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ABSTRACT
Anomaly detection is a crucial task for monitoring various status
(i.e., metrics) of entities (e.g., manufacturing systems and Internet
services), which are often characterized by multivariate time series
(MTS). In practice, it’s important to precisely detect the anomalies,
as well as to interpret the detected anomalies through localizing
a group of most anomalous metrics, to further assist the failure
troubleshooting. In this paper, we propose InterFusion, an unsu-
pervised method that simultaneously models the inter-metric and
temporal dependency for MTS. Its core idea is to model the normal
patterns inside MTS data through hierarchical Variational Auto-
Encoder with two stochastic latent variables, each of which learns
low-dimensional inter-metric or temporal embeddings. Further-
more, we propose an MCMC-based method to obtain reasonable
embeddings and reconstructions at anomalous parts for MTS anom-
aly interpretation. Our evaluation experiments are conducted on
four real-world datasets from different industrial domains (three
existing and one newly published dataset collected through our
pilot deployment of InterFusion). InterFusion achieves an average
anomaly detection F1-Score higher than 0.94 and anomaly inter-
pretation performance of 0.87, significantly outperforming recent
state-of-the-art MTS anomaly detection methods.
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1 INTRODUCTION
Anomaly detection has been widely studied in different domains [5]
(e.g., images, time series, graphs, etc.), aiming at finding data in-
stances that significantly deviate from the other observations in the
same dataset [11]. In this paper, we mainly focus on the anomaly
detection for multivariate time series data (MTS for short hereafter),
which has been an active research topic in the SIGKDD community
these years [2, 14, 30], and is widely used to monitor the status
(i.e., metrics) of entities (e.g., systems, services) in the application
domain of manufacturing industry and Information Technology
(IT) systems [14, 19, 20, 22, 30, 34].

Conventionally, domain experts manually establish static thresh-
olds for each monitored metric [2] (e.g., the volume of transactions,
CPU utilization) for anomaly detection in industry. However, this
process can be labor-intensive for a large number of metrics as the
scale and the complexity of data grow exponentially over the years.
To tackle this problem, many anomaly detection algorithms have
been developed for univariate time series [23, 33], where the anom-
alies are detected mainly based on one specific metric. However,
for a complex real-world system, the monitoring metrics are often
interacted with each other due to their intrinsic connections (e.g.,
a group of monitoring metrics for an application server, related
sensors in a water treatment plant). Thus, single univariate time
series cannotwell represent the system’s overall status and naively
combining the anomaly detection results of several univariate time
series has performed poorly for MTS anomaly detection [30].

Formally, MTS consists of a group of univariate time series (i.e.,
metric), each of which describes a different part or attribute of a com-
plex entity. Thus, it not only has intra-metric temporal dependency
(called temporal dependency for short, which characterizes the
inherent patterns like periodicity within each metric), but also
has inter-metric dependency within an entity (called intermetric
dependency for short, which represents the linear or nonlinear
relationships among all metrics of an entity at each time period).
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Figure 1: Illustration of two types of anomalies (anomalous
segments highlighted in pink). In a temporal anomaly, sev-
eral metrics deviate from their corresponding temporal pat-
terns. In an inter-metric anomaly, the relationships among
several metrics violate the historical patterns.

Violating these dependencies would cause different anomalies in
MTS, as shown in Fig. 1. To help the system operators monitor the
MTS metrics of complex systems, the algorithm should character-
ize the MTS anomalies from two perspectives. i.e., it should detect
when the anomalies happen in a system and interpret the detected
anomalies through localizing a group of most anomalous metrics.

Recent methods for MTS anomaly detection can be roughly di-
vided into two classes: prediction-based and reconstruction-based.
Prediction-based methods [13, 14] try to predict the normal values
of metrics based on historical data and detect anomalies according
to prediction error, but some metrics might be inherently unpre-
dictable in complex real-world systems [20]. Reconstruction-based
methods learn low-dimensional representations and reconstruct
the “normal patterns” of data and detect anomalies according to
reconstruction error. However, existing such methods either use
simple deterministic approaches [20, 34], thus are weak in modeling
the intermetric dependency, or are poor at modeling the temporal de-
pendency due to the lack of low-dimensional representations along
time dimension [2, 19, 22, 30]. As a result, these methods can have
difficulties in detecting intermetric or temporal anomalies.

Based on the observation above, for MTS anomaly detection,
our core idea is to explicitly learn the low-dimensional intermetric
and temporal representations with properly designed structures to
better capture the normal patterns of MTS. However, this idea faces
two main challenges. First, independently learning the intermetric
and temporal embeddings can make the feature fusion hard, while
using a traditional hierarchical method for images [31] would make
the learned intermetric embeddings inconsistent with the temporal
order forMTS data. Second, the risk of overfitting to potential anom-
alies in real-world data brings extra challenges to structure design.
To address the first challenge, our method InterFusion proposes to
use: (1) a hierarchical Variational Auto-Encoder (HVAE) with two
stochastic latent variables that learns the low-dimensional intermet-
ric and temporal embeddings, respectively; and (2) two-view em-
bedding in which we compress the MTS along time dimension and
metric dimension of the data space by making use of an auxiliary
“reconstructed input”. To address the second challenge, InterFusion
proposes a prefiltering strategy where some temporal anomalies
are filtered out through an embedding-reconstruction procedure to
enable learning flexible and accurate intermetric embeddings.

To make detection results useful to users, it is important to in-
terpret each detected anomaly through localization, i.e., to

find a group of most anomalous metrics for each MTS anomaly
(i.e., entity anomaly) [30, 34]. However, the anomalies can affect
the estimation of reconstructions at all dimensions (anomalous
or not) [15]. Thus using raw reconstruction scores at anomalous
points as an interpretation [30, 34] may cause misinterpretations.
To obtain accurate interpretation, it’s important to obtain reason-
able embeddings and reconstructions at anomalous points, which
reflect the normal patterns they should have followed. Thus, Inter-
Fusion proposes an MCMC-based anomaly interpretation method,
which iteratively applies MCMC imputation [25] to address the
above problem. Moreover, instead of using naive point-wise met-
ric [30], we define a new segment-wise metric to better evaluate
the anomaly interpretation accuracy for MTS, which is consistent
with the preference of the real-world users (e.g., system operators).

The contributions of this paper are summarised as follows:
• To the best of our knowledge, our proposed InterFusion is the
first MTS anomaly detection algorithm that employs HVAE
with explicit low-dimensional inter-metric and temporal em-
beddings to jointly learn robust MTS representations. We
use three designs, hierarchical structure, two-view embed-
ding and prefiltering strategy, to tackle the challenges for
learning normal MTS patterns for anomaly detection.
• We propose a novel anomaly interpretation method based
on MCMC imputation multivariate time series, and define
a new segment-wise metric consistent with the system op-
erators’ preferences to quantitatively evaluate the anomaly
interpretation results for real-world data.
• We evaluate InterFusion on four real-world MTS datasets
from different industrial domains (three existing and one
newly published dataset collected through our pilot deploy-
ment of InterFusion). InterFusion achieves an overall best
F1-Score higher than 0.94 and overall interpretation accu-
racy of 0.87, outperforming the state-of-the-art methods by
at least 0.04 and 0.07, respectively. Ablation studies further
demonstrate the effectiveness of our proposed structure de-
sign choices forMTS anomaly detection. Our feasibility study
with application servers’ monitoring data from a large Inter-
net company showed that InterFusion meets the company’s
requirements on MTS anomaly detection and interpretation.
We publish our code and data (link in Appendix C.1) for
better reproducibility.

2 PRELIMINARIES
2.1 Problem Statement
MTS contains successive observations with equal-spaced sampling,
as shown in Fig. 2. x ∈ RM×N , where M and N are the number
of metrics and data length of the MTS, respectively. Take a Web
application server as an example, the metrics might include CPU uti-
lization, memory utilization, TCP active opens, etc., and the whole
entity (i.e., MTS) characterizes the server status. MTS data often
has temporal dependency within each metric (e.g., the periodicity of
CPU utilization), as well as intermetric dependency among different
metrics (e.g., the positive correlation among packets transmitted
per second, TCP active opens, and CPU utilization). To take the
contextual information into consideration, we use a sliding win-
dow of lengthW over the MTS to calculate the anomaly results.
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Figure 2: Data formulation of MTS x ∈ RM×N . Each row xi is
called a metric, while each column xt is an observation.

The goal of MTS anomaly detection is to determine whether an
observation xt is an anomaly or not, while anomaly interpretation
is achieved through localization, i.e., finding a group of metrics
{x1, . . . , xi }, i ≤ M that are most anomalous for each detected
entity anomaly xt .

2.2 Anomaly Types
For the monitoring metrics (MTS) in a complex system, anomalies
can be roughly classified into three types: temporal anomalies, inter-
metric anomalies, and intermetric-temporal anomalies. Fig. 1 shows
the first two types. In a temporal anomaly, several metrics signifi-
cantly deviate from their corresponding historical normal patterns,
which often indicates a system-level failure or rebooting. In an
intermetric anomaly, most metrics roughly follow their correspond-
ing normal patterns, but the patterns of the linear or nonlinear
relationships among the metrics violate the historical patterns. For
example, in the right half of Fig. 1, the historical pattern is that
metricsm3 andm4 positively correlate withm5,m6,m7, but this
pattern is violated in the second vertical strip. This often indicates
an anomalous behavior in some parts of the system, which caused
local fluctuations. In an intermetric-temporal anomaly, both inter-
metric and temporal dependencies are violated, thus most of them
are actually easier to be detected from either a temporal or metric
perspective. No matter severe or subtle, each type of anomalies can
indicate a potential problem in the system. Thus, precisely detecting
such MTS anomalies is urgently needed for system operators.

3 DESIGN OF INTERFUSION
3.1 Motivation and Overview of InterFusion
For MTS data in real-world systems, the key to precisely detect
and interpret anomalies is to find the normal patterns of MTS. As
discussed in Section 2.2, violating either intermetric or temporal de-
pendencies could cause anomalies (Fig. 1), which shows the impor-
tance of explicitly modeling both dependencies for characterizing the
normal patterns of MTS. However, previous works [2, 14, 19, 30, 34]
mainly model one of the dependencies (e.g., intermetric dependency,
through latent metric embedding), which could limit their capability
on learning normal MTS patterns and detecting anomalies, espe-
cially those violating the other kind of dependency (e.g., temporal
dependency, see Table 5). Moreover, most of them lack precise inter-
pretation for detected anomalies, which is also useful for users (e.g.,
to accelerate troubleshooting, to explain detection results to users).
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Figure 3: (a) Network architecture. Circles are stochastic
variables, diamonds are deterministic variables, rounded
rectangles are layers. (b) Overview Framework. Solid lines
are offline training, dashed lines are online detection.

The observations above motivate us to jointly learn both embed-
dings with novel structures in latent space, which enables learning
rich representations combing intermetric and temporal informa-
tion to model the normal patterns of MTS. Furthermore, to enhance
InterFusion’s applicability on real-world data, the detection method
should be robust to the potential anomalies in training data to avoid
overfitting to anomalies. A proper anomaly interpretation method
should be designed for detection phase to give richer information
about detected MTS anomalies for system operators to assist trou-
bleshooting. The overview framework is shown in Fig. 3(b).

3.2 Network Architecture
The core idea of InterFusion is to model the MTS using HVAE with
jointly trained hierarchical stochastic latent variables, each of which
explicitly learns low-dimensional intermetric or temporal embeddings.
We adopt the HVAE [28, 31] to jointly train the intermetric and
temporal latent variables through a hierarchical structure, while
proposing a two-view embedding for MTS data to derive such
latent variables characterizing the intermetric and temporal depen-
dencies. Moreover, we propose a prefiltering strategy to obtain
intermetric embeddings while being robust to potential anomalies
in training data. The network architecture is shown in Fig. 3(a).
Hierarchical structure. The generative model in Fig. 3(a) can
be factorized as: pθ (x, z1, z2) = pθ (x|z1, z2)pθ (z1 |z2)pθ (z2). The
stochastic latent variables, z1 and z2, are designed to learn the low-
dimensional intermetric and temporal embeddings, respectively.
We apply the hierarchical structure in HVAE to represent the high-
dimensional input x with hierarchies of low-dimensional z (i.e.,
z1 |z2 in InterFusion), making the intermetric embedding be aware
of the learned temporal information, rather than learning the latent
variables independently. This can ease the model training [32] to
fuse the learned embeddings and capture the “normal patterns” of
MTS in latent space.
Two-view embedding. To characterize the intermetric and tem-
poral dependencies in MTS, we propose a two-view embedding,
which compresses the MTS along time and metric dimensions of



the data space to obtain the intermetric and temporal embeddings,
by leveraging an auxiliary “reconstructed input” d. Specifically,
z2 = f (x1:W ) ∈ RM×W

′

, where f is several Conv1D [18] layers
applied along the time dimension of input window x to learn the
temporal embeddings z2.W

′

is the compressed window length.
d1:W = д(z2) ∈ RM×W , and д is the corresponding Deconv1D
layers applied on z2 to reconstruct the input. Intermetric embed-
dings z1 ∈ RM

′
×W is then derived along the metric dimension of

d with an SRNN-like [9] architecture. M
′

is the number of com-
pressed metric dimension. Our design is different from the tradi-
tional HVAEs [28, 31] for images, in which the authors use a larger
z2 to capture low-level features and a smaller z1 directly derived
from z2 to capture high-level information. Applying the traditional
HVAE on MTS anomaly detection would cause the learned time-
compressed temporal embedding z1:M2t at each time t to misalign
with the features at a specific timestamp. This is not suitable, as
z1 should encode the intermetric information (i.e., relationships
among all metrics) at each time t , but the learned embedding would
be inconsistent with the temporal order of MTS if we directly derive
a smaller z1 from the time-compressed z2. We argue that two-view
embedding can help InterFusion learn better intermetric embeddings
that are aware of the learned temporal information, while preserving
the time consistency inside intermetric embeddings.
Prefiltering strategy. A flexible intermetric embedding (which
is able to capture the complex intermetric dependencies) is often
needed to model the MTS. However, real-world raw MTS data
used for training often contain anomalies. Thus directly learning
a flexible embedding on the raw data may suffer from the risk of
overfitting to anomalous patterns [33] and degrade the detection
performance. Therefore, inspired by the scheduled sampling for
sequence prediction [3], we propose a prefiltering strategy to de-
rive the powerful intermetric embeddings z1. More specifically, z1
is derived from the “reconstructed input” d (rather than directly
from x), and d attempts to faithfully reconstruct the raw input x
while filtering out temporal anomalies in x through the embedding-
reconstruction procedure. d is pretrained with a VAE model to en-
sure its initial reconstruction capability at the beginning of training
InterFusion. In this way, we reduce the risk of the model overfitting to
potential anomalies, while preserving the flexibility of the intermetric
embeddings as well as considering the learned temporal information.

The three design choices above enable InterFusion to jointly learn
low-dimensional intermetric and temporal embeddings in the latent
space, which are then used for characterizing the normal patterns
of MTS data and detecting different types of anomalies.

Finally, as shown in Fig. 3(a), the variational posterior can be
factorized as: qϕ (z1, z2 |x) = qϕ (z1 |z2)qϕ (z2 |x). Specifically, to de-
duce powerful intermetric embeddings that are aware of temporal
information, an SRNN-like [9] architecture is adopted. That is, at
each time t , qϕ (z1t |z1t−1 , at = hϕa (at+1, dt )), where at is the deter-
ministic state derived by a backward-recurrent GRU network [7]
with d as its input, which is used to capture the future dependency
qϕ (z1t |dt+1:W ) in the input sequence, as suggested by [9]. A Real
NVP flow [8] is applied on Gaussian z1t to get a more powerful
representation. In the generative net, pθ (z1 |z2) is modeled by a
non-linear state space model [26] via pθ (z1t |z1t−1 , et ), similar to z1
in the variational net. Note that, the parameters of the Deconv1D

layers (to derive d and e) are shared between the generative net and
variational net to share knowledge about the current “reconstructed
input” and the learned temporal information to improve training.

3.3 Model Training and Inference
Training. The VAE-based model can be trained by optimizing the
ELBOL(x,θ ,ϕ) = Eqϕ (z |x)

[
logpθ (x|z)

]
−DKL

(
qϕ (z|x)| |pθ (z)

)
, us-

ing SGVB estimator [17], where DKL is the Kullback-Leibler diver-
gence. In InterFusion, we take the auxiliary deterministic variables
d, e into consideration, thus rewrite the training objective as:

L(x,θ ,ϕ) = Eqϕ (z1,z2,d |x)
[
logpθ (x|z1, z2, e)

]
− DKL

(
qϕ (z1, z2, d|x)| |pθ (z1, z2, e)

)
(1)

= Eqϕ
[
logpθ (x|z1, z2, e) + logpθ (z1, e|z2)

+ logpθ (z2) − logqϕ (z1, d|z2, x) − logqϕ (z2 |x)
]

(2)

Note that, d1:W is the deterministic “reconstructed input” derived
by applying DeconvNets on the time-compressed z2, as shown in
Fig. 3(a), thus d1:W ∼ qϕ (d1:W |z2, x) = qϕ (d1:W |z2) = δ (d1:W −
д(z2)), which follows a delta distribution. Similarly, pθ (e1:W |z2) =
δ (e1:W − д(z2)) also follows a delta distribution. We let the delta
distributions q(d1:W |z2) = p(e1:W |z2) through sharing parameters
of DeconvNets in the qnet and pnet, thus they can be canceled out
when calculating ELBO. According to the dependencies in Fig. 3(a),
we have: ∭

qϕ (z1, z2, d1:W |x)dz1dz2dd1:W

=

∬
qϕ (z1 |d1:W = д(z2))qϕ (z2 |x)dz1dz2 (3)

Thus the expectation with qϕ in Eq. (2) can be evaluated by taking
L (z1, z2) samples from qϕ (z1, z2 |x) (where z1 is sampled with a
sequential manner) and using Monte Carlo integration [10]. The
first, third and fifth terms in Eq. (2) are all diagonal Gaussians,
whose log probability can be calculated analytically. For the other
two terms, remark q(d1:W |z2) = p(e1:W |z2), we have:

logpθ (z1, e |z2) − logqϕ (z1, d |z2, x)

= logpθ (z11:W |e1:W ) − logqϕ (z11:W |d1:W ) (4)

=

W∑
t=1

[
logpθ (z1t |z1t−1, et ) − logqϕ (z1t |z1t−1, at = hϕa (at+1, dt ))

]
Moreover, a Real NVP transformation is applied on the poste-
rior to obtain a more powerful one through an invertible mapping
zK = f −1λ (z

0), and logqϕ (zK1t |z1t−1 , at ) = logqϕ (z01t |z1t−1 , at ) +

log
����det ( ∂fλ (zK1t )∂zK1t

) ����. det(∂ fλ(zK )/∂zK ) is the Jacobian determinant

of fλ . fλ is composed of K invertible mappings modeled with affine
coupling layers [8]. The final training objective can be obtained by
substituting it and Eq. (4) into Eq. (2), which can be optimized using
SGVB estimator and reparameterization trick [17].
Inference. During online detection, we use the reconstruction
probability as the anomaly score (i.e., Eqϕ (z1,z2 |x)[logpθ (x|z1, z2)]),
which has been widely used in anomaly detection literature [1, 30,
33]. We choose the sliding window (xt−W +1, . . . , xt ) as the input
for detecting anomaly at time t , and use the score for the last data
xt in the window as the anomaly score (following [14, 23, 30, 33]).



However, as discussed in [33], anomalies in test data may intro-
duce bias to the learned embeddings and affect the estimation of
reconstructions. Since we do not know whether a new coming data
xt is an anomaly or not, we assume it is an “anomaly” beforehand
and use MCMC imputation [25] to get a more reasonable recon-
struction. Specifically, MCMC imputation is proposed by [25] to
impute missing points in images. For an input x = (xo , xm ), xo is
the observed part and xm is the missing part. The latent embed-
ding z is sampled from qϕ (z|xo , xm ), and then the observation is
reconstructed given z to get the missing imputation x

′

m . (xo , xm ) is
then replaced by (xo , x

′

m ). Iterating the procedures above makes the
imputation x

′

m getting closer to its normal pattern, from the correct
marginal p(xm |xo ). During detection, we assume the last data xt
is an “anomaly” and regard it as xm , other points in the window
are xo . We iterate the imputation for sufficiently large S times to
eliminate the bias and obtain a more reasonable estimation of the
reconstructed x̄ = (xo , x

′

m ). The revised reconstruction probability
can be calculated by taking L(z1, z2) samples for Monte Carlo in-
tegration (Eq. (5)), where (z(l )1 , z

(l )
2 ) are sampled from qϕ (z1, z2 |x̄).

The anomaly score is negative revised reconstruction probability.
An observation with a higher score is more likely to be an anomaly.

Eqϕ (z1,z2 |x̄)[logpθ (x|z1, z2)] =
1
L

L∑
l=1
[logpθ (x|z

(l )
1 , z

(l )
2 )] (5)

3.4 Anomaly Interpretation
For MTS data, we interpret the detected anomalies by finding a
group of most anomalous metrics for each detected anomaly. How-
ever, The anomalies may bring bias to the learned embeddings, and
affect the estimation of reconstruction at all dimensions (i.e., some
normal metrics may get poor reconstructions due to the effect of
other anomalous metrics). Therefore, we propose an MCMC-based
method to approximate the normal patterns and then interpret the
anomalies based on the revised reconstruction probability.

The core idea is to estimate a group of “most anomalous points”
xm according to the original reconstruction probability for each de-
tected entity anomaly, then apply MCMC imputation to get a more
reasonable latent embedding and reconstruction. Note that the first
estimation of xm may not cover all potential anomalies, thus an iter-
ative process is needed to make the revised reconstruction “normal
enough”. Specifically, for a detected anomaly xt , the original recon-
struction probability r0 = Eqϕ (z1,z2 |x)[logpθ (x|z1, z2)] ∼ RM×W ,
which is estimated with input sequence x = {xt−W +1, . . . , xt }. For
simplicity, we estimate the “normal window” according to the aver-
age training statistics, i.e., denote baseline b = 1

Q
∑
Q [

∑
m,t r0m,t ]

roughly as the reconstruction probability for normal input win-
dows, where Q is the number of input sliding windows in training
data and r0m,t is the value of them-th metric at time t in r0. Our
proposed anomaly interpretation method is shown in Algorithm 1.

Note that, although the supposedly normal set xo doesn’t change
during MCMC imputation, the supposed “anomaly” set xm has been
imputed, which leads to a more accurate estimation of latent embed-
dings and reconstruction probability. If ra ≥ b, we have obtained the
latent embedding corresponds to normal patterns, after imputing
the potential anomalous points in x. The anomalous dimensions of
MTS can be interpreted using the value for each dimension in AS in

Algorithm 1: InterFusion Anomaly Interpretation

Input: input sequence x ∈ RM×W , original reconstruction
probability r0, normal baseline b, window lengthW ,
number of metricsM , small constant ratio βinit , βinc

Output: revised anomaly scoreAS ∼ RM×W for interpretation
np ← number of points (xm,t ) where r0m,t <

b
M∗W ;

ninit ← βinitnp , ninc ← βincnp , n ← ninit , ra =
∑
m,t r0m,t ;

while not (ra ≥ b or n > np ) do
xm ← top n points in x that have the lowest r0m,t ;
xo ← other points in x but not in xm ;
Denote x

′

= x = (xo , xm );
for s ← 1 to S do // MCMC imputation for S times

sample (z1, z2) from qϕ (z1, z2 |xo , xm );
reconstruct (x

′

o , x
′

m ) from pθ (xo , xm |z1, z2);
update x

′

← (xo , x
′

m );
end
/* Approximate the true reconstruction prob of the

input window using revised x
′

*/

ra = M∗W
M∗W −nEqϕ (z1,z2 |x

′
)[
∑

xi ∈xo logpθ (xi |z1, z2)];
add ra to rlist, n ← n + ninc ;

end
x̃← x

′

that achieves the highest ra in rlist;
rf = Eqϕ (z1,z2 |x̃ )[logpθ (x|z1, z2)], AS = −rf ;

Algorithm 1, while dimensions with higher values are more likely to
be anomalous. This is extremely useful for interpreting the detected
entity anomalies in MTS, as it can show the system operators about
the most anomalous metrics (which could be used to accelerate
root cause analysis) and the corresponding normal patterns the
algorithm expects (to explain the users about the detection results).

4 EXPERIMENTS AND ANALYSIS
First, we introduce the datasets and metrics for evaluation. Then
we design experiments to answer the following research questions:
RQ1:How does InterFusion perform onMTS anomaly detection and
interpretation, in comparison with the state-of-the-art methods?
RQ2: How effective is each design choice in InterFusion?
RQ3: Is InterFusion feasible to be deployed in production?

4.1 Datasets and Evaluation Metrics
We use four real-world MTS datasets to evaluate the anomaly de-
tection and interpretation performance of InterFusion: three public
datasets, SWaT [19] (Secure Water Treatment), WADI [19] (Wa-
ter Distribution), SMD [30] (Server Machine Dataset), and a new
dataset ASD (Application Server Dataset, which is collected and
published by this paper). More details are in Appendix A.

We compute an anomaly score for each observation xt , where
observations with higher scores are more anomalous. In practice,
anomalies often last for some time and form a contiguous anom-
aly segment. Therefore, it is acceptable for a model to trigger an
alert for any observation within the anomaly segment. Thus, we
adopt the point-adjust approach, which is proposed by [33] and



widely used in the evaluation of detection tasks [2, 23, 27, 30]. More
specifically, if at least one observation in a contiguous anomaly
segment from the ground-truth is correctly identified, the segment
is detected correctly; thus, all observations in the same anomaly
segment are considered to have been correctly detected. The ob-
servations outside the ground-truth anomaly segment are treated
as usual [33]. Following previous works [2, 14, 30] published on
SIGKDD, wemainly use F1-score (F1 for short hereafter) to evalu-
ate the anomaly detection performance. We enumerate and find the
optimal global threshold for anomaly scores to calculate best-F1s.

Similarly, in practice, a group of metrics are often used to inter-
pret a contiguous anomaly segment, since it’s hard for operators to
determine what are the most anomalous metrics for each anomaly
point. More specifically, different metrics might show anomalous
behaviors at different time within the same anomaly segment, due
to the inherent correlations among metrics (e.g., in the same anom-
aly segment, the network-related metrics drop at time t , while the
CPU related metrics drop at t + t0, due to the decreased requests
received from the network. Both of them are regarded as the most
anomalous metrics for this anomaly segment). Therefore, inspired
by the top-k hit ratio (i.e., recall) for recommendations [29], we
propose a new metric, namely “InterPretation Score” (IPS), to eval-
uate the anomaly interpretation accuracy at the segment level.
A is the total number of detected anomaly segments. Denote the
ground-truth anomalous metric set for segment Φa as GΦa . For
each detected anomaly xt , ASit denotes the anomaly score of the
i-th metric at time t . For anomaly segment Φa , metric i’s segment
score ASiΦa = maxxt ∈Φa AS

i
t . IΦa is the top

��GΦa

�� metrics with the
highest scores out of ASiΦa . Nϕa is the number of detected anomaly
observations in ϕa , representing the anomaly segment ϕa ’s impor-
tance. The IPS is defined as Eq. (6). Intuitively, IPS is the weighted
sum of top

��GΦa

�� hit ratio evaluated at the segment level.

IPS =
A∑
a=1

wa
��GΦa ∩ IΦa

����GΦa

�� , wa =
Nϕa∑A
a=1 Nϕa

(6)

4.2 RQ1. Performance and Analysis
Anomaly Detection.We compare InterFusion’s performance with
recent state-of-the-art unsupervised MTS anomaly detection meth-
ods: LSTM-NDT [14], MSCRED [34], MAD-GAN [19], DSANet [13],
OmniAnomaly [30], USAD [2] and VAEpro [15]. Although all the
compared methods use a sliding window input (except VAEpro),
most of them mainly model one of the dependencies in MTS. i.e.,
LSTM-NDT and MSCRED mainly model the temporal dependency,
while MAD-GAN, OmniAnomaly, DSANet and USAD pay atten-
tion to the intermetric dependency. More details are described in
Section 5. The overall F1-score is shown in Table 1.

Overall, InterFusion outperforms all baselines. We observe that
most methods achieve high detection performance on SWaT and
SMD dataset since their anomalies are easier to be detected (e.g.,
large spikes co-occurrence on several metrics), but InterFusion’s
best-F1 still outperforms them by 0.0187-0.2130. In practice, the sys-
tem operators also need the algorithm to detect subtle anomalies,
like local fluctuations or anomalous correlations among several
metrics (e.g., the right half of Fig. 1). These anomalies may happen
only in part of the system and affect several monitoring metrics, the

Table 1: Average best-F1 for InterFusion and baselines.

Methods SWaT WADI SMD ASD Avg.

LSTM-NDT 0.8133 0.5067 0.7687 0.4061 0.6237
MSCRED 0.8346 0.5469 0.8252 0.5948 0.7004
MAD-GAN 0.8431 0.7085 0.8966 0.6325 0.7702
OmniAnomaly 0.7344 0.7927 0.9628 0.8344 0.8311
DSANet 0.8924 0.8739 0.9630 0.8740 0.9008
USAD 0.8227 0.4275 0.9024 0.7987 0.7378
VAEpro 0.8369 0.8200 0.8693 0.8522 0.8446

InterFusion 0.9280 0.9103 0.9817 0.9531 0.9433

negligence of which may lead to more severe failures later. There-
fore, on the more complex MTS datasets, WADI (which contains
118 metrics) and ASD (which contains different kinds of intermetric
and temporal anomalies that only affect parts of the system), most
existing methods have shown inferior results, and InterFusion’s
best-F1 significantly outperforms them by 0.0364-0.5470.

Detailedly, (1) LSTM-NDT and MSCRED mainly model the tem-
poral dependency but are weak at modeling intermetric dependency.
LSTM-NDT makes predictions for each metric, which ignores the
intermetric correlation. MSCRED models the MTS using signature
matrices, which is poor at detecting subtle anomalies and fails to
capture the intermetric dependency when the interactions among
metrics are complex and nonlinear (e.g., on WADI and ASD).

(2) On the contrary, MAD-GAN, OmniAnomaly, DSANet and
USAD mainly models the intermetric dependency through embed-
dings along metric dimension using stochastic methods or adver-
sarial training. However, they ignore learning low-dimensional
representations along time dimension for each metric, thus are
poor at modeling the intra-metric temporal dependency. DSANet
performs the best among these four methods. Although it lacks the
explicit low-dimensional temporal embeddings, we conjecture that
DSANet uses the global and local convolutions to capture part of
the temporal information, which ultimately improves the detec-
tion performance. However, as a prediction-based method, DSANet
fails to predict the normal patterns accurately on some inherent
unpredictable metrics [20], which downgrades its performance.

(3) Different from the models above, VAEpro takes each point
(not sliding window) as its input, and detects the outliers without
considering the contextual information. Therefore, it only detects
severe point anomalies and fails to find contextual anomalies.

To further support the observations above, we divide the anom-
alies in ASD into three anomaly types mentioned in Section 2.2
and evaluate the performance of baseline methods for each type.
The detailed results (shown in Appendix D) show that LSTM-NDT
and MSCRED achieve better performance on detecting temporal
anomalies than detecting intermetric anomalies, while MAD-GAN,
OmniAnomaly, USAD and DSANet are the opposite as expected.
VAEpro performs similarly for each type of anomalies, since severe
point anomalies may occur in each type. InterFusion achieves recall
higher than 0.98 and approximated F1 higher than 0.95 for all three
types of anomalies, significantly outperforming all baselines.

Takeaways: Simultaneously learning low-dimensional inter-
metric and temporal embeddings improves the anomaly detection
performance for each type of anomalies than just learning a single



Table 2: Interpretation IPS for InterFusion and baselines.

Methods SMD ASD Avg.

LSTM-NDT 0.5751 0.8619 0.7185
MSCRED 0.6421 0.7652 0.7037

OmniAnomaly 0.8008 0.8029 0.8019
DSANet 0.6713 0.8123 0.7418
VAEpro 0.5681 0.8236 0.6959

VAEpro* 0.7433 0.8916 0.8175
InterFusion-nI 0.7752 0.8881 0.8317
InterFusion 0.8340 0.9107 0.8724
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Figure 4: Average anomaly detection best-F1 for InterFusion
and its variants. ‘IF’ denotes InterFusion for short.

type representation forMTS. A two-view embedding with hierarchi-
cal stochastic latent variables has been shown as an effective way to
jointly learn robust MTS representations, which helps InterFusion
outperform all competitors in MTS anomaly detection.
Anomaly Interpretation. We evaluate the anomaly interpreta-
tion on SMD and ASD, which provided ground-truth interpretation
labels for evaluation (SWaT and WADI do not have interpretation
labels, thus are not included). For the methods that do NOT propose
a specific interpretation approach (LSTM-NDT and DSANet), we
calculate IPS according to their own detection results and anomaly
scores. MAD-GAN and USAD do not provide metric-wise anomaly
scores, thus are not included for the comparison. Moreover, since In-
terFusion achieves the best detection results among these methods,
we also apply other interpretation approaches to InterFusion’s detec-
tion results for a more fair comparison. InterFusion-nI denotes the
InterFusion variant using the original reconstruction probability for
interpretation (without the imputation and interpretation method).
VAEpro* denotes the approach applying VAEpro’s interpretation
method on InterFusion’s detection results.

As shown in Table 2, InterFusion achieves higher IPS than all
baselines and InterFusion-nI, demonstrating the effectiveness of our
proposed interpretation method. VAEpro enhances interpretability
by directly optimizing the learned distribution in latent space, which
may cause the revised reconstructions to deviate from the original
input, thus making the interpretation irrelevant to the input data.
VAEpro* still falls behind InterFusion-nI on IPS, which indicates that
VAEpro approach sometimes may harm the interpretation. DSANet,
which achieves the best detection performance among baseline
methods, fails to obtain reasonable anomaly interpretation due to
its inaccurate predictions on some metrics in MTS. In general, the
learned embeddings are more likely to deviate from the normal ones

on datasets where anomalies’ intensity is higher (e.g., SMD). In this
case, our proposed interpretation method can help approximate the
normal patterns and achieve further improvement in interpretation.

Takeaways: The MCMC-based interpretation method can ob-
tain reasonable embeddings and reconstructions at detected entity
anomalies, which helps InterFusion outperform all baselines in MTS
anomaly interpretation. InterFusion is able to find the most anoma-
lous metrics and their corresponding normal patterns, which can
further convince the system operators about the detection results.

4.3 RQ2. Ablation Studies
We conduct ablation studies using several variants of InterFusion to
further demonstrate the effectiveness of the designs described in
Section 3.2. The results are shown in Fig. 4.
Intermetric-temporal Embeddings. InterFusion outperforms m-
SRNN (only intermetric embedding) and TimeVAE (only temporal
embedding), which demonstrates the importance of jointly learning
low-dimensional intermetric-temporal embeddings for MTS anomaly
detection. Moreover, as shown in Appendix D, InterFusion outper-
forms both methods even in detecting the anomaly types (temporal
or intermetric) that the methods are specifically designed for, which
indicates that InterFusion does not simply combine the results of
intermetric and temporal methods, but benefits from the complemen-
tary characteristic information from both perspectives (intermetric
and temporal) to learn better representations for normal data.
Latent Variables Dependency and Auxiliary Fusion Method.
InterFusion-p derives independent latent variables in the variational
model without a hierarchical structure. Instead, it uses different
fusion methods (concatenate, gated [6], or bilinear [16] fusion) in
the generative model to combine the learned embeddings. InterFu-
sion outperforms these methods, demonstrating the effectiveness of
using hierarchical structure and information sharing in latent space
for jointly learning latent embeddings from different perspectives.
Two-view Embedding. InterFusion-s uses a hierarchical structure
similar to the HVAE for images [31], which makes the intermetric
embedding forMTS inconsistent with the temporal order of the data,
thus achieves worse performance than InterFusion, demonstrating
that two-view embedding is more suitable for modeling MTS data.
Prefiltering Strategy can prevent the model from overfitting to the
potential anomalies in training data. On SMD and ASD, anomalies
exist in training data. Without using prefiltering, IF-x performs
worse than InterFusion since it overfits the anomalous patterns in
training data with the learned flexible intermetric embeddings. On
SWaT andWADI, whose training data include only normal patterns
but no anomalies [19], IF-x achieves similar results with InterFusion.
Generalization. IF-AERNN applies the three design choices (Sec
3.2) in InterFusion on autoencoder structure and significantly out-
performs Pure autoencoder, demonstrating the generalizability of
our designs. Moreover, incorporating VAE and SRNN in InterFusion
enables it to model the stochasticity and complex patterns inside
MTS, which further improves the detection performance.

4.4 RQ3. Feasibility Study
The deployment of InterFusion can be divided into 4 stages, as
discussed in Fig. 3(b). The preprocessing step is common for training
and detection, where MTS data is normalized and split into sliding
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Figure 5: MCMC imputation approximates the normal pat-
terns of anomalies and finds the true anomalous metrics.

windows of lengthW . Then InterFusion model is trained offline to
learn the normal patterns of MTS. After training, the stored model
can be used for online anomaly detection. i.e., as a new observation
xt arrives, the model is used to obtain an entity anomaly score. If the
score is higher than a pre-defined threshold, then xt is declared as
an entity anomaly. Finally, the anomaly interpretation is applied on
each detected entity anomaly to show the most anomalous metrics.
Detection.We conducted a feasibility study using our ASD dataset
collected from 12 application servers in a large Internet company.
On each server, after the offline training with 3-week data, Inter-
Fusion was able to detect nearly all anomalies over 15 days length
of test data (with an overall precision of 0.93 and recall of 0.99), in-
cluding severe anomalies (e.g., several metrics concurrently dip due
to severe network failure) and subtle anomalies (e.g., TCP metrics
fluctuate subtly due to burst congestion), which demonstrates its
feasibility on detecting MTS anomalies in production.
Interpretation. Fig. 5 shows five out of nineteen metrics within
a sliding window in an entity of ASD dataset. Metricsm1,m4 and
m5 are anomalous in the area highlighted by the dashed ractangles,
while other metrics are normal (more normal metrics are omitted
here), according to the ground-truth labels. The anomaly inm1 is
much more severe than others, which can bring bias to the learned
embedding and affect the estimation of reconstruction at other
dimensions. Thus, in the left figure (before MCMC imputation),
m4 andm5 in the dashed rectangle are detected as normal metrics.
After applying MCMC-based anomaly interpretation, as shown in
the right figure, we gradually approximate the normal patterns
thatm4 andm5 should have followed, which are generated from
the correct marginal p(xm |xo ). This helps the algorithm find the
true anomalous metrics (m4,m5) with subtle anomalies, which is
essential for interpreting anomalies in MTS data. Moreover, the
normal metrics (e.g.,m2 andm3) also get better reconstructions,
since the effect of severe anomalies has been alleviated after the
MCMC-based interpretation process. This can tell the operators
about the most affected metrics and the extent to which the metrics
deviate from their normal patterns, which can help the operators
decide if they should resolve the problem immediately.
Computation time.The experiments are conducted on anNVIDIA
GeForce GTX 1080 Ti. With 3-week training data for each entity
in ASD, InterFusion only takes about 6 minutes for offline training
(including pretrain phase), which is among the most efficient meth-
ods. For the online detection, it takes less than 1 second for each
point, which is much smaller than the data collection intervals (one
point per 1 or 5 minutes). For each detected entity anomaly, the
interpretation takes 2-15 seconds. Thus, InterFusion is able to do
anomaly detection and interpretation in a real-time manner.

(full train) (one day)
(a) weeks of training data (b) window length (c) latent dimension M’

Figure 6: Parameter sensitivity of InterFusion on ASD.

Parameter sensitivity. We have shown that with the prefiltering
strategy, InterFusion is robust to potential anomalies in training
data. Therefore, we do not need to enforce the training data to be
“anomaly-free”. In Fig. 6, we show InterFusion’s sensitivity to other
key parameters that are of concern in deployment. InterFusion can
achieve high performance even with one-week training data (Fig.
6a) since the monitoring metrics often present weekly patterns.
Even though the training data is not enough, InterFusion is able
to well approximate the normal patterns from existing data and
present fine results. Operators can do further training to enhance
the model performance once the subsequent data is ready. Besides,
InterFusion is not sensitive to the slidingwindow length (Fig. 6b) and
the dimensions of the latent variables (Fig. 6c). In general, the sliding
window length depends on whether the temporal dependencies are
long-term or short-term in data. The latent dimension can be set to
a much smaller value than the number of metrics, preventing the
model from learning identical reconstructions with the input.

Overall, we have shown the feasibility of InterFusion through
its pilot deployment on real-world data ASD. It’s important to
note that, in this paper, we focus on the MTS metrics of a stable
real-world system that does not experience severe and frequent
service changes. Thus, we assume that the training and testing data
roughly follow the same distribution, which makes it possible to
learn normal patterns from data to detect anomalies. In case of a
large service change, a retrain step should be triggered to make
InterFusion adapt to the new normal patterns. We want to note that
InterFusion’s efficiency in training time and low demand for training
data make it possible to continuously safe-guard the monitored
servers with minimal retrain overhead.

5 RELATEDWORK
Anomaly Detection. LSTM-NDT [14] and MSCRED [34] mainly
models the intra-metric temporal dependency. Specifically, LSTM-
NDT used LSTM [12] for MTS prediction in each metric and then
detected anomalies according to prediction errors, but ignored
the intermetric correlations. MSCRED used signature matrices to
characterize MTS, and then applied an Encoder-Decoder structure
to learn the reconstructions for anomaly detection. However, it
relies on the covariance among different metrics, and cannot well
learn the complex and nonlinear interactions among metrics [27].

Another group of methods mainly models the intermetric de-
pendency. LSTM-VAE [22] combined VAE and LSTM by replacing
the feed-forward networks in VAE with an LSTM. Similarly, MAD-
GAN [19] combined GAN and LSTMs. OmniAnomaly [30] proposed
an SRNN model with a Planar Normalizing Flow [24] posterior to
enhance the capability of intermetric embeddings. Although these
three models used stochastic variables for better intermetric em-
beddings, they did not learn specific representations along time



dimension for each metric, which is crucial for MTS anomaly detec-
tion, and thus are poor at modeling the temporal dependency. The
RNNs [7, 12] used in these works actually act as a feature extraction
layer for the whole entity, aiming at learning better intermetric
embeddings at each timestamp. Similarly, USAD [2] proposed an
adversarially trained autoencoder to model the intermetric depen-
dency, while DSANet [13] used multi-head attention networks to
make predictions. Both of them lack of low-dimensional temporal
embeddings, thus are weak at modeling the temporal dependency.
Anomaly Interpretation. MSCRED [34] and OmniAnomaly [30]
directly used the raw reconstruction score for each metric as an
interpretation, which ignored the fact that the anomalies can af-
fect the estimation of reconstructions at all dimensions [15] and
cause misinterpretation. VAEpro [15] proposed an approximative
probabilistic model to find better latent distribution for anomalous
input. However, directly optimizing the encoded distribution in
latent space may cause the revised reconstructions to deviate from
the original input, which also causes misinterpretation.

6 CONCLUSION
Anomaly detection and interpretation for MTS are essential tasks
for systemmonitoring. In this paper, we propose InterFusion, a novel
unsupervised anomaly detection method that simultaneously mod-
els the intermetric and temporal dependency in MTS using HVAE
with specifically designed structures. InterFusion outperforms the
SOTAmethods on four real-world datasets, demonstrating the effec-
tiveness of explicitly learning low-dimensional intermetric and tem-
poral embeddings with our design choices (hierarchical structure,
two-view embedding, and prefiltering strategy) for MTS anomaly
detection. Moreover, we propose a novel MTS anomaly interpreta-
tion method based on MCMC imputation, and a new quantitative
evaluation metric consistent with the system operators’ preferences.
The feasibility study shows that InterFusion successfully meets the
requirements on MTS anomaly detection and interpretation in real-
world application server monitoring data, and provides suggestions
to help deploy InterFusion and apply it on other industrial domains.
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A DATASET DETAILS
SWaT [21] (Secure Water Treatment) and WADI [19] (Water Distri-
bution) are two datasets about water treatment plants, which have
been used for MTS anomaly detection in [19]. Both datasets collect
the normal sensor and actuator data of the plants as the training
set, while several attacks (which caused anomalies) are launched
to the system in the testing set (including normal and anomalous
data).

SMD is a server machine dataset collected by [30]. Some ma-
chines in SMD experienced service change during the data collec-
tion period, which leads to severe concept drift in training and
testing data (i.e., the training and testing data follow different nor-
mal patterns, which is inconsistent with the assumptions in this
paper). Thus, we only use part of the SMD dataset, containing 12
entities (machines) that do not suffer concept drift, for evaluating
all the algorithms in this paper. The SMD dataset provides anomaly
detection and interpretation labels on the test set for evaluation.

Moreover, we published a new ASD dataset (Application Server
Dataset) collected from a large Internet company. A group of sta-
ble services is run on the entities (servers) in the dataset, thus no
entity in ASD experiences service changes or concept drifts during
the time period included in this dataset. More detailedly, ASD con-
tains 12 entities, each of which characterizes the status of a server,
containing 45-day-long MTS data with 19 metrics characterizing
the status of the server (including CPU-related metrics, memory-
related metrics, network metrics, virtual machine metrics, etc.). The
observations in ASD are equally-spaced 5 minutes apart. The first
30-day data are used for training, while the last 15-day data are used
for testing. Anomalies and their most anomalous dimensions in the
ASD testing set have been labeled by system operators based on
incident reports and domain knowledge, including severe system
failures and subtle anomalies that affect parts of the system. More-
over, the anomalies in ASD are roughly classified into three types:
temporal anomalies, intermetric anomalies, and intermetric-temporal
anomalies, as specified in Section 2.2.

Table 3: Dataset Statistics.

Dataset # entities # metrics Train Test Anomaly (%)

SWaT 1 51 475200 449919 12.13
WADI 1 118 789371 172801 5.85
SMD 12 38 304168 304174 5.84
ASD 12 19 102331 51840 4.61

Note that, in training data, there might be a small number of
anomalies in SMD and ASD, while SWaT and WADI only contain
normal data. For detailed dataset statistics shown in Table 3, SWaT
and WADI only contain one entity, while SMD and ASD both have
12 entities. Thus we calculate the average performance metrics of
each entity for SMD and ASD when reporting the performance in
Table 1 and Table 2.

The SWaT and WADI datasets can be acquired following the
instructions in their original paper [19]. The SMD dataset can be
acquired from [30], and our ASD dataset is released in https://github.
com/zhhlee/InterFusion.

Table 4: Average AUROC and AP (± std) over all datasets.

Methods AUROC AP

LSTM-NDT 0.8462 (0.0528) 0.5624 (0.2008)
MSCRED 0.8495 (0.1074) 0.6326 (0.1429)
MAD-GAN 0.9007 (0.0669) 0.7162 (0.1538)
OmniAnomaly 0.9674 (0.0293) 0.8090 (0.1215)
DSANet 0.9817 (0.0221) 0.9140 (0.0410)
USAD 0.9213 (0.0620) 0.7271 (0.1820)
VAEpro 0.9438 (0.0440) 0.8287 (0.0383)

InterFusion 0.9904 (0.0123) 0.9582 (0.0199)

B EVALUATION METRICS
As discussed in Section 4.1, we adopt the point-adjust approach [33]
to calculate the performance metrics for anomaly detection. There-
fore, given a specific threshold, we can calculate the TP (True Pos-
itives), FP (False Positives), TN (True Negatives) and FN (False Nega-
tives) according to point-adjust. Thuswe have F1 = 2×precision×recall

precision+recall ,
while precision = T P

T P+F P , recall =
T P

T P+FN . The best-F1 can be
found using the optimal global threshold. Moreover, there are two
othermetrics that do not rely on the best threshold selection, AP and
AUROC [4]. Given all possible thresholds, we can get a precision-
recall curve (with recall as the x-axis) and calculate AP (average pre-
cision) as:AP =

∑
n [(Rn−Rn−1)Pn ], where Rn and Pn are recall and

precision at the nth threshold. Similarly, TPR = recall = T P
T P+FN ,

FPR = F P
FP+T N , then we have the ROC curve with FPR as the x-axis

and TPR as the y-axis. AUROC is the area under the ROC curve. In
practice, a feasible way is to select a small part of data as a valida-
tion set to evaluate a threshold that can achieve the best F-score,
then it can be used for online detection as long as the distribution
of normal data does not significantly change.

C EXPERIMENT DETAILS
C.1 Hyperparameter Selection
For InterFusion and its variants, we set the window lengthW = 100
on SMD and ASD,W = 30 on SWaT and WADI, as suggested in
their original papers [19, 30]. For intermetric embedding,M

′

is 2 for
SWaT, 3 for SMD and ASD, 4 for WADI, considering their different
metric numbers and data complexities. For temporal embedding,
the (filter, strides) for each Conv1D layer is: (M,2), (M,1), (M,2),
(M,1),(M,2), with kernel size = 5, M is the number of metrics, for
SMD and ASD. SWaT andWADI only use the first three layers since
the window length is shorter. The posterior Real NVP [8] flow layers
are set to 20. ReLU is used as the activation function for layers other
than linear layers. L2 regularization with a coefficient of 1e−4 is
applied on non-linear hidden layers. The log standard deviations of
latent distributions and posteriors are clippedwithin [−5, 2] to avoid
numerical problems. For training, the training set is preprocessed
by MinMax Scaler within each metric. The min and max values in
the training set are further used to preprocess data in the validation
and testing sets. We apply Adam optimizer to optimize our model.
The batch size is set to 100. For SMD and ASD datasets, the last
30% of data in the training set is used as the validation set, while
for larger SWaT and WADI datasets, the validation portion is 10%.

https://github.com/zhhlee/InterFusion
https://github.com/zhhlee/InterFusion


An early stopping strategy is taken according to validation loss in
each epoch. The number of z samples L = 100 for Monte Carlo
integration during testing. Each MCMC imputation procedure is
executed for S = 10 times, while 10 MCMC chains are used to
evaluate the results and eliminate the potential bias. As suggested by
[19], due to the cold start of the system, we use the training data of
SWaT starting from point 21600 and point 259200 for WADI; while
other datasets use the whole training/testing set. To obtain a more
accurate “reconstructed input” at the early step of training andmake
the training easier, we use a vanilla VAE with only the temporal
embedding latent variable z2 as a pretrain model. The structures of
1D ConvNets and DeconvNets are the same in the pretrain andmain
models, while their parameters and the derived z2 distributions are
used to initialize the same parts in the main model. Our code and
data are released at https://github.com/zhhlee/InterFusion.

C.2 Baseline implementation
LSTM-NDT [14] comes from the authors’ implementation on https:
//github.com/khundman/telemanom. MSCRED [34] comes from the
implementation on https://github.com/wxdang/MSCRED. MAD-
GAN [19] comes from the authors’ implementation on https://
github.com/LiDan456/MAD-GANs. OmniAnomaly [30] comes from
the authors’ implementation on https://github.com/NetManAIOps/
OmniAnomaly. DSANet [13] comes from the authors’ implementa-
tion on https://github.com/bighuang624/DSANet. USAD [2] comes
from the authors’ implementation on https://github.com/robustml-
eurecom/usad. VAEpro [15] is implemented by us following their
paper.

C.3 InterFusion’s Variants
In Section 4.3 we proposed several variants of InterFusion for abla-
tion study. Here we describe each variant model in detail.
TimeVAE removes intermetric latent variable z1 from InterFusion,
while preserving the temporal embeddings using 1D ConvNets.
Modified-SRNN (m-SRNN) removes the temporal embedding la-
tent variable z2 from InterFusion, and the remaining model looks
similar to an SRNN model [9]. The additional inputs u in SRNN are
always set to zeros in modified-SRNN. The Real NVP [8] is also
applied to enrich the posterior, as done in InterFusion.
InterFusion-p does not use hierarchical structure and two-view
embedding, and derives independent latent variables z1 and z2 in
the variational net. It acts as a parallel combination of TimeVAE and
modified-SRNN,whereqϕ (z1, z2 |x) = qϕ (z1 |x)qϕ (z2 |x),pθ (z1, z2) =
pθ (z1)pθ (z2). Three different fusionmethods (i.e., concatenate, gated
fusion [6], bilinear fusion [16]) are used to combine the learned
features in the generative net.
InterFusion-s does not adopt two-view embedding, but uses a
hierarchical structure similar to the HVAE for images [31]. i.e., first
learn the temporal embedding z2 ∈ RM×W

′

via q(z2 |x), then derive
q(z1 |z2) through embedding z2 along the metric dimension. Thus,
the intermetric embedding z1 ∈ RM

′
×W

′

is inconsistent with the
temporal order of the MTS data.
InterFusion-x does not apply the prefiltering strategy, which lets
z1 also directly depend on the original input x, rather than only
depend on d, in the variational net. In this way, it may overfit to

Table 5: Anomaly detection performance on three type of
anomalies in ASD dataset.

Methods Intermetric Temporal
aPr R aF1 aPr R aF1

LSTM-NDT 0.245 0.251 0.248 0.277 0.295 0.286
MSCRED 0.358 0.397 0.376 0.452 0.587 0.511
MAD-GAN 0.712 0.594 0.648 0.653 0.451 0.534

OmniAnomaly 0.850 0.835 0.842 0.842 0.785 0.813
DSANet 0.885 0.917 0.901 0.880 0.872 0.876
USAD 0.825 0.959 0.887 0.761 0.650 0.701
VAEpro 0.801 0.886 0.841 0.798 0.867 0.831

TimeVAE 0.721 0.463 0.564 0.843 0.965 0.900
modified-SRNN 0.865 0.978 0.918 0.822 0.705 0.759
InterFusion 0.928 0.981 0.954 0.928 0.982 0.954

Methods Intermetric-Temporal Total
aPr R aF1 aPr R aF1

LSTM-NDT 0.477 0.705 0.569 0.411 0.538 0.466
MSCRED 0.534 0.814 0.645 0.496 0.700 0.581
MAD-GAN 0.747 0.709 0.728 0.723 0.627 0.672

OmniAnomaly 0.866 0.954 0.908 0.859 0.894 0.876
DSANet 0.888 0.942 0.914 0.886 0.920 0.903
USAD 0.825 0.963 0.889 0.812 0.881 0.845
VAEpro 0.819 0.994 0.898 0.812 0.947 0.874

TimeVAE 0.842 0.953 0.894 0.833 0.892 0.861
modified-SRNN 0.864 0.975 0.916 0.855 0.905 0.879
InterFusion 0.929 0.988 0.958 0.929 0.986 0.957

the potential anomalies in training set, which can downgrade its
detection performance (e.g., on SMD and ASD).
InterFusion-AERNN applies the design choices (hierarchical struc-
ture, two-view embedding and prefiltering strategy) of InterFusion
on an autoencoder structure, and replaces the SRNN with GRU [7].
It significantly outperforms PureAE, which demonstrates the gen-
eralizability of our proposed designs for MTS anomaly detection.

D RESULTS FOR ANOMALY TYPES
We take ASD dataset as an example to show each methods’ anomaly
detection performance on different types of anomalies, as discussed
in Section 4.2. Among the 2392 anomaly observations in 12 entities
(each entity corresponds to one server), 60.79% are intermetric-
temporal anomalies, 26.04% are temporal anomalies and the rest
13.17% are intermetric anomalies. We calculate the recall, approx-
imated precision (aPr) and approximated F1-score (aF1) for each
method, as shown in Table 5. The detected anomalous points are
evaluated with point-adjust approach and optimal threshold. For
each type of anomalies, TP and FN can be directly obtained, thus the
precise recall can be calculated. However, since normal data cannot
be categorized into different types, we can only obtain the number
of FP for the whole dataset. Therefore, we divide the number of
FP in the whole dataset into three parts according to the anomaly
ratio of each type of anomalies. i.e., the FP points for intermetric,
temporal and intermetric-temporal anomalies are 13.17%, 26.04%
and 60.79% of the total FP points, respectively. The “total” column is
calculated using TP, FN and FP for whole ASD dataset (including all
12 entities, rather than the average F1 for each entity as in Table 1).
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