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Time Series Anomaly Detection

« Anomaly Detection: 1images, graphs, texts, time series, etc.

= Monitor the status of entities (e.g., systems, services) in the domain of
manufacturing industry and Information Technology (IT) systems.

/WW
Static Threshold Univariate Time Series Multivariate Time Series
(Domain Expert) (Single System Metric) (Entity Metrics)

[WWW18] [KDD'19]



Multivariate Time Series (MTS)
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Each metric describes a different part or attribute of a complex entity (i.e., MTY).

e.g., CPU utilization, TCP active opens, memory utilization, packets transmitted
per second, ..., iIn a Web Application Server.



Anomaly Types in MTS
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Temporal Anomaly

Inherent patterns like periodicity within each metric.
e.g., system-level failure, rebooting



Anomaly Types in MTS
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Relationships among all metrics of an entity at a time period.
e.g., local fluctuations in parts of the system



EW‘
lf’x/”“\/ﬁ@‘./\/“”\_

9
£ -

Challenges N

£

|
z

|
|
|

éWl

56 6 72 0 8 16 24 32 40 48 56 64 72

m
1 =4
|

\

~ 7

£

i

ma
o |
@ ]
. |
(=2} \
~ |
E=Y \
w | ]
N |}
E=Y
o
B
@
Y

£

Time(hour) ime
Temporal Anomaly Inter-me tric Anomaly

* How to precisely detect different kinds of anomalies 1n

multivariate time series?

* How to learn and fuse inter-metric and temporal representations to capture the
normal patterns of MTS?

* How to prevent the model from overfitting to potential anomalies 1n real-world
data?

* How to interpret each detected anomaly (i.e., find a group of

most anomalous metrics for each entity anomaly)?
* How to find the normal patterns that each anomalous metric should have

followed?
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Overview of InterFusion

Offline Training

Online Detection
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> Interpretation

v

Most Anomalous

Metrics

Preprocessing: data normalization &
split MTS data into sliding windows

Training & Detection: Unsupervised
model training, detect MTS anomalies

Interpretation: Find most anomalous
metrics (to accelerate troubleshooting,
to explain detection results to users)
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Overview of InterFusion
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Overview of InterFusion
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Network Architecture of InterFusion
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Core idea: model the MTS using
HVAE with jointly trained
hierarchical stochastic latent
variables, each of which explicitly
learns low-dimensional inter-
metric or temporal embeddings.

Challenges Designs

metric and temporal

Learn and fuse inter- < Hierarchical Structure
embeddings

Two-View Embedding

Prevent overfitting

. <«—— Prefiltering Strate
to anomalies & gy



Hierarchical Structure
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o

po(x, 21, 22) = po(x|21, 22)po(21|22)pe(22)

Hierarchical latent variables, el
rather than learning independently



Two-view Embedding

Inter-metric __., Real NVP R” %V

Embedding fA
RUXW_’RW XW L T

Two-view

Embedding
' AT Prefiltering
Strategy !
v
Temporal

Embedding | i

RM x W_,R.-\-!xw E i

Variational net
q¢(21, 22|x)

16

Two-view Embedding with auxiliary”
“reconstructed input” d € RM*W

~e

Compress the MTS along time and

metric dimensions to obtain temporal

and inter-metric embeddings.

help InterFusion learn better inter-
metric embeddings that are aware of
the learned temporal information,
while preserving the time consistency
inside the inter-metric embeddings..



Prefiltering Strategy

Prefiltering strategy reduces the risk |\ 4

of overfitting to potential anomalies, |
while preserving the flexibility of /|
--------------------------------- the learned inter-metric embeddingsé—

Prefiltering
Strategy !

Derive z1 from reconstructed input d
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Offline Training
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i 1(‘“ xwW
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Deduce training objective with auxiliary deterministic
variables d, e:

L(x,0,9) = Eq,(21,2,,d|%) | log pg(x|z1, 22, €) |
— Dk1.(9¢(21, 22, d|%)|[pg (21, 22, €))
= Eq¢ [logpg(xlzl, z2,€) + log pg(z1,e|zz)
+log pg(z2) — log q4(z1, d|z2, x) — log q¢(z2|x)]

Share parameters of DeconvNets g:
di.w ~ qo(di.w|22,%x) = ¢s(d1.w|2z2) = d(d1.w — 9(22))
po(e1.w|z2) = d(er.w — g(z2)

q(d1.w|z2) = p(er.w|z2)



Online Inference

Use sliding window (X;_w 1, .. ., X;) for detecting anomaly at time t, use the
negative reconstruction probability of last data x; as the anomaly score.

Assume the last data X; as an anomaly beforehand, and apply MCMC imputation
[ICML’14] on x to get a more reasonable reconstruction.

MCMC 0 _

L 0 repeat o /
imputation X = (XO’Xt ) Stimes =X (X07X75)

X = (X07 Xt)

Anomaly score:

L
1 D (1
B, (a1.azl) 108 P (x|21,22)] = —7 > [log po (x|, 25 )]
=1
An observation with a higher score is more likely to be an anomaly.
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Anomaly Interpretation

20

origin x reconstruction 30 Approximate normal patterns
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Goal: find a group of most anomalous metrics for each detected entity anomaly.
Non-Goal: directly find the root cause of anomaly

Challenges: The anomalies can affect the estimation of reconstructions at all
dimensions (anomalous or not).

Idea: Use an MCMC-based method to approximate the normal patterns, and
then interpret the anomalies based on the revised reconstruction probability.



Anomaly Interpretation

Select top n
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r: reconstruction probability r' = Eq, (2120|5108 Po (x|21, 22)]

Anomaly Score = —r!

Metrics with higher anomaly score are more likely to be anomalous metrics.
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Anomaly Interpretation
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Anomaly Interpretation
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Anomaly Interpretation

Select top n
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r: reconstruction probability
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Metrics with higher anomaly score are more likely to be anomalous metrics.
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Challenges & Designs

Challenges Designs

, , Hierarchical Structure
Learn and fuse inter-metric and <
temporal embeddings

Two-View Embedding

Prevent overfitting to anomalies < Prefiltering Strategy

Approximate the normal patterns _
of anomalous metrics

MCMC-based Interpretation Method
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Datasets

Dataset # entities # metrics Train Test Anomaly (%)
SWaT 1 51 475200 449919 12.13
WADI 1 118 789371 172801 5.85

SMD 12 38 304168 304174 5.84
ASD 12 19 102331 51840 4.61

27



Segment-level Evaluation Metrics

For anomaly detection: point-adjust approach [WWW’18, KDD’19, KDD’20]
Metrics: F1-score, AUROC, AP

For anomaly interpretation: we propose IPS metric for segment-level evaluation.

A
wa|Go, Nlo,| N
IPS — . Wq = )
a=1 |G‘Da| z:azl N¢a
Interpretation accuracy for Segment importance
cach anomaly segment according to anomaly
duration

28



Research Questions

* RQI: How does InterFusion perform on MTS anomaly detection and
interpretation, in comparison with the state-of-the-art methods?

* RQ2: How effective 1s each design choice in InterFusion?

* RQ3: Is InterFusion feasible to be deployed 1n production?

29



Research Questions

* RQI: How does InterFusion perform on MTS anomaly detection and
interpretation, in comparison with the state-of-the-art methods?
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RQI. Anomaly Detection

31

Average best-F1 for InterFusion and baselines

Methods SWaT WADI SMD ASD Avg.

LSTM-NDT 0.8133  0.5067 0.7687  0.4061  0.6237
MSCRED 0.8346  0.5469  0.8252  0.5948 0.7004
MAD-GAN 0.8431 0.7085 0.8966  0.6325  0.7702
OmniAnomaly 0.7344  0.7927 0.9628 0.8344  0.8311
DSANet 0.8924  0.8739 0.9630 0.8740  0.9008
USAD 0.8227  0.4275 0.9024  0.7987  0.7378
VAEpro 0.8369 0.8200 0.8693  0.8522  0.8446
InterFusion 0.9280 0.9103 0.9817 0.9531 0.9433




RQ1. Anomaly Interpretation

32

Interpretation IPS for InterFusion and baselines

Methods SMD ASD Avg.
LSTM-NDT 0.5751 0.8619  0.7185
MSCRED 0.6421 0.7652  0.7037
OmniAnomaly 0.8008 0.8029  0.8019
DSANet 0.6713 0.8123 0.7418
VAEpro 0.5681 0.8236  0.6959
VAEpro* 0.7433 0.8916 0.8175
InterFusion-nl  0.7752 0.8881 0.8317
InterFusion 0.8340 0.9107 0.8724




Research Questions

* RQ2: How effective 1s each design choice in InterFusion?
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RQ2. Ablation Studies

mmm TimeVAE

mmm [F-p(concat)
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Inter-metric and temporal embeddings: m-SRNN, TimeVAE

InterFusion-p (concat, gated, bilinear): different feature fusion methods

InterFusion-s: without two-view embedding
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RQ?2. Ablation Studies
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Research Questions

* RQ3: Is InterFusion feasible to be deployed 1n production?
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RQ3. Feasibility Study

On ASD (Application Server Dataset) from a large Internet company.

Detection: overall precision of 0.93, overall recall of 0.99. Successfully detect severe
and subtle anomalies.

Interpretation: tell the operators about the most affected metrics and the extent to
which the metrics deviate from their normal patterns.

origin x

reconstruction 30 Approximate normal patterns
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RQ3. Feasibility Study

Computation time:

* Offline training: about 6 minutes for 3-week training data (5-minute interval).
* Online detection: less than 1 second per point.

* Interpretation: about 2~15 seconds for each entity anomaly.

Parameter sensitivity:

* Robust to potential anomalies 1n training data. (prefiltering strategy)

* Low demand for training data. (achieve high performance even with one-week data)
* NOT sensitive to sliding window length and dimensions of latent variables.
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(a) weeks of training data (b) window length (c) latent dimension M’
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Contribution

* The first MTS anomaly detection algorithm that
employs HVAE with explicit low-dimensional
inter-metric and temporal embeddings to jointly
learn robust MTS representations

* Proposes a novel anomaly interpretation method
I n te '@ F us l on based on MCMC imputation, and a new segment-

wise evaluation metric consistent with the system
operators’ preferences.

* Achieves overall best F1-Score higher than 0.94
and overall interpretation accuracy of 0.87 on

four real-world datasets, outperforming the state-
of-the-art methods.
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Conclusion

* Simultaneously learning low-dimensional inter-metric and temporal embeddings
improves the anomaly detection performance for each type of anomalies than just
learning a single type representation for MTS.

* A two-view embedding with hierarchical stochastic latent variables has been shown as
an effective way to jointly learn robust MTS representations.

* The MCMC-based imputation approach can help obtain reasonable latent embeddings
and reconstructions at detected entity anomalies in MTS, which can help better
interpret the detected MTS anomalies.

Code and Data: https://github.com/zhhlee/InterFusion
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THANK YOU!

Q&A?

lizhihan17@mails.tsinghua.edu.cn




