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n Anomaly Detection: images, graphs, texts, time series, etc.

n Monitor the status of entities (e.g., systems, services) in the domain of 
manufacturing industry and Information Technology (IT) systems.

Time Series Anomaly Detection
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Multivariate Time Series (MTS)
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Each metric describes a different part or attribute of a complex entity (i.e., MTS).

e.g., CPU utilization, TCP active opens, memory utilization, packets transmitted 
per second, …, in a Web Application Server.



Anomaly Types in MTS
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Inherent patterns like periodicity within each metric.
e.g., system-level failure, rebooting

Anomaly



Anomaly Types in MTS
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Relationships among all metrics of an entity at a time period.
e.g., local fluctuations in parts of the system

Positively
correlate

Anomaly



Challenges
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• How to precisely detect different kinds of anomalies in 
multivariate time series?
• How to learn and fuse inter-metric and temporal representations to capture the 

normal patterns of MTS?
• How to prevent the model from overfitting to potential anomalies in real-world 

data?

• How to interpret each detected anomaly (i.e., find a group of 
most anomalous metrics for each entity anomaly)? 
• How to find the normal patterns that each anomalous metric should have 

followed?
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Overview of InterFusion
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Preprocessing: data normalization & 
split MTS data into sliding windows

Training & Detection: Unsupervised 
model training, detect MTS anomalies 

Interpretation: Find most anomalous 
metrics (to accelerate troubleshooting, 
to explain detection results to users)
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Network Architecture of InterFusion
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Core idea: model the MTS using 
HVAE with jointly trained 
hierarchical stochastic latent 
variables, each of which explicitly 
learns low-dimensional inter-
metric or temporal embeddings.

Hierarchical Structure

Prevent overfitting 
to anomalies Prefiltering Strategy

Two-View Embedding

DesignsChallenges

Learn and fuse inter-
metric and temporal 
embeddings



Hierarchical Structure
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p✓(x, z1, z2) = p✓(x|z1, z2)p✓(z1|z2)p✓(z2)

Hierarchical latent variables, 
rather than learning independently



Two-view Embedding
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Two-view Embedding with auxiliary 
“reconstructed input” 

Compress the MTS along time and 
metric dimensions to obtain temporal 
and inter-metric embeddings.

help InterFusion learn better inter-
metric embeddings that are aware of 
the learned temporal information, 
while preserving the time consistency 
inside the inter-metric embeddings..

d 2 RM⇥W



Prefiltering Strategy
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Prefiltering strategy reduces the risk 
of overfitting to potential anomalies, 
while preserving the flexibility of 
the learned inter-metric embeddings

Derive z1 from reconstructed input d
rather than raw input x.



Offline Training
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Deduce training objective with auxiliary deterministic 
variables d, e:

Share parameters of DeconvNets g:

d1:W ⇠ q�(d1:W |z2,x) = q�(d1:W |z2) = �(d1:W � g(z2))

p✓(e1:W |z2) = �(e1:W � g(z2))

q(d1:W |z2) = p(e1:W |z2)



Online Inference
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Use sliding window                               for detecting anomaly at time t, use the 
negative reconstruction probability of last data       as the anomaly score.

(xt�W+1, . . . ,xt)
xt

Assume the last data      as an anomaly beforehand, and apply MCMC imputation 
[ICML’14] on x to get a more reasonable reconstruction.
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repeat 
S times

�Eq�(z1,z2|x̄)[log p✓(x|z1, z2)] = � 1

L
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Anomaly score:

An observation with a higher score is more likely to be an anomaly.



Anomaly Interpretation
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Goal: find a group of most anomalous metrics for each detected entity anomaly.
Non-Goal: directly find the root cause of anomaly

Challenges: The anomalies can affect the estimation of reconstructions at all 
dimensions (anomalous or not).

Idea: Use an MCMC-based method to approximate the normal patterns, and 
then interpret the anomalies based on the revised reconstruction probability.



Anomaly Interpretation
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Challenges & Designs
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Hierarchical Structure

Prevent overfitting to anomalies Prefiltering Strategy

Two-View Embedding

DesignsChallenges

Learn and fuse inter-metric and 
temporal embeddings

Approximate the normal patterns 
of anomalous metrics MCMC-based Interpretation Method
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Datasets
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Segment-level Evaluation Metrics
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For anomaly detection: point-adjust approach [WWW’18, KDD’19, KDD’20]
Metrics: F1-score, AUROC, AP

For anomaly interpretation: we propose IPS metric for segment-level evaluation.

Interpretation accuracy for 
each anomaly segment

Segment importance 
according to anomaly 
duration



Research Questions
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• RQ1: How does InterFusion perform on MTS anomaly detection and 
interpretation, in comparison with the state-of-the-art methods?

• RQ2: How effective is each design choice in InterFusion?

• RQ3: Is InterFusion feasible to be deployed in production?
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RQ1. Anomaly Detection
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Average best-F1 for InterFusion and baselines



RQ1. Anomaly Interpretation
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Interpretation IPS for InterFusion and baselines



Research Questions
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• RQ2: How effective is each design choice in InterFusion?



RQ2. Ablation Studies
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Inter-metric and temporal embeddings: m-SRNN, TimeVAE

InterFusion-p (concat, gated, bilinear): different feature fusion methods

InterFusion-s: without two-view embedding



RQ2. Ablation Studies
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InterFusion-x: without prefiltering strategy

PureAE and InterFusion-AERNN: generalizability of InterFusion’s designs



Research Questions
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• RQ3: Is InterFusion feasible to be deployed in production?



RQ3. Feasibility Study

37

On ASD (Application Server Dataset) from a large Internet company.

Detection: overall precision of 0.93, overall recall of 0.99. Successfully detect severe 
and subtle anomalies.

Interpretation: tell the operators about the most affected metrics and the extent to 
which the metrics deviate from their normal patterns.



RQ3. Feasibility Study
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Computation time: 
• Offline training: about 6 minutes for 3-week training data (5-minute interval).
• Online detection: less than 1 second per point.
• Interpretation: about 2~15 seconds for each entity anomaly.

Parameter sensitivity: 
• Robust to potential anomalies in training data. (prefiltering strategy)
• Low demand for training data. (achieve high performance even with one-week data)
• NOT sensitive to sliding window length and dimensions of latent variables.
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Contribution
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• The first MTS anomaly detection algorithm that 
employs HVAE with explicit low-dimensional 
inter-metric and temporal embeddings to jointly 
learn robust MTS representations

• Proposes a novel anomaly interpretation method 
based on MCMC imputation, and a new segment-
wise evaluation metric consistent with the system 
operators’ preferences.

• Achieves overall best F1-Score higher than 0.94 
and overall interpretation accuracy of 0.87 on 
four real-world datasets, outperforming the state-
of-the-art methods.



Conclusion
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• Simultaneously learning low-dimensional inter-metric and temporal embeddings 
improves the anomaly detection performance for each type of anomalies than just 
learning a single type representation for MTS.

• A two-view embedding with hierarchical stochastic latent variables has been shown as 
an effective way to jointly learn robust MTS representations.

• The MCMC-based imputation approach can help obtain reasonable latent embeddings 
and reconstructions at detected entity anomalies in MTS, which can help better 
interpret the detected MTS anomalies.

Code and Data: https://github.com/zhhlee/InterFusion
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