss
any potential anomaly that can negatively impact the user
experience. In addition, precision is more valuable in a data
analysis job because operators would better detect anomalies
precisely than to obtain a lot of false alerts. Therefore, the
F1 score alone is not a suitable metric for all services. Going
forward, we can provide operators with an interface to choose
their precision and recall preference level. Specifically, Jump-
Starter can accordingly set the anomaly score using different
parameters of the EVT algorithm to guide the sensitivity of
detection output. We also observe that severe faults (examples
in Figure 11) rarely happen in online services but performance
issues do happen a lot. We aim to reduce mean time to restore
for severe faults in future work.

Alert system is not just anomaly detection. Our Jump-
Starter for robust and quickly initialized anomaly detection is
not the end of the story. Building an intelligent alert system
based on anomaly detection results is also a complex task in
both engineering and academic aspect. Some anomalies may
have no or little signal in the monitored time series. Therefore,
JumpStarter may miss these anomalies. For this scenario, we
aim to collect more types of monitoring data, e.g., logs, traces,
to build a more comprehensive anomaly detection model. We
believe JumpStarter can be easily extended for localizing
the anomalous metrics, however, there is a significant gap
between anomalous metrics and the root causes of anoma-
lies [16,25]. An intelligent alert system needs to merge similar
anomalous cases, pinpoint more sharply to the root causes
of anomalies. It also had better learn the priority of differ-

ent anomalous cases [5]. Besides, adeptly integrating domain
knowledge into the alert system is also of great importance
since the system needs feedback from operators. Therefore,
apart from the anomaly detection approach JumpStarter, we
will improve the alert system behind it.

5.3 Threats to Validity

Anomaly labeling. In this work, we use one open dataset
from OmniAnomaly and two datasets from real-world ser-
vices. All the labels in these datasets are provided by operators
based on performance issues and incident reports. Manually
labeling anomaly points in the timeline may introduce noise
(false positives or negatives) because no clear boundaries lie
in anomalies and normal patterns. However, domain operators
with profound experience suggest the noise in those labels
accounts for a very small portion. Besides, operators design
evaluation metrics that utilize contiguous anomaly segments
instead of point-wise anomalies. Adopting these widely used
metrics [17, 28, 32], we can also eliminate labeling noises.

Subject systems. In our experiments, we use an open dataset
D1 from a large Internet company. We also collect datasets
D2 and D3 from large-scale real-world online service systems.
The granularity of the time series of these datasets is one and
five minutes, respectively. The efficacy of our algorithm is not
influenced by the granularity. With fine-grained granularity,
say one second, we believe our algorithm can still work with-
out additional efforts. Since JumpStarter’s versatility has been
demonstrated using three datasets collected from 58 different
services, it should be easy for JumpStarter to work with a new
dataset. Admittedly, the number of subject services is still
limited. We will experiment with JumpStarter on a variety of
online service systems in the future.

6 Related work

Multivariate time series anomaly detection. Existing ap-
proaches include: (1) Traditional statistic method: time series
analysis [6], RRCF [11] and clustering-based LESINN [20]
do not need training data thus the initialization time is short.
However, they all suffer from parameter tuning [15] and be-
ing not robust in real practice [17]. (2) Supervised learning
based method: Opprentice [15] is an ensemble supervised
approach. It needs operators to label anomalies for a long
period to train a model. (3) Unsupervised learning based
method: LSTM-NDT [12], LSTM-VAE [22], MSCRED [34]
and OmniAnomaly [28] build anomaly detection models by
learning the anomaly patterns using a large span of histor-
ical data. These methods suffer long initialization time for
training the model and are less accurate when facing software
change [17]. Different from them, we take advantage of com-
pressed sensing, which is a quick initiated signal processing
based approach without any training data.
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Figure 11: Two anomaly cases with selected time series (service performance metrics, e.g., average response time, error rate, are
hidden for the confidential reason). Time (X-axis) is shown in days. The alert is generated by JumpStarter.

Signal processing based anomaly detection. Since time se-
ries of online service systems fluctuate and not always peri-
odic [35]. Other signal processing methods are not suitable in
this scenario. For example, Fourier transform can only cap-
ture period, the global information of time series [38]. For
local information, wavelet analysis can capture local patterns
but it is very time consuming [1]. Kalman filtering [18] and
PCA [19] are not suitable for variation time series of online
service systems [15]. Different from them, our work adopts
compressed sensing as the base technique and our experimen-
tal results have demonstrated the effectiveness of JumpStarter
in multivariate time series anomaly detection scenario.

Compressed sensing. As body of theory regarding signal re-
covery, CS has been widely used in image reconstruction [2],
genome-wide association study [30], and many other applica-
tions [9]. JumpStarter is parallel to them, as it detects anomaly
adopting the idea of CS reconstruction.

7 Conclusion

In recent years, online service systems are increasingly de-
ployed on cloud computing platforms. To adapt to frequent
changes in online service systems, multivariate time series
anomaly detection approaches should be robust and quickly
initialized. In this paper, we propose a jump-starting multivari-
ate time series anomaly detection approach with a relatively
short initialization time of only twenty minutes. Based on the
compressed sensing technique, JumpStarter adopts a shape-
based clustering strategy to deal with the large number of

univariate time series in a multivariate time series, and outlier-
resistant sampling to avoid sampling anomalous values. Ex-
periments conducted on 58 real-world online service systems
of two Internet companies demonstrate the effectiveness of
JumpStarter, achieving an average F1 score of 94.12% and
outperforming four state-of-the-art approaches. Besides, our
results also endorse the contributions of the main components.
In particular, we have applied JumpStarter in a real-world
online service system and gained some useful lessons.
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