Multivariate Time Series Anomaly Detection and Interpretation using Hierarchical Inter-Metric and Temporal Embedding

Zhihan Li, Youjian Zhao, Jiaqi Han, Ya Su, Rui Jiao, Xidao Wen, Dan Pei

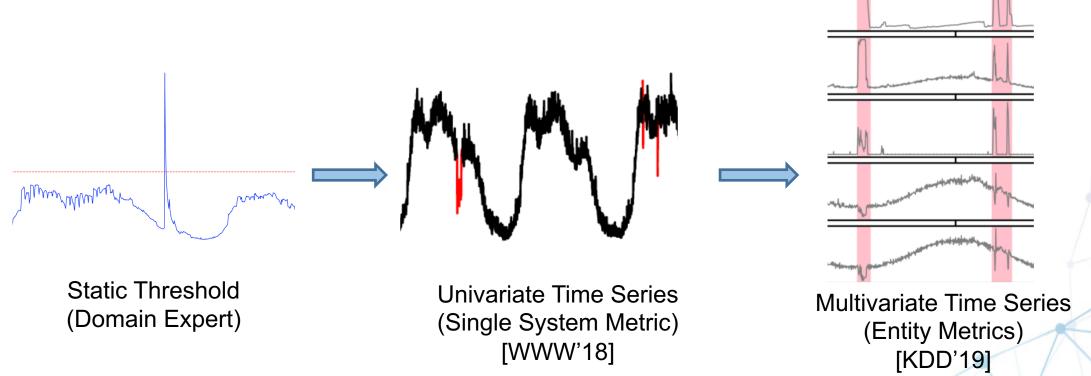
Background Algorithm Evaluation Conclusion

S

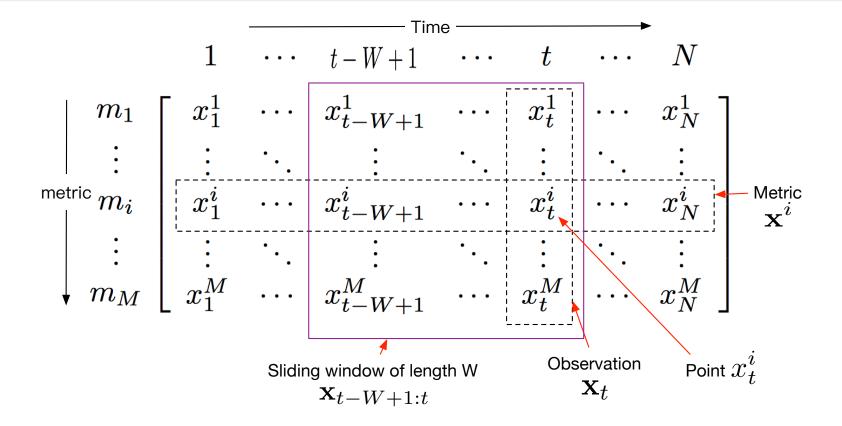
Background Algorithm Evaluation Conclusion

Time Series Anomaly Detection

- Anomaly Detection: images, graphs, texts, time series, etc.
- Monitor the status of entities (e.g., systems, services) in the domain of manufacturing industry and Information Technology (IT) systems.



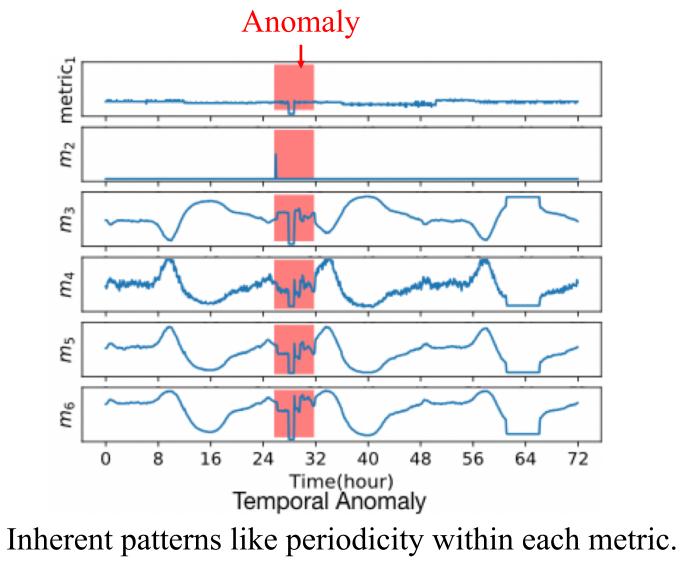
Multivariate Time Series (MTS)



Each metric describes a different part or attribute of a complex entity (i.e., MTS).

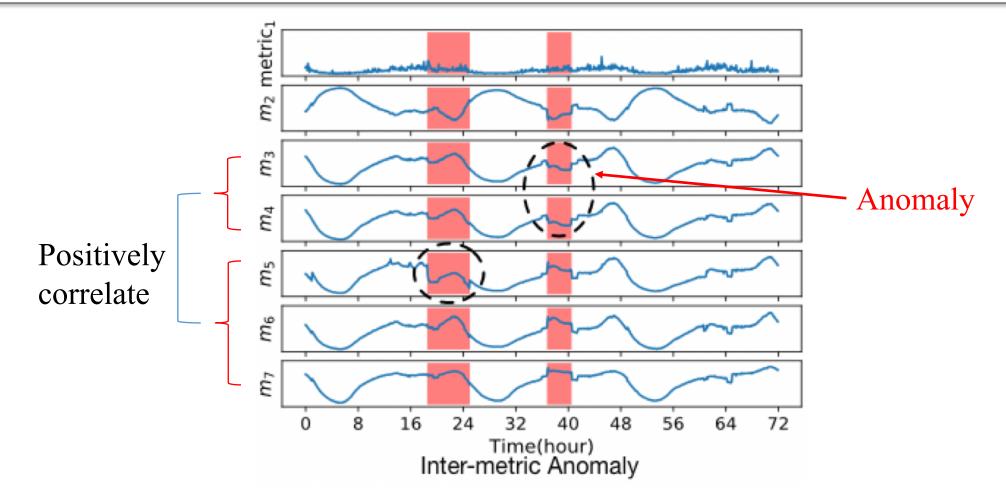
e.g., CPU utilization, TCP active opens, memory utilization, packets transmitted per second, ..., in a Web Application Server.

Anomaly Types in MTS



e.g., system-level failure, rebooting

Anomaly Types in MTS



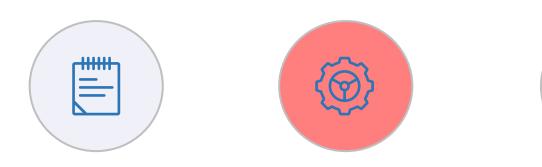
Relationships among all metrics of an entity at a time period. e.g., local fluctuations in parts of the system

- How to precisely detect different kinds of anomalies in multivariate time series?
 - How to *learn and fuse inter-metric and temporal representations* to capture the normal patterns of MTS?

72

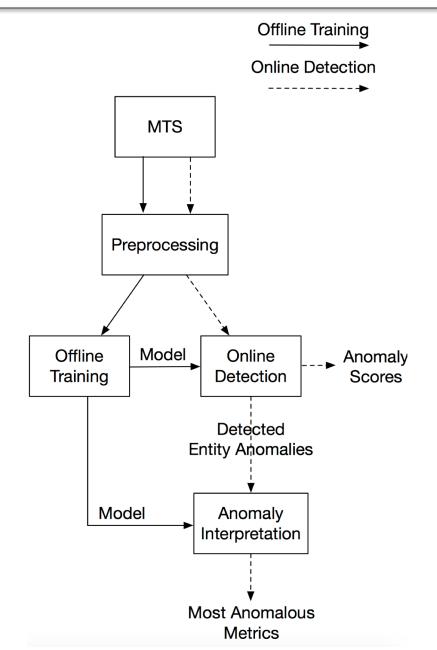
Inter-metric Anomaly

- How to prevent the model from *overfitting to potential anomalies* in real-world data?
- How to interpret each detected anomaly (i.e., find a group of most anomalous metrics for each entity anomaly)?
 - How to find the *normal patterns that each anomalous metric should have followed*?



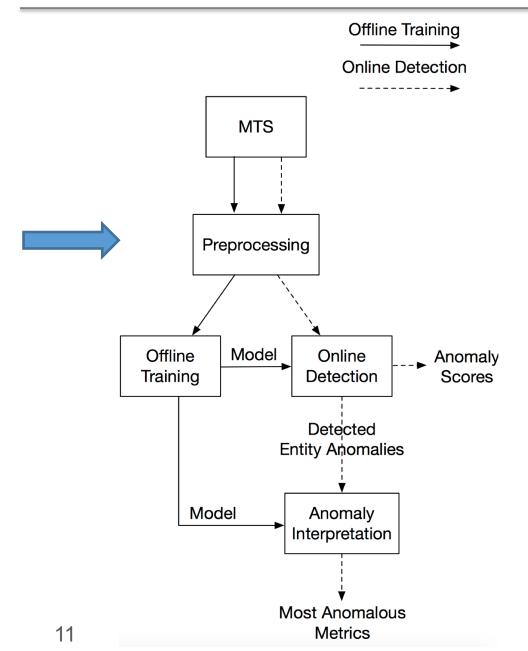
Background Algorithm Evaluation Conclusion

10



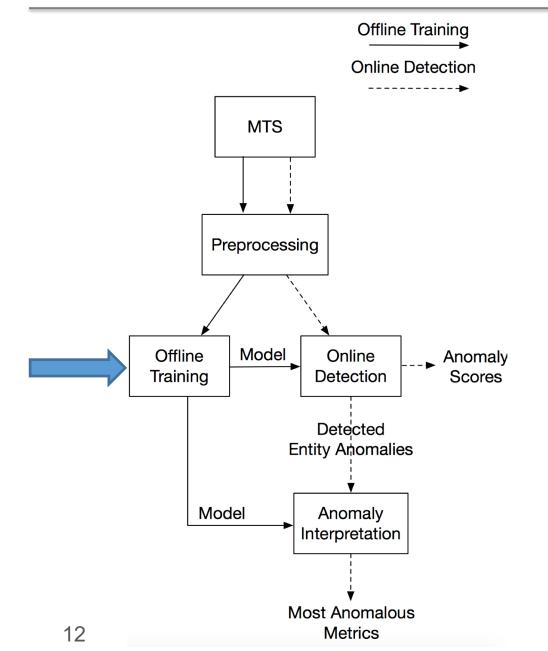
Preprocessing: data normalization & split MTS data into sliding windows

Training & Detection: Unsupervised model training, detect MTS anomalies



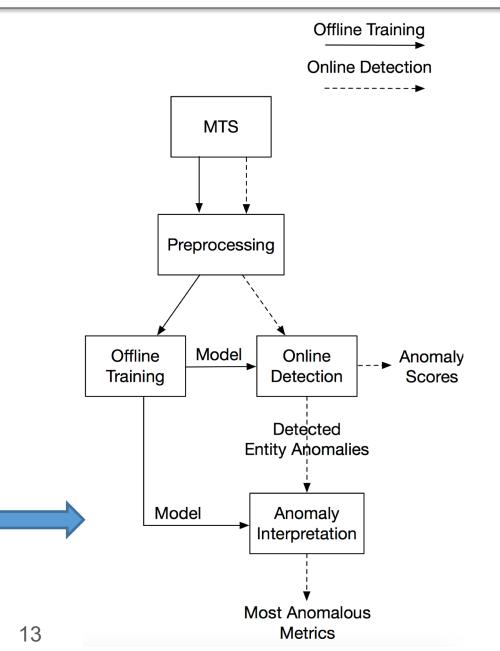
Preprocessing: data normalization & split MTS data into sliding windows

Training & Detection: Unsupervised model training, detect MTS anomalies



Preprocessing: data normalization & split MTS data into sliding windows

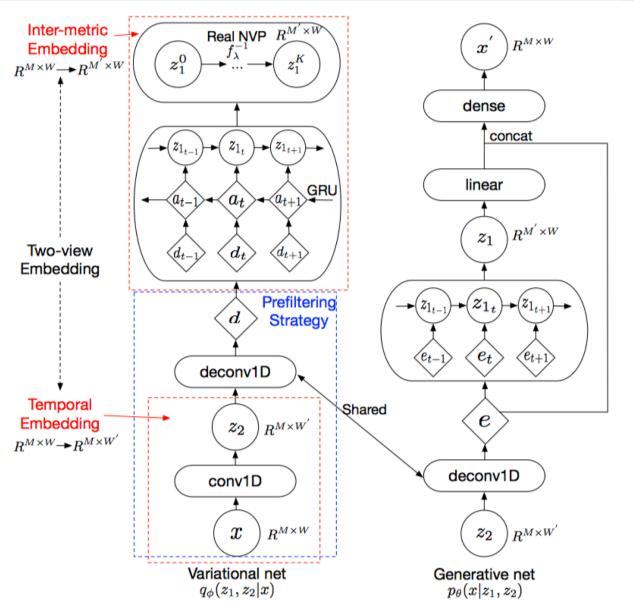
Training & Detection: Unsupervised model training, detect MTS anomalies



Preprocessing: data normalization & split MTS data into sliding windows

Training & Detection: Unsupervised model training, detect MTS anomalies

Network Architecture of InterFusion



Core idea: model the MTS using HVAE with jointly trained *hierarchical stochastic* latent variables, each of which explicitly learns low-dimensional *intermetric or temporal embeddings*.

Challenges

Designs

Learn and fuse intermetric and temporal embeddings

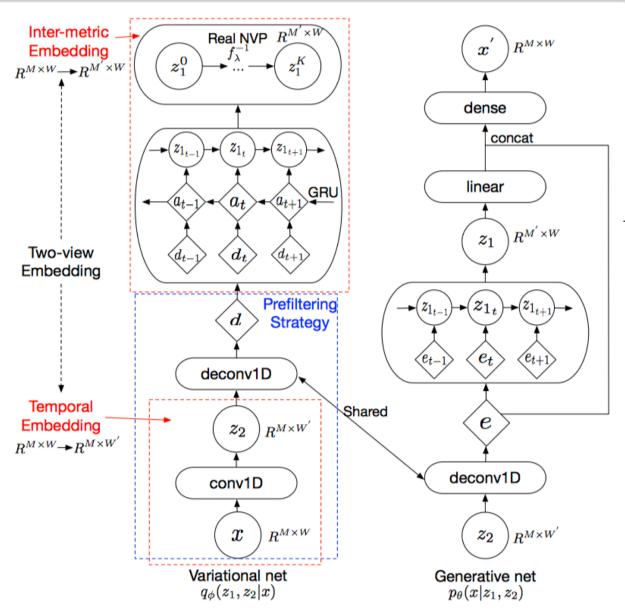
Hierarchical Structure

Two-View Embedding

Prevent overfitting to anomalies

Prefiltering Strategy

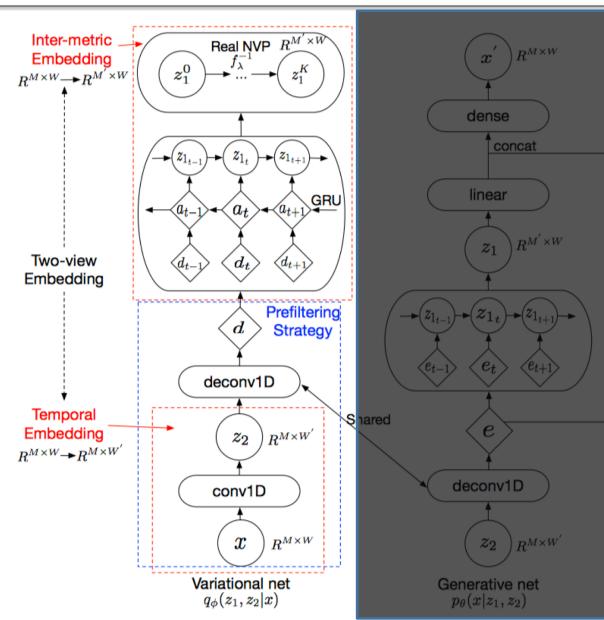
Hierarchical Structure



 $p_{\theta}(x, z_1, z_2) = p_{\theta}(x|z_1, z_2) p_{\theta}(z_1|z_2) p_{\theta}(z_2)$

Hierarchical latent variables, rather than learning independently

Two-view Embedding

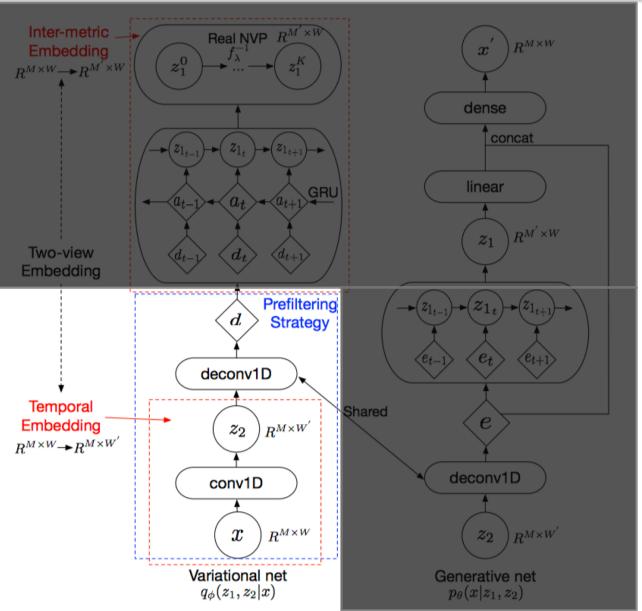


Two-view Embedding with auxiliary "reconstructed input" $\mathbf{d} \in R^{M \times W}$

Compress the MTS along **time** and **metric** dimensions to obtain temporal and inter-metric embeddings.

help *InterFusion* learn better intermetric embeddings that are *aware of the learned temporal information*, while preserving the *time consistency* inside the inter-metric embeddings..

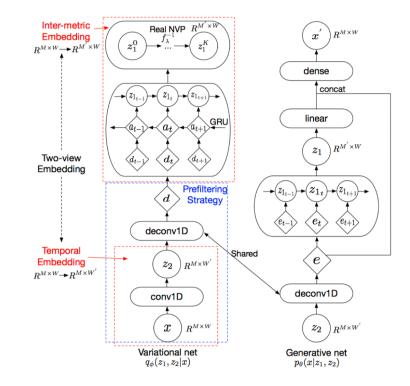
Prefiltering Strategy



Prefiltering strategy reduces the **risk of overfitting** to potential anomalies, while preserving the **flexibility** of the learned inter-metric embeddings

Derive z1 from reconstructed input **d** rather than raw input **x**.

Offline Training



Deduce training objective with auxiliary deterministic variables **d**, **e**:

 $\begin{aligned} \mathcal{L}(\mathbf{x}, \theta, \phi) &= \mathbb{E}_{q_{\phi}(\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{d} | \mathbf{x})} \left[\log p_{\theta}(\mathbf{x} | \mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{e}) \right] \\ &- D_{\mathrm{KL}} \left(q_{\phi}(\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{d} | \mathbf{x}) || p_{\theta}(\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{e}) \right) \\ &= \mathbb{E}_{q_{\phi}} \left[\log p_{\theta}(\mathbf{x} | \mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{e}) + \underline{\log p_{\theta}(\mathbf{z}_{1}, \mathbf{e} | \mathbf{z}_{2})} \right. \\ &+ \log p_{\theta}(\mathbf{z}_{2}) - \log q_{\phi}(\mathbf{z}_{1}, \mathbf{d} | \mathbf{z}_{2}, \mathbf{x}) - \log q_{\phi}(\mathbf{z}_{2} | \mathbf{x}) \right] \end{aligned}$

Share parameters of DeconvNets g:

$$d_{1:W} \sim q_{\phi}(d_{1:W} | \mathbf{z}_{2}, \mathbf{x}) = q_{\phi}(d_{1:W} | \mathbf{z}_{2}) = \delta(d_{1:W} - g(\mathbf{z}_{2}))$$
$$p_{\theta}(\mathbf{e}_{1:W} | \mathbf{z}_{2}) = \delta(\mathbf{e}_{1:W} - g(\mathbf{z}_{2}))$$
$$q(d_{1:W} | \mathbf{z}_{2}) = p(\mathbf{e}_{1:W} | \mathbf{z}_{2})$$

Online Inference

Use sliding window $(\mathbf{x}_{t-W+1}, \dots, \mathbf{x}_t)$ for detecting anomaly at time t, use the **negative reconstruction probability** of last data \mathbf{x}_t as the anomaly score.

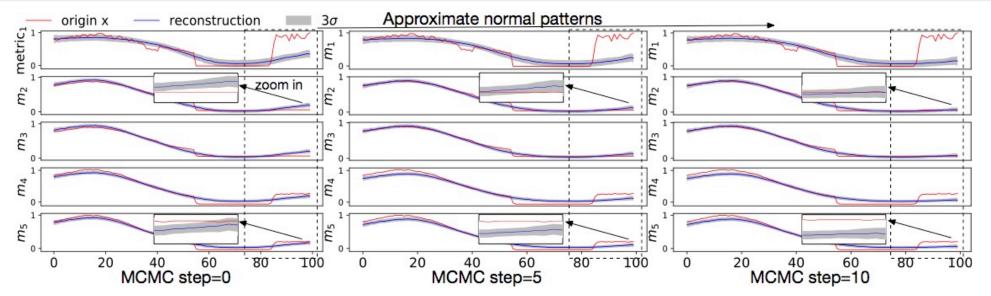
Assume the last data x_t as an anomaly beforehand, and apply MCMC imputation [ICML'14] on x to get a more reasonable reconstruction.

$$\mathbf{x} = (\mathbf{x}_o, \mathbf{x}_t) \xrightarrow{\text{MCMC}} \mathbf{x}^0 = (\mathbf{x}_o, \mathbf{x}_t^0) \xrightarrow{\text{repeat}} \bar{\mathbf{x}} = (\mathbf{x}_o, \mathbf{x}_t')$$

Anomaly score:

$$-\mathbb{E}_{q_{\phi}(\mathbf{z}_{1},\mathbf{z}_{2}|\bar{\mathbf{x}})}[\log p_{\theta}(\mathbf{x}|\mathbf{z}_{1},\mathbf{z}_{2})] = -\frac{1}{L}\sum_{l=1}^{L}[\log p_{\theta}(\mathbf{x}|\mathbf{z}_{1}^{(l)},\mathbf{z}_{2}^{(l)})]$$

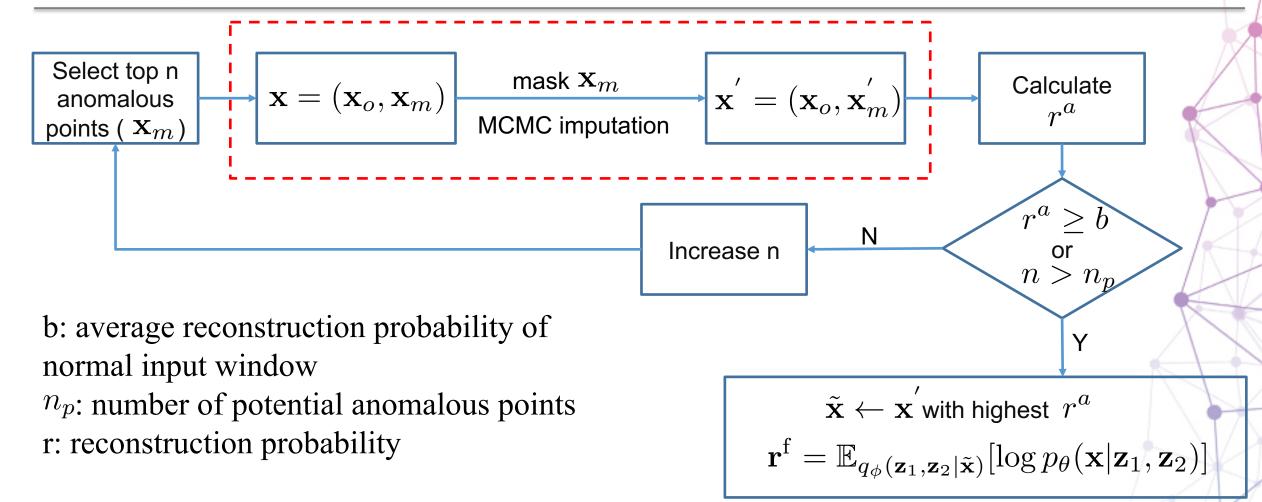
An observation with a higher score is more likely to be an anomaly.



Goal: find a group of most anomalous metrics for each detected entity anomaly. **Non-Goal**: directly find the root cause of anomaly

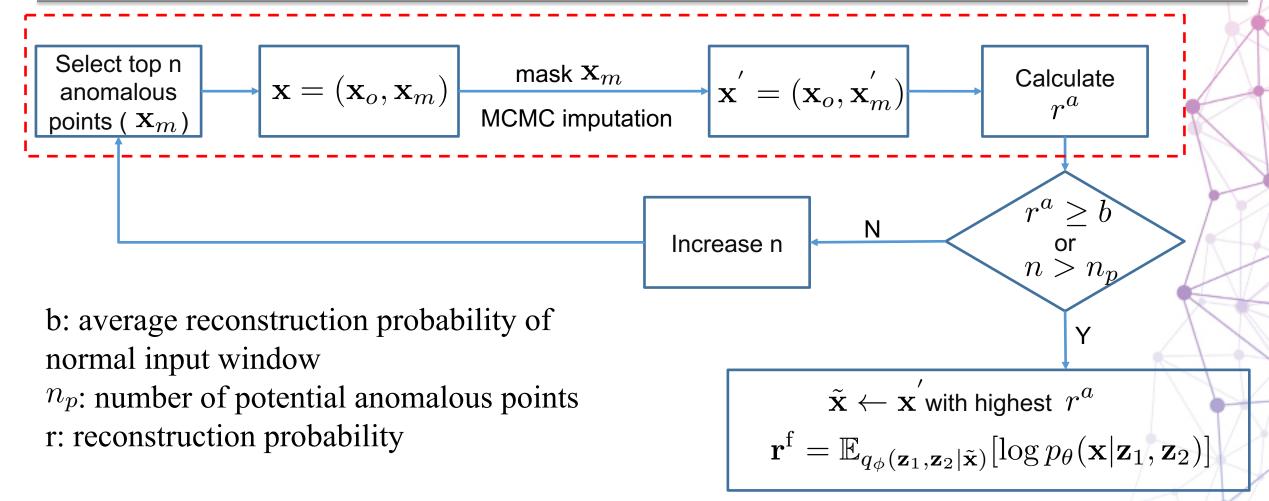
Challenges: The anomalies can affect the estimation of reconstructions at **all** dimensions (anomalous or not).

Idea: Use an MCMC-based method to **approximate the normal patterns**, and then interpret the anomalies based on the revised reconstruction probability.



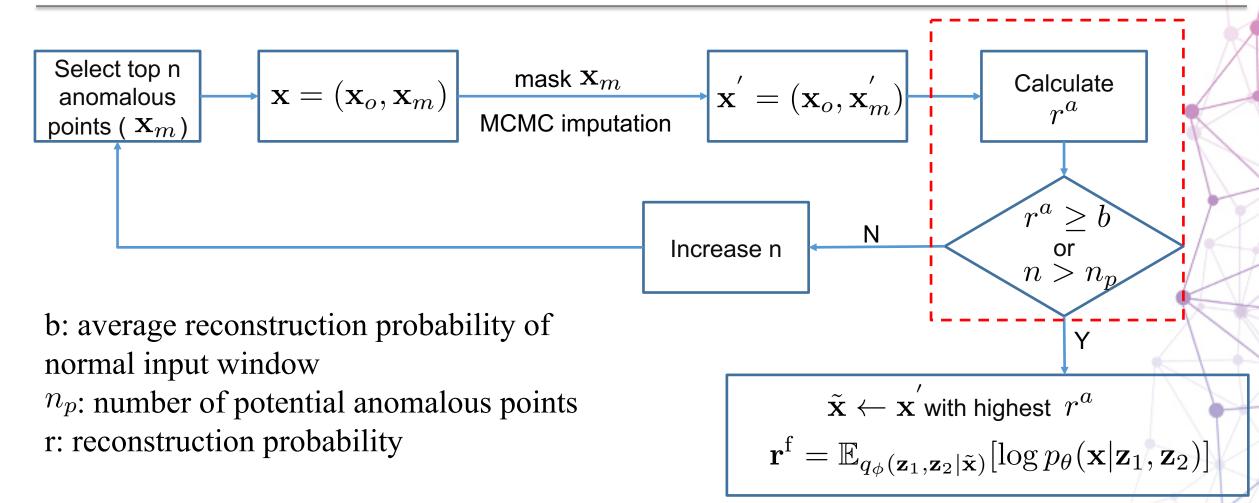
Anomaly Score = $-\mathbf{r}^{f}$

Metrics with higher anomaly score are more likely to be anomalous metrics.



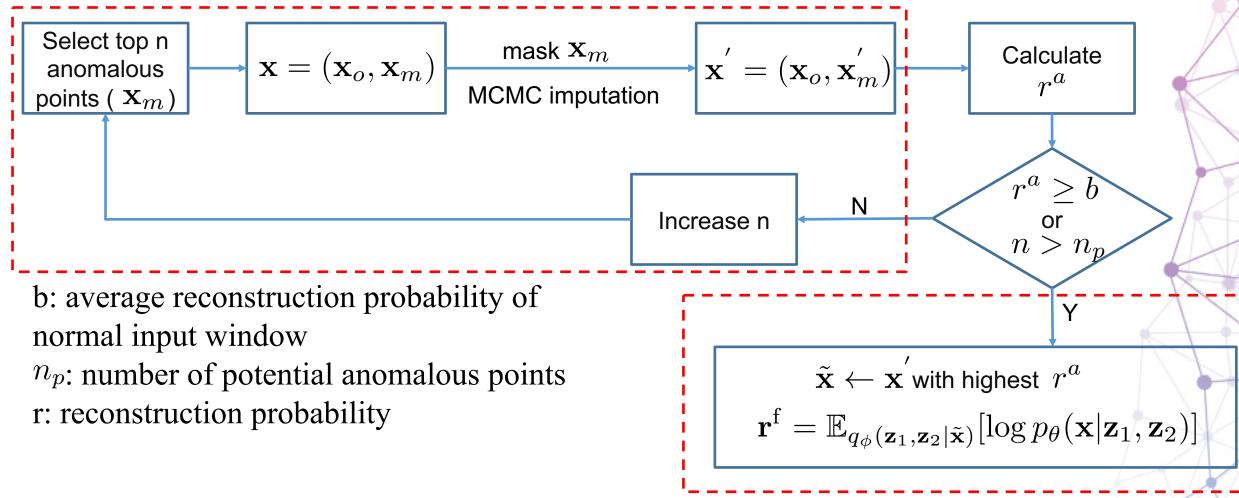
Anomaly Score = $-\mathbf{r}^{f}$

Metrics with higher anomaly score are more likely to be anomalous metrics.



Anomaly Score = $-\mathbf{r}^{f}$

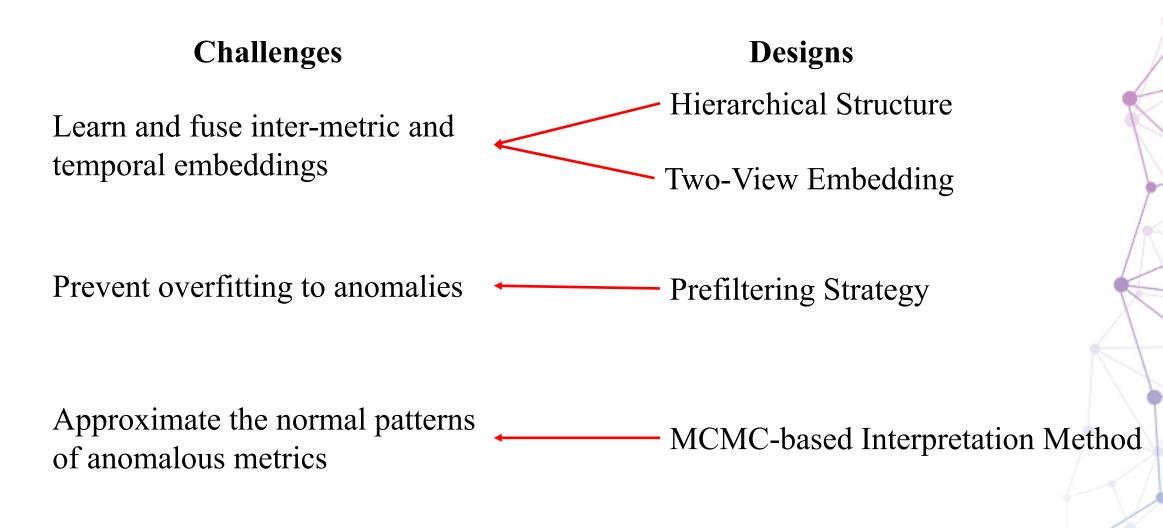
Metrics with higher anomaly score are more likely to be anomalous metrics.

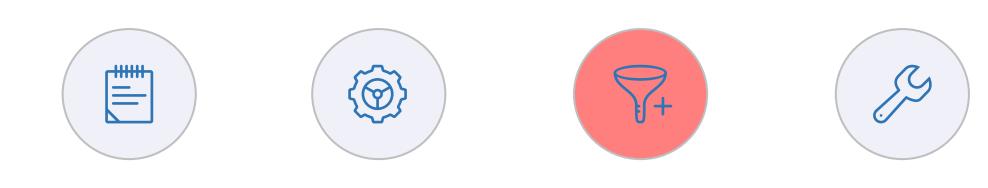


Anomaly Score = $-\mathbf{r}^{f}$

Metrics with higher anomaly score are more likely to be anomalous metrics.

24





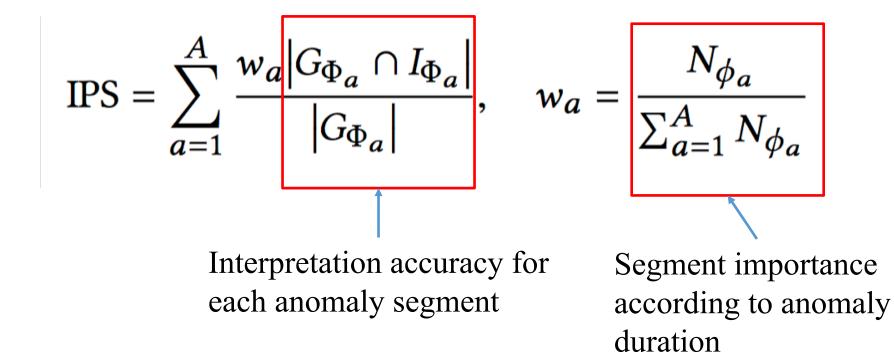
Background Algorithm Evaluation Conclusion

Dataset	# entities	# metrics	Train	Test	Anomaly (%)
SWaT	1	51	475200	449919	12.13
WADI	1	118	789371	172801	5.85
SMD	12	38	304168	304174	5.84
ASD	12	19	102331	51840	4.61

Segment-level Evaluation Metrics

For anomaly detection: point-adjust approach [WWW'18, KDD'19, KDD'20] Metrics: F1-score, AUROC, AP

For anomaly interpretation: we propose IPS metric for segment-level evaluation.



• RQ1: How does *InterFusion* perform on MTS anomaly detection and interpretation, in comparison with the state-of-the-art methods?

• RQ2: How effective is each design choice in *InterFusion*?

• RQ3: Is *InterFusion* feasible to be deployed in production?

• RQ1: How does *InterFusion* perform on MTS anomaly detection and interpretation, in comparison with the state-of-the-art methods?

• RQ2: How effective is each design choice in *InterFusion*?

• RQ3: Is *InterFusion* feasible to be deployed in production?

Methods	SWaT	WADI	SMD	ASD	Avg.
LSTM-NDT	0.8133	0.5067	0.7687	0.4061	0.6237
MSCRED	0.8346	0.5469	0.8252	0.5948	0.7004
MAD-GAN	0.8431	0.7085	0.8966	0.6325	0.7702
OmniAnomaly	0.7344	0.7927	0.9628	0.8344	0.8311
DSANet	0.8924	0.8739	0.9630	0.8740	0.9008
USAD	0.8227	0.4275	0.9024	0.7987	0.7378
VAEpro	0.8369	0.8200	0.8693	0.8522	0.8446
InterFusion	0.9280	0.9103	0.9817	0.9531	0.9433

Average best-F1 for InterFusion and baselines

RQ1. Anomaly Interpretation

Interpretation IPS for InterFusion and baselines

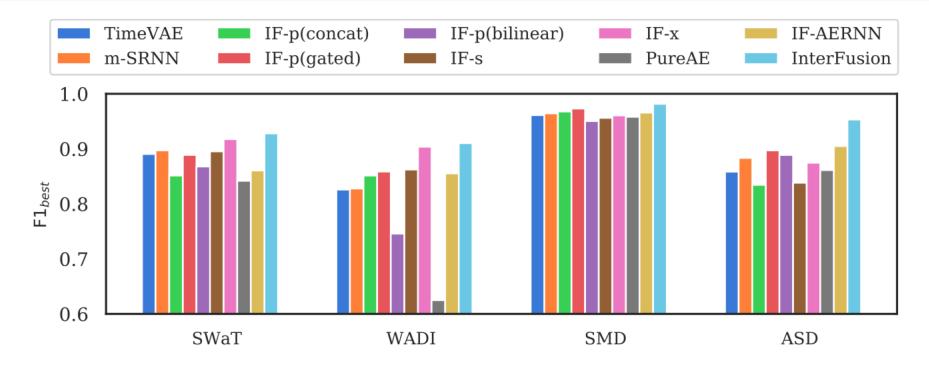
Methods	SMD	ASD	Avg.
LSTM-NDT	0.5751	0.8619	0.7185
MSCRED	0.6421	0.7652	0.7037
OmniAnomaly	0.8008	0.8029	0.8019
DSANet	0.6713	0.8123	0.7418
VAEpro	0.5681	0.8236	0.6959
VAEpro*	0.7433	0.8916	0.8175
InterFusion-nI	0.7752	0.8881	0.8317
InterFusion	0.8340	0.9107	0.8724

• RQ1: How does *InterFusion* perform on MTS anomaly detection and interpretation, in comparison with the state-of-the-art methods?

• RQ2: How effective is each design choice in *InterFusion*?

• RQ3: Is *InterFusion* feasible to be deployed in production?

RQ2. Ablation Studies

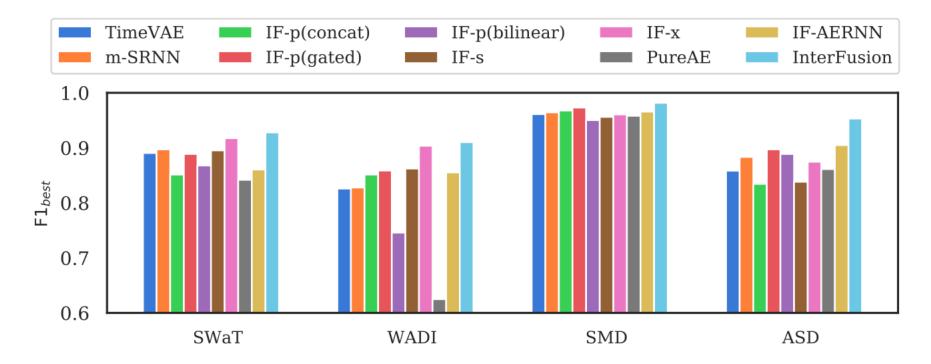


Inter-metric and temporal embeddings: m-SRNN, TimeVAE

InterFusion-p (concat, gated, bilinear): different feature fusion methods

InterFusion-s: without two-view embedding

RQ2. Ablation Studies



InterFusion-x: without prefiltering strategy

PureAE and InterFusion-AERNN: generalizability of InterFusion's designs

• RQ1: How does *InterFusion* perform on MTS anomaly detection and interpretation, in comparison with the state-of-the-art methods?

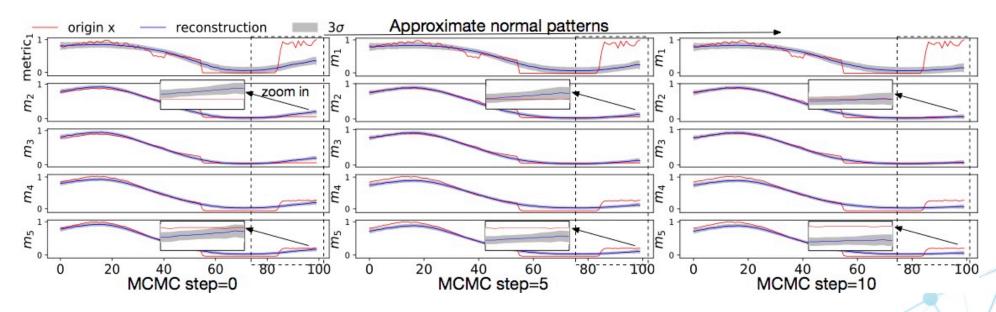
• RQ2: How effective is each design choice in *InterFusion*?

• RQ3: Is *InterFusion* feasible to be deployed in production?

On ASD (Application Server Dataset) from a large Internet company.

Detection: overall precision of 0.93, overall recall of 0.99. Successfully detect severe and subtle anomalies.

Interpretation: tell the operators about the most affected metrics and the extent to which the metrics deviate from their normal patterns.

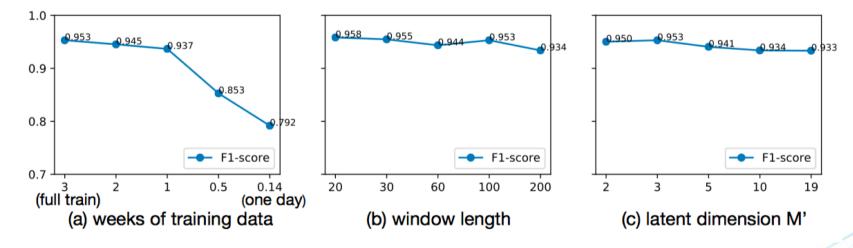


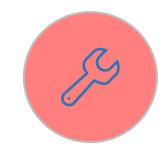
Computation time:

- Offline training: about 6 minutes for 3-week training data (5-minute interval).
- Online detection: less than 1 second per point.
- Interpretation: about $2 \sim 15$ seconds for each entity anomaly.

Parameter sensitivity:

- Robust to potential anomalies in training data. (prefiltering strategy)
- Low demand for training data. (achieve high performance even with one-week data)
- NOT sensitive to sliding window length and dimensions of latent variables.





Background Algorithm Evaluation Conclusion

Contribution

InterFusion

- The first MTS anomaly detection algorithm that employs HVAE with explicit low-dimensional inter-metric and temporal embeddings to jointly learn robust MTS representations
- Proposes a novel anomaly interpretation method based on MCMC imputation, and a new segmentwise evaluation metric consistent with the system operators' preferences.
- Achieves overall best F1-Score higher than 0.94 and overall interpretation accuracy of 0.87 on four real-world datasets, outperforming the stateof-the-art methods.

Conclusion

• Simultaneously learning low-dimensional inter-metric and temporal embeddings improves the anomaly detection performance for each type of anomalies than just learning a single type representation for MTS.

• A two-view embedding with hierarchical stochastic latent variables has been shown as an effective way to jointly learn robust MTS representations.

• The MCMC-based imputation approach can help obtain reasonable latent embeddings and reconstructions at detected entity anomalies in MTS, which can help better interpret the detected MTS anomalies.

Code and Data: https://github.com/zhhlee/InterFusion

THANK YOU!

Q&A?

lizhihan17@mails.tsinghua.edu.cn

