
Identifying Bad Software Changes via Multimodal Anomaly
Detection for Online Service Systems

Nengwen Zhao∗
Tsinghua University; BNRist

Beijing, China

Junjie Chen†
College of Intelligence and

Computing, Tianjin University
Tianjin, China

Zhaoyang Yu
Tsinghua University; BNRist

Beijing, China

Honglin Wang
BizSeer

Beijing, China

Jiesong Li
China Guangfa Bank
Guangzhou, China

Bin Qiu
China Guangfa Bank
Guangzhou, China

Hongyu Xu
China Guangfa Bank
Guangzhou, China

Wenchi Zhang
BizSeer

Beijing, China

Kaixin Sui
BizSeer

Beijing, China

Dan Pei
Tsinghua University; BNRist

Beijing, China

ABSTRACT
In large-scale online service systems, software changes are in-
evitable and frequent. Due to importing new code or configurations,
changes are likely to incur incidents and destroy user experience.
Thus it is essential for engineers to identify bad software changes,
so as to reduce the influence of incidents and improve system re-
liability. To better understand bad software changes, we perform
the first empirical study based on large-scale real-world data from
a large commercial bank. Our quantitative analyses indicate that
about 50.4% of incidents are caused by bad changes, mainly be-
cause of code defect, configuration error, resource contention, and
software version. Besides, our qualitative analyses show that the
current practice of detecting bad software changes performs not
well to handle heterogeneous multi-source data involved in soft-
ware changes. Based on the findings and motivation obtained from
the empirical study, we propose a novel approach named SCWarn
aiming to identify bad changes and produce interpretable alerts
accurately and timely. The key idea of SCWarn is drawing support
from multimodal learning to identify anomalies from heteroge-
neous multi-source data. An extensive study on two datasets with
various bad software changes demonstrates our approach signif-
icantly outperforms all the compared approaches, achieving 0.95
F1-score on average and reducing MTTD (mean time to detect)

∗BNRist: Beijing National Research Center for Information Science and Technology
†Junjie Chen is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’21, August 23–28, 2021, Athens, Greece
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8562-6/21/08. . . $15.00
https://doi.org/10.1145/3468264.3468543

by 20.4%∼60.7%. In particular, we shared some success stories and
lessons learned from the practical usage.

CCS CONCEPTS
• Software and its engineering→ Maintaining software.

KEYWORDS
Software Change, Anomaly Detection, Online Service Systems

ACM Reference Format:
Nengwen Zhao, Junjie Chen, Zhaoyang Yu, Honglin Wang, Jiesong Li, Bin
Qiu, Hongyu Xu, Wenchi Zhang, Kaixin Sui, and Dan Pei. 2021. Identify-
ing Bad Software Changes via Multimodal Anomaly Detection for Online
Service Systems. In Proceedings of the 29th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engi-
neering (ESEC/FSE ’21), August 23–28, 2021, Athens, Greece. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3468264.3468543

1 INTRODUCTION
For large-scale online service systems, such as social networking,
E-bank, and search engines, engineers need to frequently conduct
software changes, aiming to fix bugs, deploy new features, adapt to
environmental change, and improve software performance [39, 77].
Because of importing new code or configurations, software changes
are more likely to incur service outages, user dissatisfaction, and
huge economic loss [6, 7, 9–11, 24, 35]. Based on the experience
from Google SRE (Site Reliability Engineering) [4], about 70% of
incidents are related to software changes. Therefore, it is essential to
avoid incidents and ensure service quality under software changes.

In the literature, tremendous efforts have been devoted to ensur-
ing the quality of software changes, which can be divided into three
categories: 1) risk analysis and impact assessment before deploy-
ment [37, 49, 74], 2) reliable launching strategy during deployment,
and 3) monitoring performance and identifying bad changes after
deployment [39, 46, 77, 79]. Although each software change must

https://doi.org/10.1145/3468264.3468543
https://doi.org/10.1145/3468264.3468543

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece N. Zhao, J. Chen, Z. Yu, H. Wang, J. Li, B. Qiu, H. Xu, W. Zhang, K. Sui, D. Pei

be rigorously reviewed and extensively tested before deployment
(e.g., unit test and integration test), errors and bugs could remain
uncaught in the real production environment due to the discrepan-
cies between testing and production environment in cluster size,
complex component interactions, resource contention, OS/library
versions, and unexpected workload [39, 77]. Thus, it is necessary to
monitor service and identify bad changes in time after deployment,
which is the target of our work, so that proactive actions could
be taken to avoid further outages and economic loss. In the real
world, it is time-consuming and error-prone for engineers to check
each software change manually. It is because there are hundreds of
changes per day in large systems and numerous monitoring data are
involved in each software change. To overcome it, some works are
proposed to replace manual inspection with an automated anom-
aly detection algorithm [39, 46, 47, 56, 77]. These existing works
mainly focus on the behaviors of business KPIs (Key Performance
Indicators, e.g., response time and success rate). Nevertheless, it is
a little late to identify anomalies from business KPIs, which may
have incurred poor user experience and economic loss.

To better understand the influence and behavior of bad soft-
ware changes, we conduct the first empirical study based on real-
world data from a large commercial bank over the last two years
and obtain three key findings. (1) About 50.4% of incidents are
caused by changes on average, indicating that software change is
indeed failure-prone (RQ1). (2) Abnormal behaviors of bad software
changes are very complex and involve heterogeneous multi-source
data, including business KPIs [70] (characterizing the status of ap-
plication layer), machine KPIs [64] (characterizing the status of
underlay infrastructure like database, server and middleware, e.g.,
CPU usage, JVM heap space) and logs [16, 78] (recording detailed
running information of the service). Besides, some normal changes
could also lead to abnormal but expected behaviors, e.g., resource
expansion would bring a decrease in CPU usage and response time
(RQ2). (3) The current practice fails to identify abnormal signals
earlier hidden in other data sources besides business KPIs, and ig-
nores the expected changes, resulting in unsatisfactory performance
(RQ3). To sum up, on the one hand, this study further motivates
the necessity of identifying bad changes earlier; on the other hand,
it provides us some guidelines to design an effective approach.

In this paper, we propose a novel approach named SCWarn to
identifying bad changes and producing warning signals earlier by
fusing heterogeneous multi-source data. There are two major chal-
lenges when designing such an approach. The first one is the lack
of sufficient abnormal labeled data since systems tend to run stably.
Besides, different bad changes tend to exhibit various abnormal
patterns on different data sources. Thus it is challenging to de-
sign the approach in supervised ways. The second one is how to
extract useful information and identify anomalies from heteroge-
neous multi-source data involved in software changes accurately.
To tackle these challenges, we leverage the idea of multimodal learn-
ing to identify anomalies in an unsupervised manner, which has
been widely used to learn information from cross modality (e.g., text
and images) [59]. More specifically, SCWarn consists of four main
steps, i.e., data preparation (§3.1), multimodal anomaly detection
(§3.2), alerting with analysis report (§3.3), and action decision (§3.4).
SCWarn first preprocesses raw data to transform heterogeneous
data into unified time series based on log parsing [25]. Then, due

to the ability of LSTM (Long Short Term Memory) [30] to model on
temporal data, SCWarn adopts multimodal LSTM to detect anom-
alies frommulti-source data [53, 59]. The core ideas are using LSTM
to learn the normal pattern in each single-source time series and
utilizing multimodal fusion to capture the inter-correlations among
multi-source data. Next, for online detection, equipped with our
scenario-specific alerting strategy, the model could generate alerts
with reports to notify engineers to pay attention to suspicious soft-
ware changes. Finally, abnormal but expected changes would be
excluded by a policy-based strategy based on a knowledge base.
Engineers then confirm the result and take corresponding actions
(e.g., rollback) to prevent further service outages.

We conduct an extensive study to investigate the performance
of SCWarn on two widely-used benchmark systems, i.e., Train-
Ticket [65] and E-commerce [18], following the existing work [21,
31, 42, 68, 82]. Specifically, based on some common and typical
incidents caused by software changes in the real world (RQ2), we
simulate ten types of bad changes (Table 2) to the two systems and
construct two datasets, which contain a total of 246 bad changes and
196 normal changes. Our experimental results show that SCWarn is
able to identify bad changes more accurately and earlier. In detail,
our approach could achieve 0.95 F1-score on average, while the
average F1-score of three state-of-the-art compared approaches
(Gandalf [39], Funnel [77] and Lumos [56]) are only 0.83, 0.77, and
0.80, respectively. The Mean Time To Detect (MTTD) is reduced by
20.4%∼60.7% with SCWarn. Besides, the superiority of our multi-
modal LSTM algorithm is illustrated by comparing it with several
related anomaly detection algorithms [16, 32, 64, 70], and the av-
erage F1-score is improved by up to 0.27. Also, the contributions
and necessity of integrating multi-source data are confirmed by
comparing with methods using single data source.

To sum up, this work makes the following major contributions:
• We perform the first large-scale empirical study of incidents in-
duced by bad software changes and obtain some key observations,
which largely motivate our work.

• We propose a novel approach named SCWarn to identifying bad
software changes more accurately and earlier, which could notify
engineers to pay attention to bad changes, so as to take proactive
actions to avoid further service outages in advance.

• An extensive study shows that SCWarn significantly outperforms
all the compared approaches, achieving 0.95 F1-score on average
and reducing MTTD by 20.4%∼60.7%. Besides, we have released
our tool on GitHub [62] for better reproducibility.

2 BACKGROUND AND EMPIRICAL STUDY
2.1 Software Change Management
In online service systems, software changes are frequent and in-
evitable, aiming to deploy new features, fix bugs, adapt to envi-
ronmental change, and improve performance. Figure 1 presents a
typical procedure of software change management in industry [4],
including the following five steps:
• Problem identification. During the lifecycle of software, once a
problem is identified by engineers through daily operation, mon-
itoring alerts or user complaints, they will conduct a change to
fix the problem. The common problems include code bugs, poor
performance, error configurations, new requirements, etc.

Identifying Bad Software Changes via Multimodal Anomaly Detection for Online Service Systems ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Change ticketDeveloper

Operator

2. Change
preparation

3. Change
review

Team

5. Post-change
monitoring 4. Deployment

Online service
systems

1. Problem
identification

3
.
C
h

Figure 1: Workflow of software change management

• Change preparation. After problem identification, engineerswould
prepare for a change, including proposing a solution to the prob-
lem, developing code, and software testing. Then they will submit
a change ticket to service teams, which records some detailed
information of this change, such as service system, start time,
operations, involved monitoring data, emergency action.

• Change review. A group of developers and team leaders will get
together to review this change and conduct risk assessment (e.g.,
how significant this change is, how many users it will affect, and
which components it will affect.)

• Deployment. After passing the change review, engineers would
conduct deployment according to the description in the change
ticket. Engineers typically deploy software changes using the
“Dark Launching” strategy.

• Post-change monitoring. Once the deployment is completed, en-
gineers need to continuously and closely monitor the service
performance so as to identify and mitigate bad changes timely.
In this paper, we focus on post-change monitoring, aiming to

identify bad changes timely and prevent further service outages.

2.2 An Empirical Study of Software Changes
To better understand the characteristics of bad software changes,
we conducted the first empirical study based on real-world data
from a large commercial bank, aiming to address the following
research questions (RQs):
• RQ1: What is the percentage of incidents induced by bad soft-
ware changes?

• RQ2: What are the root causes and behaviors of bad changes?
• RQ3: Is the current practice of identifying bad software changes
good enough?

2.2.1 Study Method. We used five service systems as subjects that
are developed and maintained by different product teams. For each
service, all incident tickets and change tickets over the last two
years are collected and analyzed. Due to the privacy policy, we
hid some details, such as the specific number of collected incidents
and changes. About ticket analysis and labeling, three authors
manually labeled whether an incident is caused by a change (RQ1)
and the root cause of a bad change (RQ2) independently through
analyzing troubleshooting steps and incident reason description
recorded in the ticket under the supervision of “Cohen’s Kappa
coefficient” [67]. Disagreements were discussed with engineers in
charge of the tickets to reach a consensus finally.

2.2.2 RQ1: The Percentage of Incidents Induced by Software Changes.
To answer this RQ, we counted how many incidents are caused by

software changes according to the study method in §2.2.1. Figure 2
shows the percentage of incidents incurred by software changes in
these five services. Clearly, we observe that change is an important
factor leading to incidents, accounting for from 39% to 64% (50.4%
on average). In addition to this study, we also investigated some
public data. As stated in [4] and [77], changes account for about 70%
and 54% of incidents in Google and Baidu, respectively. Besides, we
also looked at 88 publicly disclosed recent incidents from Google
Cloud [12]. Each incident report includes a detailed issue summary,
service impact, root cause and remediation action. We found that
37 of the 88 incidents are incurred by changes, accounting for 42%.

To further illustrate the failure-proneness of change, we counted
the number of software changes per day and the number of all
incidents per day in service S1 during two months, as shown in
Figure 3. It is clear that the number of incidents has a positive
relationship with the number of changes. We conducted Pearson
correlation analysis between #Incidents and #Changes. The Pearson
coefficient is 0.57 (indicating a moderate positive correlation) with
p-value<0.01, which further supports our observation.

In summary, software changes are indeed failure-prone, which
could bring great trouble for engineers and customers in software
maintenance. Thus, it is imperative to design an automated and
accurate approach to identifying bad changes timely and reducing
the influence of incidents, which largely motivates our work.

2.2.3 RQ2: Root Causes and Abnormal Behaviors of Bad Changes.
Through analyzing all change tickets, we summarized three types of
changes, i.e., code change (e.g., adding new features), configuration
change and infrastructure-layer change (e.g., replacing hardware
devices). In particular, bad changes may be induced by different
factors, which we call root causes. In this RQ, following the study
method stated in §2.2.1, we summarized five types of root causes
including code defect, configuration error, incompatible software
version, resource contention and some other factors (e.g., error
operations). The percentage of different root causes is shown in
Figure 4. It can be observed that code defect and configuration error
account for a large proportion, accounting for 69%.

Besides, to further help understand the behaviors of bad changes,
we summarize some typical incidents, as shown in Table 1 (the first
nine rows). We can observe that various monitoring data (busi-
ness KPIs, machine KPIs and logs) from multiple sources could be
influenced by software changes. Taking the code defect leading
to memory leak as an example, the “FullGC” log patterns behave
abnormally in Java GC (garbage collection) logs, CPU usage and
memory usage would increase, and finally response time would in-
crease. Thus, it is essential to integrate heterogeneous multi-source
data to detect bad changes. Another interesting observation is ab-
normal data behavior does not necessarily mean that this software
change is bad. It is because some software changes could lead to
abnormal but expected behaviors of monitoring data. For example,
replacing an old server with a new high-performance server could
incur a decrease in CPU usage and response time. Table 1 (the last
three rows) presents some common software changes that could
lead to abnormal but expected behaviors. Therefore, how to filter
out expected changes and reduce false alarms should be considered.

2.2.4 RQ3: Investigation of Current Practice. The current practice
of identifying bad changes in the bank we studied adopts 3-σ [1]

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece N. Zhao, J. Chen, Z. Yu, H. Wang, J. Li, B. Qiu, H. Xu, W. Zhang, K. Sui, D. Pei

S1 S2 S3 S4 S5
Service

0

20

40

60

80

Pe
rc
en

ta
ge

(%
) 64%

53%
45%

51%
39%

Figure 2: Percentage of incidents in-
duced by changes

Aug 01 Aug 15 Aug 29 Sep 12 Sep 26
Date

Co
un

t

#Changes/Day
#Incidents/Day

Figure 3: #Incidents per day and
#Changes per day

Code
defect

Configuration
error

Version Resource
contention

Others0

10

20

30

40

Pe
rc
en

ta
ge

(%
) 38%

31%

11% 12%
9%

Figure 4: Percentage of different root
causes

Table 1: Typical bad/expected software changes and corresponding behaviors of monitoring data

Type Change operation Abnormal behaviors of multi-source monitoring data

Bad
software
change

Configuration error - Wrong IP address Error messaegs in network logs (e.g., “address conflicted”); related machine
KPIs and business KPIs behave abnormally

Configuration error - Missing modification of correlated con-
figuration [49]

Error messages in application logs; business KPIs behave abnormally

Configuration error - Deleting white list by mistake Business KPIs behave abnormally
Code performance - Slow SQL, full table scan and some related
database problems

Database (e.g., active session, lock wait) and related machine KPIs (e.g., disk
space, CPU usage) behave abnormally; response time increases

Code performance - Memory leak “FullGC” log pattern appears frequently in GC log; machine KPIs (e.g., JVM
heap space, memory usage) behave abnormally; response time increases

Code performance - Code self-loop or dead loop System load, CPU usage and other machine KPIs behave abnormally; re-
sponse time increases

Code logic bug -Wrong database table name; error date format Error messages in application logs; success rate decreases
Resource contention Related machine KPIs (e.g., I/O wait, CPU usage) behave abnormally

Expected
software
change

Replace high-performance server; Resource expansion [45] Related machine KPIs (e.g., CPU usage, memory usage) decrease; response
time decreases

Traffic switch CPU usage decreases
Code logic changes (e.g., some new steps are added to trans-
action process)

Related business KPIs behave abnormally (e.g., response time increases)

strategy to inspect the behavior of business KPIs (e.g., response
time). Through analyzing incident tickets and discussing with engi-
neers, we found that the performance of the current practice is far
from satisfactory. There are three reasons accounting for it. First, as
stated in §2.2.3, software changes usually involve multi-source data.
Thus, only focusing on business KPIs fails to identify anomalies hid-
den in other monitoring data, leading to long MTTD (sometimes up
to tens of days) and some missing alarms. For example, an incident
was noticed five days after the change due to the increase in re-
sponse time. If integrating multi-source data, however, the incident
could be identified earlier from the anomalies of JVM heap space.
Second, 3-σ , as well as some other anomaly detection methods (e.g.,
Holt-winters [72]), is not designed especially for identifying bad
changes. Thus, directly applying it ignores the specific scenario and
characteristics of software change (e.g., integrating various data,
abnormal but expected behaviors, and non-transient anomalies),
resulting in some false alarms. The third reason is the drawback of
the anomaly detection algorithm itself, since it is hard for 3-σ and
other simple statistical anomaly detection methods to deal with
complex data. Although there exist some popular products (e.g., Dy-
natrace [17] and Datadog [13]) in industry used to monitor service,
they still fail to overcome the above drawbacks together. To sum up,
the current practice of identifying bad changes should be further
improved, and it is essential to propose an effective approach to
tackle the above drawbacks.

2.3 Summary
Based on the above quantitative and qualitatively analysis, we
obtain three key findings:

• Software change is frequent but failure-prone. Thus, it is promis-
ing to ensure service quality by catching bad changes timely.

• Software changes usually involve heterogeneous multi-source
data. Besides, abnormal behaviors are not necessarily caused by
bad changes. Thus, it is crucial to integrate multi-source data and
exclude noises when designing an approach.

• Current practice mainly focuses on the behavior of business KPIs
and fails to filter out expected changes (false alarms), resulting
in poor performance.

These findings support the motivation to identify bad software
changes. Thus, it is necessary to propose an effective and automated
approach to ensuring service quality under software change, which
can identify bad software changes accurately and earlier based on
involved multi-source monitoring data and make a decision with
timely protective actions to avoid further service outages.

3 APPROACH
The overview of SCWarn is presented in Figure 5, which includes
four main steps: data preparation, multimodal anomaly detection,
alerting with analysis report, and action decision. The key idea of
SCWarn is drawing support from multimodal anomaly detection to
deal with heterogeneous multi-source data. Specifically, the first

Identifying Bad Software Changes via Multimodal Anomaly Detection for Online Service Systems ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Historical
Data

DecisionAlerting

Tra
inin
g

Testing

Real-time
Data

Start
Change

Multimodal
Model

Anomaly
Score Incidents

Expected
Change

Roll Back

Adaptation

Threshold
Selection

Finish
Change

Pre-
processing

Knowledge
base

Analysis
Report

Multimodal
Anomaly Detection

Alerting with Analysis
Report Action DecisionData Preparation

Figure 5: Overview of SCWarn

L1: 2020-06-02T02:45:01 systemd[1]: Reloaded System Logging
Service.
L2: 2020-06-02T02:45:01 vsftpd[132130]: [billing] OK LOGIN:
Client x.x.x.x
L3: 2020-06-02T02:45:01 dd.forwarder[3706]: WARNING
(transaction.py:115): Queue is too big, removing old transactions...
L4: 2020-06-02T02:45:01 vsftpd[132197]: [billing] OK LOGIN:
Client x.x.x.x

Historical
training logs

Time series data

3. Log
serialization

T1: Time systemd[1]: Reloaded System
Logging Service. (L1)
T2: Time vsftpd[*]: [billing] OK LOGIN:
Client IP (L2,L4)
T3: Time dd.forwarder[*]: WARNING
(*): Queue is too big, removing old
transactions... (L3)

1. Log
parsing

Log
templates

L1 -> T1 L2, L4 -> T2
L3 -> T3

Online
logs

2. Matching

Figure 6: Illustration of log preprocessing

step of SCWarn is transforming heterogeneous data into unified
time seriesa based on log parsing (§3.1). Then we adopt multi-
modal learning to detect anomalies from multi-source monitoring
data (logs and KPIs). The core ideas are capturing the temporal
dependency in each time series via LSTM model [30] and encod-
ing the inter-correlations among multi-source data via multimodal
fusion [59] (§3.2). Next, once the anomaly score provided by multi-
modal LSTM violates our designed alerting rule, a warning signal
would be triggered to notify engineers to pay attention to the sus-
picious change with an interpretable analysis report provided by
SCWarn (§3.3). After identifying suspicious changes, we design the
action decision component to remove expected changes and catch
the real bad changes. Finally, engineers could take proactive ac-
tions to stop bad changes (e.g., rollback) and prevent further service
outages (§3.4). In the following, we will present each step in detail.

3.1 Data Preparation
To characterize the behavior of each software change, we need to
collect all related monitoring data because we do not have prior
knowledge about what failure this change will cause. For example,
the database change could incur database crash or performance
degradation, which are reflected in different data sources. As stated
in §1, integrating multi-source data not only helps to identify bad
changes in advance but also could discover the latent relationship
across various data sources, so as to obtain more accurate and
comprehensive results. There are three types of data involved in
our scenario, i.e., business KPIs (e.g., response time), machine KPIs
(e.g., CPU utilization,) and logs, which characterize the running
status of the service from multiple aspects. Thus, how to fuse these
heterogeneous data is a significant challenge.

Intuitively, KPIs are in the format of time series and can be easily
handled, while logs are usually semi-structured or unstructured

texts, which are generated using the “print” function with a string
template and detailed information as parameters. Typically, logs
should be properly parsed for further analysis [26]. We adopt the
state-of-the-art log parsing algorithm, Drain [25], to extract log tem-
plates, and its superiority and efficiency have been demonstrated in
[83]. As shown in Figure 6, given historical raw logs, we first utilize
Drain to extract n log templates (the first step in Figure 6 and n = 3).
When online logs arrive, we could match each log message to the
corresponding template (the second step) and count the number of
occurrences of each template per minute and acquire n template
time series. Meanwhile, the total number of logs and the number of
new logs that cannot match the existing templates are also counted
(the third step). In general, in the normal state, most online logs
could be matched to templates, while the number of new logs would
increase in the abnormal state. Thus, after log preprocessing, raw
log messages can be transformed into n + 2 time series. In this way,
all heterogeneous data can be transformed into the format of time
series, which will be easily handled in the following model.

3.2 Multimodal Anomaly Detection
After data preparation, it is still challenging to model the multi-
source monitoring data since it not only requires capturing the
normal pattern of each time series, but also needs to encode the
inter-correlations among multi-source data. Another significant
challenge is we cannot obtain enough high-quality labeled data and
tend to adopt unsupervised approaches. In SCWarn, We propose
to adopt the technique of multimodal learning in an unsupervised
manner to overcome the above two challenges.

In recent years, the ability of LSTM [30] to handle complex tem-
poral or sequential data has ensured its widespread application in
domains including natural language processing, speech recognition,
and time series forecasting. Compared with traditional Recurrent
Neural Network (RNN), LSTM has shown its strong capability to
maintain the memory of long-term dependencies due to a context-
basedweighted self-loop that allows them to forget past information
in addition to accumulating it [32]. Therefore, it can learn the rela-
tionship between past and current data and has shown remarkable
performance in various sequential data. In SCWarn, we apply LSTM
to capture the temporal dependency in each time series.

To encode the inter-correlations among multi-source data, we
draw support from multimodal learning, which is a powerful model
for data fusion to acquire the joint representation of different modal-
ities (e.g., images and texts, KPIs and logs in our problem). To the
best of our knowledge, there are three popular types of multimodal

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece N. Zhao, J. Chen, Z. Yu, H. Wang, J. Li, B. Qiu, H. Xu, W. Zhang, K. Sui, D. Pei

Business
KPIs

Machine
KPIs

Logs

Multimodal represent-
tation fusion

𝑋!"#:!%

Unimodal representation
learning with LSTM

LSTM

LSTM

LSTM

Prediction

Receiving
block blk_-
370867
src:…

𝑋!"#:!&

𝑋!"#:!'

𝑃!()%

𝑃!()&

𝑃!()'

∅%

∅&

∅'

𝑓'(∅', 𝑋!"#:!')

𝑓%(∅% , 𝑋!"#:!%)

𝑓&(∅& , 𝑋!"#:!&)

F(𝑓%(∗), 𝑓& ∗ , 𝑓'(∗))

Input

Fully connected layer

Data
preparation

Figure 7: Multimodal anomaly detection model

fusion in the literature [53, 59]. (1) Early (Data-level) fusion, inte-
grating multi-source data into a single feature vector as the model
input. (2) Late (Decision-level) fusion, aggregating the decisions
from multiple models where each model is trained on a separate
modality. (3) Intermediate fusion, which converts raw inputs to a
higher-level joint representation by mapping the input through a
pipeline of neural network layers [59]. In particular, the majority
of existing works adopt intermediate fusion due to its strong abil-
ity to learn fused joint information. Inspired by this idea, we also
utilize intermediate fusion in our approach to capture the hidden
correlations existing in multi-source data.

Overall, the core ideas of our multimodal anomaly detection
in SCWarn are using LSTM to learn the temporal dependency in
each time series and adopting multimodal fusion to encode the
inter-correlations among multi-source data. Figure 7 displays the
detailed network structure of multimodal LSTM. Specifically, given
a window of multi-source data Xt−w :t , consisting of business KPIs
(XB

t−w :t), machine KPIs (XM
t−w :t) and logs (XL

t−w :t). We first apply
LSTM to each time series separately to learn the unimodal represen-
tation (ϕ is network weight and f is activation function). Then the
multimodal joint information is captured by the shared representa-
tion layer, which is constructed by merging units with connections
coming into this layer from multiple modality-specific paths. Fi-
nally, the model output is the predicted value Pt+1 at time t + 1
consisting of PBt+1, P

M
t+1 and P

L
t+1. The anomaly score of data Xt+1

can be calculated as the absolute value of the difference between
real value and predicted value, i.e., |Xt+1 − Pt+1 |. The loss function
of multimodal LSTM can be calculated by the sum of mean square
error (MSE) on each modality, which can be formulated as:

L =
1
n

n∑
i=1

[(PBi − XB
i)

2 + (PMi − XM
i)2 + (PLi − XL

i)
2]

where n is the number of time steps in the testing set. The detailed
hyperparameters of the network are presented §4.1.2. The effec-
tiveness of multimodal LSTM algorithm will be illustrated in §4.3.

3.3 Alerting with Analysis Report
3.3.1 Threshold Selection and Alerting Strategy. After obtaining
anomaly scores, a threshold should be selected to decide whether
the current time step is abnormal or not. Motivated by [64], during
offline training on the monitoring data before the software change,

we can compute an anomaly score for each time step in training data
and obtain a univariate time series AStrain = {s1, s2, · · · , sntrain }.
Intuitively, the values of AStrain are not very large, and we can
determine the threshold based on the distribution ofAStrain . Specif-
ically, we utilize k-σ [1] principle to get the threshold. If the current
anomaly score is larger than µ + kσ , we could declare the current
time step is abnormal, where µ and σ are the mean and standard
deviation of AStrain , respectively.

In general, in the field of anomaly detection, if the anomaly score
exceeds a pre-defined threshold, an alert will be triggered to notify
engineers. In our scenario, however, the anomalies induced by
software changes are non-transient and last for a long time without
human intervention. Transient anomalies (e.g., temporary network
issues) are more likely to be noises. If these noises are reported, it
may increase engineers’ burdens of manual investigation and cause
innocent software changes to be stopped. Therefore, we adjust
the alerting strategy, i.e., an alert is generated for a consecutive
anomalous points (exceeding the threshold), to remove noises and
mitigate false alarms. The effect of the two parameters (k and a) on
the performance of SCWarn will be discussed in §4.5 in detail.

3.3.2 Analysis Report. After generating alerts to notify responsible
engineers to pay attention to suspicious software changes, it would
be better to provide an interpretable analysis report, which could
enable engineers to have a global view of the software change and
inspect related monitoring data conveniently. Figure 8 presents an
example of the interpretable report provided by SCWarn. Specifi-
cally, SCWarn can provide some information about the software
change ticket and generate the overall health score of this change
in real time. The health score is derived from the anomaly score
outputted from our multimodal anomaly detection model based on
Min-max normalization, which can be computed as follows (x and
AStrain are anomaly scores of current data and training data):

health score = max(100 −
x −min(AStrain)

max(AStrain) −min(AStrain)
, 0)

Furthermore, we rank all involved data by their individual anomaly
scores (prediction error of each time series) and display the top-k
abnormal data, which may closely relate to the root cause. For ex-
ample, since the top-1 abnormal data is CPU utilization in Figure 8,
we can infer that this alert may be incurred by CPU resource. Also,
the data comparison of each time series between before and after
the change can be presented in a visual manner, which is also conve-
nient for engineers to investigate more details for troubleshooting.

3.4 Action Decision
As introduced in §2.2.3, some successful changes could also result
in abnormal but expected behaviors. Based on the observations
from the empirical study, we could construct a knowledge base
of expected change operations and corresponding data behaviors
in SCWarn (e.g., resource expansion would lead to the decrease of
CPU usage and response time). Then we can design a policy-based
method to distinguish the abnormal behavior is unexpected or not.
If the change operation not in the knowledge base, the decision
process is conducted by engineers manually, and new scenarios
can be updated to the knowledge base. Actually, despite the result
recommended by the policy-based method, the final decision still

Identifying Bad Software Changes via Multimodal Anomaly Detection for Online Service Systems ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Figure 8: A demo of analysis report provided by SCWarn

needs to be confirmed by engineers and cannot be entirely replaced
by automated algorithms, since the cost of false positives (inno-
cent changes are stopped and diagnosis time is wasted) and false
negatives (missing failures) are huge.

If a software change is confirmed as unexpected, engineers would
take prompt protective action (e.g., rollback) to stop the bad change
so as to avoid further service unavailability and economic loss. If
the abnormal behavior is expected, we could leverage the state-of-
the-art adaptation algorithm (StepWise [45]) to enable real-time
monitoring system to adapt to new data pattern.

4 EVALUATION
In this study, we aim to address the following research questions:
• RQ4: What is the effectiveness of SCWarn in identifying bad
software changes?

• RQ5: What is the effectiveness of multimodal LSTM?
• RQ6: What is the time efficiency of SCWarn?
• RQ7: What is the impact of parameters on the result of SCWarn?

4.1 Experiment Setup
4.1.1 Datasets andMetrics. To evaluate the performance of SCWarn,
we conducted the study on two widely-used benchmark systems.

Benchmark Systems. The first system is Train-Ticket [65], an
open-source microservice system, which has been widely applied
in the literature [31, 42, 68, 82]. Train-Ticket serves as a system of
selling train tickets, containing more than 30 microservices (pay,
price, order, food, etc.). The other one is E-commerce, an end-to-
end application benchmark for e-commerce search system [18]. It
covers the major modules and critical paths of an industry scale
e-commerce provider. We run the two systems on Kubernetes [36],
which is an open-source system for automating deployment, scaling,
and management of containerized applications.

Bad Software Changes Injection. As presented in §2.2.3, we
find that major root causes of bad software changes include code
defect, error configurations, incompatible software versions, and
resource contention. Based on the key observation, to evaluate the
effectiveness of SCWarn in identifying bad software changes, we
carefully designed and simulated ten types of bad software change
operations in the study, where all the above four root causes are
involved. Table 2 presents detailed descriptions of bad software

Table 2: Types and descriptions of bad software changes we
injected on the benchmark systems for evaluation

Failure type Description

Code defect
F1 - Create large Java objects in program, lead-
ing to frequent fullGC and OutOfMemory error
F2 - Inject delay into program to simulate code
performance issue
F3 - SQL statement defect leading to slow query

Configuration
error

F4 - Invalid paths which will be opened or exe-
cuted
F5 - Unsuitable size of JVM heap memory
F6 - Database port error
F7 - Limited number of database connections
F8 - Non-existent database table

Software version F9 - Incompatible software version
Resource contention F10 - CPU contention

change operations designed by us. Besides, we also simulated some
normal changes for evaluation, including correct configuration
modification and importing new code without bugs. These software
changes are injected into different components of each benchmark
system, ensuring the diversity of our datasets.

Data Collection. For each benchmark system, KPI data are
collected by Prometheus [57] and stored in InfluxDB [33], and
logs are collected by Logstash [43] and stored in ElasticSearch
(ES) [19]. We collected two datasets A and B based on the two
benchmark systems. Dataset A contains 121 bad software changes
and 96 normal changes, and dataset B contains 125 bad changes
and 98 normal changes. There are 12∼13 cases for each failure
type (Table 2) in each dataset. For each software change case, the
involved multi-source data including business KPIs, machine KPIs
and logs are used for experiments.

Metrics. Intuitively, identifying bad software changes is a binary
classification task. We run SCWarn and compared approaches to
see if bad software changes can be caught successfully. We utilized
popular binary classification metrics, i.e., precision, recall and F1-
score as metrics. Besides, we also considered the mean time (minute)
to detect bad changes (MTTD) after change deployment, which
indicates the ability of SCWarn to identify bad changes in advance.

4.1.2 Implementations and Parameters. We used two weeks of data
before the software change as training data and the online data
after the change as testing data. Specifically, for multimodal LSTM,
we used one LSTM layer (sequence length is 10; hidden size is 128)
and one fully connected (FC) layer on each time series separately.
Then one FC layer is used to learn the joint representation. After
that, two FC layers are used to obtain the final results. The hidden
sizes of all FC layers are set to 64. During training, Adam optimizer
with a learning rate of 0.01 is adopted, the batch size is 64, and the
number of epochs is 50. Besides, we found that the final results
are insensitive to hyperparameters within a small range. For the
compared approaches, we used the parameters provided by their
papers and open-source code [39, 56, 64, 70, 77]. Besides, we have
publicly published our experimental code on GitHub [62] for better
reproducibility. All approaches are implemented by Python with
widely-used libraries, including NumPy [54], pandas [55], scikit-
learn [61], Pytorch [58], etc.

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece N. Zhao, J. Chen, Z. Yu, H. Wang, J. Li, B. Qiu, H. Xu, W. Zhang, K. Sui, D. Pei

Table 3: Precision (P), recall (R), F1-score (F1) and MTTD
(minutes) comparison between SCWarn and baselines

Dataset A Dataset B
Approaches P R F1 MTTD P R F1 MTTD
SCWarn 0.91 0.95 0.93 5.1 0.97 0.98 0.97 2.3
Gandalf−AD 0.68 0.95 0.79 6.2 0.77 0.99 0.87 3.1
Funnel 0.77 0.69 0.73 14.0 0.76 0.87 0.81 6.4
Lumos 0.66 0.94 0.78 10.0 0.77 0.93 0.82 10.0
mFunnel 0.69 0.93 0.79 9.0 0.82 0.79 0.80 3.0
mLumos 0.85 0.83 0.84 10.0 0.72 0.99 0.83 10.0

4.2 RQ4: Performance of Identifying Bad
Software Changes

We compared SCWarnwith the three following baseline approaches.
• Gandalf [39] is proposed for end-to-end safe deployment and
contains an anomaly detection (AD) component based on KPIs
and logs. For logs, it utilizes error messages clustering to extract
error patterns (e.g., 404 code) and detects anomalies on each log
error pattern via Holt-winters. Considering the details about KPI
anomaly detection in Gandalf are unclear [39], we also utilized
Holt-winters on KPIs in the experiments.

• Funnel [77] adopts improved Singular Spectrum Transform (iSST)
to detect change point on business KPIs after software changes.

• Lumos [56] uses A/B testing to compare the KPI pattern during
a time window (10 minutes in our experiments) before and after
the change by statistical hypothesis testing. Considering that
χ2-test in [56] is suitable to categorical data, we adopted t-test
in experiments since it is more appropriate and has been widely
used to time series [38, 44].
Table 3 displays the results between SCWarn and compared ap-

proaches. Clearly, SCWarn performs the best taking all measure-
ments into consideration, achieving 0.93 and 0.97 F1-score on two
datasets. In comparison, the average F1-score of Gandalf, Funnel
and Lumos are only 0.83, 0.77 and 0.80, respectively. The average
precision and recall of SCWarn achieve 0.94 and 0.96, indicating
that SCWarn could detect bad changes accurately with few false
negatives (leading to missing failures and degrading service quality)
and false positives (engineers’ efforts to diagnose are wasted and
innocent changes are stopped). Besides, the MTTD of SCWarn is
3.7 minutes on average, reducing by 20.4%∼63.7%, illustrating that
SCWarn could identify bad changes earlier. Furthermore, consider-
ing both Funnel and Lumos only target at business KPIs, to compare
fairly with our approach, we also extended their anomaly detection
algorithms to multi-source data (mFunnel and mLumos in Table 3).
We observe that F1-score and MTTD of mFunnel and mLumos
are slightly improved compared with raw methods, indicating that
fusing multi-source information is indeed helpful to some degree,
while they still perform worse than SCWarn due to the drawbacks
of their algorithms (iSST and t-test) as explained below.

We further analyzed the reasons why the compared approaches
perform not well. Although Gandalf utilizes both KPIs and logs, it
detects anomalies separately on single data source and fails to iden-
tify the hidden correlations. Thus, its overall performance is weaker
than SCWarn. Besides, it adopts Holt-winters to detect anomalies
on each log error pattern. On the one hand, Holt-winters is only

applicable to seasonal KPI. On the other hand, error message clus-
tering is exclusively designed for logs recording error information,
which is not generic for all log data. In comparison, our log pre-
processing technique has the ability to deal with various logs. For
Funnel, it uses iSST to detect change point after the change, while
iSST is not generic for various time series (seasonal, variational
and stationary). Besides, iSST requires accumulating enough data,
leading to long MTTD. In terms of Lumos, it simply adopts statisti-
cal testing for anomaly detection, which is only applicable to data
with significant change. Besides, t-test relies on enough new data to
compare with old data before the change to obtain accurate results,
and the window size is set to 10 data points in our experiments. It
is difficult for t-test to achieve short MTTD and high accuracy at
the same time. Therefore, SCWarn fusing multi-source data based
on the multimodal anomaly detection could deliver better results.

Another interesting observation is SCWarn performs differently
in different types of bad changes, especially in MTTD. Specifically,
the MTTD of some failure types (F4, F6, F8 and F9) is shorter than
others. This is because these bad software changes tend to behave
abnormally immediately after the deployment (e.g., error database
port would directly cause the service cannot access the database). In
comparison, some other failures would perform a slow deterioration
process (e.g., creating large Java objects would incur JVMheap space
to rise slowly until it overflows), resulting in longer MTTD.

Overall, taking both F1-score and MTTD into consideration,
SCWarn with good interpretability is indeed able to identify bad
software changes accurately and timely.

4.3 RQ5: Effectiveness of Multimodal LSTM
Actually, identifying bad changes is an anomaly detection task,
aiming to detect abnormal patterns after change deployment. To
demonstrate the effectiveness of our multimodal LSTM algorithm,
we compared it with several state-of-the-art anomaly detection
methods, including Donut [70] and LSTM [30] for business KPIs (B-
LSTM), LSTM-NDT [32] and OmniAnomaly [64] for machine KPIs,
and DeepLog [16] for logs. Besides, we also implemented several
methods integrating multi-source data based on raw Auto-encoder
(M-AE) [23], raw LSTM (M-LSTM) [32] and multimodal AE [53],
to further compare with our algorithm. Although these algorithms
are not specially designed for identifying bad software changes,
they can be extended to solve the problem.

The performance comparison on two datasets is shown in Table 4
and we obtained two key observations. First, multimodal LSTM is
superior to those approaches only relying on single data source.
It is because incorporating multi-source data could identify the
failure signals hidden in various data sources in advance. Besides,
the results provided by multimodal LSTM could also be more accu-
rate when fusing comprehensive information. Notice that DeepLog
performs poorly since it endeavors to detect sequential anomalies
of log templates, which is unsuitable in our problem. The second
finding is multimodal LSTM outperforms other methods (M-AE,
M-LSTM and multimodal AE) that also incorporate multi-source
data. Specifically, both directly applying LSTM without multimodal
fusion (average F1-score of M-LSTM is 0.92) and replacing LSTM
with AE to model on the single data source in multimodal LSTM
(average F1-score of multimodal AE is 0.91) perform worse than

Identifying Bad Software Changes via Multimodal Anomaly Detection for Online Service Systems ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 4: Effectiveness of multimodal LSTM algorithm compared with existing anomaly detection approaches

Dataset A Dataset B
Data source Approaches P R F1 MTTD P R F1 MTTD

Business KPIs Donut 0.65 0.92 0.76 7.3 0.94 0.75 0.83 5.4
B-LSTM 0.86 0.75 0.80 8.2 0.99 0.88 0.93 6.6

Machine KPIs LSTM-NDT 0.80 0.71 0.76 5.2 0.85 0.83 0.86 3.5
OmniAnomaly 0.71 0.99 0.83 5.4 0.88 0.87 0.87 3.2

Logs DeepLog 0.57 0.96 0.71 11.2 0.55 0.83 0.66 8.9

Multi-source
data

M-AE 0.79 0.85 0.81 5.1 0.82 0.90 0.86 2.6
M-LSTM 0.80 0.95 0.87 5.3 0.99 0.94 0.96 3.2
Multimodal AE 0.94 0.83 0.88 6.1 0.95 0.93 0.94 4.0
Multimodal LSTM 0.91 0.95 0.93 5.1 0.97 0.98 0.97 2.3

our algorithm (0.95). Considering that the performance of multi-
modal LSTM has a small difference with M-LSTM and multimoal
AE on dataset B, we split B into 10 sub-datasets based on fail-
ure types (Table 2) and calculated F1-score on each sub-dataset.
Following existing works [8, 48], we conducted a paired sample
Wilcoxon signed-rank test [69] and Vargha-Delaney effect size
measure [66] to analyze the difference degree between multimodal
LSTM and M-LSTM/multimodal AE. The p-values are 0.0416 (<0.05)
and 0.0019 (<0.05), and the effect size are 0.6860 (medium differ-
ence) and 0.8388 (large difference), demonstrating the superiority
of multimodal LSTM.

4.4 RQ6: Time Efficiency
As an approach to identifying bad software changes, time efficiency
is a vital factor. For incoming data, if the detection result cannot be
provided in time, it could cause that engineers cannot identify bad
changes and take protective actions immediately. Thus, we investi-
gated the efficiency of SCWarn and compared approaches, including
training time and detection time (Funnel and Lumos do not need to
train models). As displayed in Table 5, the training time of SCWarn
is about several minutes, which is acceptable compared with Omni-
Anomaly and DeepLog. Despite LSTM model used in SCWarn, the
training cost is relatively short because of the lightweight and ef-
fective network structure. Considering numerous software changes
per day in large systems, short training time could significantly re-
duce resource overhead. Besides, since the training phase is offline,
training cost cannot lead to the delay in identifying bad software
changes. In terms of the detection time, SCWarn and most com-
pared approaches could give a result nearly in real time (less than 1
second), which is negligible. Overall, SCWarn has acceptable offline
training time and negligible online detection time.

4.5 RQ7: Parameter Sensitivity
Here, we take dataset A as the subject and mainly discuss the ef-
fect of two parameters in threshold selection and alerting strategy
on SCWarn. As stated in §3.3.1, the value of k in k-σ strategy di-
rectly influences the threshold selection and final results. Figure 9(a)
presents the effect of the value of k on the performance of identify-
ing bad changes. Clearly, with small k , the threshold is relatively
loose, leading to high recall but low precision. On the contrary, the
threshold is strict with large k , leading to high precision but low
recall. Another parameter we studied is the number of continuous

Table 5: Training time (minutes) and detection time (sec-
onds) comparison

Dataset A Dataset B
Approaches Training Detection Training Detection
SCWarn 4.84 0.94 3.43 0.86
Gandalf−AD 6.28 0.78 6.03 0.74
Funnel - 1.44 - 1.04
Lumos - 1.23 - 1.08
Donut 11.57 1.01 8.32 0.84
B-LSTM 3.45 0.55 2.89 0.49
LSTM-NDT 3.89 0.61 3.01 0.52
OmniAnomaly 28.11 1.34 24.89 1.88
DeepLog 50.65 2.43 46.23 2.77
M-AE 3.11 0.40 2.80 0.26
M-LSTM 4.42 0.49 4.19 0.44
Multimodal AE 3.65 0.67 3.20 0.60

0 1 2 3 4
Value of k

0.4

0.6

0.8

1.0

M
et

ric

Precision
Recall

F1-score

(a) k in threshold selection

1 3 5 7
Value of a

0.4

0.6

0.8

1.0
F1

-s
co

re
F1-score

0

2

4

6

8

10

M
TT

D

MTTD

(b) The number of continuous points

Figure 9: The effect of parameters

anomalous points (α) in alerting strategy. Figure 9(b) presents its
effect on F1-score and MTTD. Intuitively, too small α will generate
some false alarms caused by noises (e.g., temporal network issue).
In comparison, although large α can achieve satisfactory precision,
too strict the alerting strategy could result in long MTTD. k and
α are set to 1 and 3 in our experiments, respectively. In practice,
parameter selection can be decided based on the validation set.

5 DISCUSSION
5.1 Success Stories
To illustrate the practical effectiveness of SCWarn, we conducted
an informal user study with 12 engineers from different service

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece N. Zhao, J. Chen, Z. Yu, H. Wang, J. Li, B. Qiu, H. Xu, W. Zhang, K. Sui, D. Pei

systems in the bank. These engineers provided several historical
cases to us, and we reported the results of SCWarn to them. In
particular, engineers appreciated SCWarn from three perspectives.
1) SCWarn could identify bad changes more accurately and earlier
than their traditional tool based on 3-σ [1] (§2.2.4), so that protec-
tive actions (e.g., rollback) can be taken immediately to prevent
further economic loss. 2) Engineers confirmed the analysis reports
provided by SCWarn could assist them in investigating these cases
with good interpretability [14]. Taking the case II below as an
example, the report displays all abnormal signals of this change,
and the top-3 abnormal data are heap space, #“GC operation” log
template and memory usage. Engineers could easily infer that the
incident is caused by frequent FullGC and localize the code defect
in 5 minutes incorporating Java dump files. Besides, displaying all
related information of this change in a web page could save about
5∼20 minutes for engineers to log in different devices or platforms
(e.g., Grafana [2] and Kibana [3]) to inspect data manually. 3) In-
corporating multi-source data could provide more comprehensive
information. Specifically, KPIs could directly reflect the health sta-
tus of the change entity and logs could provide clues for further
diagnosis. For example, using GC logs could indicate the frequent
FullGC problems in case II; using network device logs could help
localize the IP address conflict problem incurred by error configura-
tion (the appearance of new log pattern “address conflict detected”).
They also gave us some suggestions to make our tool more user-
friendly, e.g., displaying system topology in the user interface and
incorporating monitoring data from correlated systems. In the fol-
lowing, we present four typical real cases and anonymize some
confidential details.

Case I: A new database table imported by a software change
was not indexed, and then a full table scan was conducted. This
incident was noticed by the alert of high response time during
busy hours. With SCWarn, however, the incident can be discovered
23 minutes in advance by some related machine KPIs, including
databasemetrics (lock wait and CPU usage) andmiddlewaremetrics
(JDBC connection pool). In contrast, the MTTD of Gandalf is 12
minutes longer than that of SCWarn.

Case II: A piece of code imported by a software change was
defective and created a large java object, incurring frequent fullGC
operations and full heap space. Engineers noticed this incident
by the alert of high response time. In comparison, SCWarn could
identify the incident 5.6 hours in advance from GC logs and related
machine KPIs, including JVM metrics (heap space and GC count)
and server metrics (CPU usage and memory usage). Besides, the
details in GC logs could provide clues for further troubleshooting.

Case III: After a software upgrade of service A, it shared the
same server with service B for data synchronization, resulting in an
efficiency bottleneck of A when B was busy accessing this server.
Our approach could discover (57 minutes earlier compared with
traditional monitoring tool) and locate the problem through related
server performance KPIs (I/O wait time is high) of service A.

Case IV: The slow SQL statement in the new code led to the
abnormal behavior of related database performance KPIs (the num-
ber of average active sessions is high). Our approach could capture
it accurately and rapidly (6 minutes in advance) to avoid further
negative impact on service availability.

5.2 Lessons Learned
Generality of our approach. It is a common phenomenon that bad
changes could incur service incidents, both in our studied bank
and other large companies like Google [4] and Baidu [77] (§2.2.2).
Besides, SCWarn based on multi-source data anomaly detection is
generic since most systems include KPIs and logs which have been
extensively studied in the literature [27, 34, 50, 60, 64, 70, 78]. Thus,
the problem of identifying bad software changes and SCWarn are
not limited to the bank we studied. Besides, SCWarn could also be
applied to incident diagnosis and incident prediction. Similar to
identifying bad changes, these two tasks also aim to detect abnormal
signals from monitoring data and existing works mainly focus on
single data source independently [40, 41, 71, 76]. Thus, fusing KPIs
and logs may provide more comprehensive information to diagnosis
or prediction, which can be our future work.

Fully automated software change without human involvement is
difficult. Although our proposed SCWarn could significantly reduce
manual efforts on identifying bad changes, it is unrealistic to con-
duct software changes entirely automatically without any human
involvement. It is because only the engineers in charge of the soft-
ware change have requisite domain knowledge of the expected
behavior and can make accurate decisions (e.g., whether the abnor-
mal behavior is expected or not, and how to take emergency actions
to mitigate unexpected incidents). Actually, such domain expertise
cannot be replaced by a fully automated algorithm accurately.

Multi-source data fusion may be helpful to other software engi-
neering tasks. In our work, integrating multi-source data in an in-
terpretable and visual manner could help engineers obtain a global
view of the software change. Similarly, multi-source data fusion
can also be applied to other tasks, aiming to improve accuracy and
extend features, for example, incident linking based on incident
tickets and graph dependency [10], alert prioritization using textual
alerts and KPIs [80], trace anomaly detection combining texts and
KPIs [52], flaw detection in software programs [28].

The experience obtained from our work could provide some insights
for software testing. Software testing is vital to guarantee code qual-
ity and service reliability under development. In practice, engineers
could investigate the root cause of the bad software change (Fig-
ure 4) and analyze whether the incident could be avoided by more
comprehensive testing, so as to obtain some lessons for software
testing. In this way, engineers can take effective actions to improve
the testing to cover more aspects, for example, adding stress testing
to simulate the impact of the unexpected burst of user requests
on the service and testing the associated system to remove the
incompatibility or resource contention problem.

5.3 Threats to Validity
Subject systems: We conducted the experimental study on two pop-
ular benchmark systems and injected various bad software changes
(Table 2). In fact, these failure types we collected from industry may
be limited and cannot cover all scenarios. Thus, the failure cases in
experiments, as well as the scale of benchmark systems, are threats
in our study. Besides, the injected changes used for evaluation are
synthetic and relatively simple, which could introduce bias. In the
future, we will further evaluate our approach using more large-scale
real-world software change cases with various failure types.

Identifying Bad Software Changes via Multimodal Anomaly Detection for Online Service Systems ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Data quality: Although the two microservice systems used for
evaluation are widely applied, some hidden bugs existing in systems
or other external factors (e.g., network flapping) would threaten the
quality of collected data. Thus, the experimental data may contain
some noises, and the performance may be affected. To reduce this
threat, we have deployed the systems with high availability and
checked our data carefully.

Evaluation metrics: To demonstrate the effectiveness of SCWarn,
we used precision/recall/F1-score and MTTD as measurements,
which have been widely adopted in existing works. In the future,
to reduce this threat, we will further analyze the performance of
SCWarn on different types of bad changes in detail and consider
more comprehensive metrics (e.g., FPR/TPR) to more sufficiently
evaluate the effectiveness and efficiency.

5.4 Limitations and Future Work
We describe several limitations of our approach. One limitation is
some silent incidents caused by software changes are challenging to
detect. For example, code defects hidden in seldom-used functions
might go undetected for a long time. The reason is that SCWarn is a
data-driven approach, relying on abnormal patterns on monitoring
data. If some bad changes do not behave abnormally on monitoring
data, they cannot be caught by SCWarn. Another limitation is real
large-scale deployment. Currently, we just reviewed some historical
incident cases induced by software changes to illustrate the practical
effectiveness. Due to some limitations, however, we only deployed
SCWarn in a service system of the bank and large-scale deployment
in the real world can be our future work.

6 RELATEDWORK
Software Change. In the literature, considerable efforts have been
dedicated to software change in academic and industry, which can
be divided into three categories: 1) impact and risk analysis before
change [37, 49, 74], for example, Sonu et al. [49] proposed to pre-
vent bugs and misconfigurations via correlated change analysis; 2)
reliable launching strategy during deployment (e.g., dark launch-
ing); 3) identifying bad changes after deployment [22, 39, 47, 77]. In
this work, we endeavor to tackle the third way because some bugs
and errors could remain uncaught due to the discrepancies between
testing and the production environment. Thus closely monitoring
system behavior after deployment is a vital task. The core idea
of existing works about identifying bad changes is adopting an
anomaly detection (or change point detection) algorithm to detect
abnormal behaviors of business KPIs after deployment, for example,
iSST adopted by Funnel [77], CUSUM used by Mercury [47], and
A/B testing in Lumos [56]. However, all of these approaches only
utilize single-source monitoring data. Thus, they fail to discover
the failure signals hidden in other data sources and cannot obtain
comprehensive results, resulting in unsatisfactory performance.
Gandalf [39] consumes various data (KPIs and logs) to ensure safe
deployment, while it adopts a separate anomaly detection model for
each single-source data and cannot capture the inter-correlations
among multi-source data, and the anomaly detection algorithm in
Gandalf is not generic. Besides, the goal of Gandalf is to localize
which change should be responsible for the abnormal behavior,

not for identifying bad changes. In our approach, we leverage mul-
timodal data fusion for identifying bad software changes based
on heterogeneous multi-source data. The superiority of SCWarn
compared with existing works has been illustrated in §4.2.

Anomaly Detection. Identifying bad changes is also an anom-
aly detection task. Over the years, there has been a great deal of
effort spent on anomaly detection of KPIs and logs [27, 34, 41, 50,
60, 64, 70, 73, 78, 81]. About KPI anomaly detection, Xu et al. [70]
proposed Donut to apply Variational Auto-encoder (VAE) to detect
anomalies in seasonal KPIs. Su et al. [64] proposed an approach to
detect anomalies on multivariate KPIs through Stochastic RNN. In
terms of logs, Zhang et al. proposed LogRobust [78] to extract se-
mantic information and utilize an attention-based Bi-LSTM model
to identify log anomalies. In industry, some products[13, 17] also
have the ability to monitor service and detect anomalies from KPIs
using some statistical methods. The technique of anomaly detec-
tion has also been widely applied in other software engineering
fields, such as misbehavior detection for autonomous driving sys-
tems [29, 63, 75], detecting security issues [15, 16], identifying
workflow errors [20, 51], and detecting issues from programming
language compilers [5]. However, existing anomaly detection al-
gorithms or tools are not specially designed for identifying bad
changes and ignore some characteristics of the problem (e.g., fus-
ing multi-source data, abnormal but expected behaviors), as stated
in §2.2.4. In our approach, through integrating multi-source data
involved in software changes and adopting multimodal anomaly de-
tection, SCWarn delivers better performance than existing works.

7 CONCLUSION
In online servicer systems, software change is frequent but failure-
prone. To better understand bad software changes, we conduct the
first empirical study based on large-scale real-world data from a
large commercial bank. Our qualitative and quantitative analysis
show about 50.4% of incidents are caused by changes on average,
and the current practice of identifying bad changes is unsatisfactory
due to ignoring multi-source data involved in the change. Therefore,
it is necessary to identify bad changes to prevent service outages. To-
wards this direction, we propose a novel approach named SCWarn
to identifying bad changes accurately and timely. The core idea
of SCWarn is drawing support from multimodal learning to detect
anomalies from heterogeneous multi-source data. An extensive
study including various bad software changes confirms the effec-
tiveness of SCWarn (average F1-score is 0.95 with a short MTTD),
which significantly outperforms all the compared approaches.

ACKNOWLEDGMENTS
This work is supported by the National Key Research and Devel-
opment Program of China (Grant No.2019YFE0105500), the State
Key Program of National Natural Science of China under Grant
62072264, the Beijing National Research Center for Information Sci-
ence and Technology (BNRist) key projects, and National Natural
Science Foundation of China 62002256.

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece N. Zhao, J. Chen, Z. Yu, H. Wang, J. Li, B. Qiu, H. Xu, W. Zhang, K. Sui, D. Pei

REFERENCES
[1] 3-sigma rule. https://en.wikipedia.org/wiki/68-95-99.7_rule. [Online; accessed

10-Feb-2021].
[2] Grafana. https://grafana.com/. [Online; accessed 10-Feb-2021].
[3] Kibana. https://www.elastic.co/kibana. [Online; accessed 10-Feb-2021].
[4] Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Richard Murphy. 2016. Site

Reliability Engineering: How Google Runs Production Systems. " O’Reilly Media,
Inc.".

[5] Timofey Bryksin, Victor Petukhov, Ilya Alexin, Stanislav Prikhodko, Alexey
Shpilman, Vladimir Kovalenko, and Nikita Povarov. 2020. Using Large-Scale
Anomaly Detection on Code to Improve Kotlin Compiler. In Proceedings of the
17th International Conference on Mining Software Repositories. 455–465. https:
//doi.org/10.1145/3379597.3387447

[6] Junjie Chen, Xiaoting He, Qingwei Lin, Yong Xu, Hongyu Zhang, Dan Hao, Feng
Gao, Zhangwei Xu, Yingnong Dang, and Dongmei Zhang. 2019. An empirical
investigation of incident triage for online service systems. In Proceedings of the
41st International Conference on Software Engineering: Software Engineering in
Practice. 111–120. https://doi.org/10.1109/ICSE-SEIP.2019.00020

[7] Junjie Chen, Xiaoting He, Qingwei Lin, Hongyu Zhang, Dan Hao, Feng Gao,
Zhangwei Xu, Yingnong Dang, and Dongmei Zhang. 2019. Continuous Incident
Triage for Large-Scale Online Service Systems. In 34th IEEE/ACM International
Conference on Automated Software Engineering. 364–375. https://doi.org/10.1109/
ASE.2019.00042

[8] Junjie Chen, Zhuo Wu, Zan Wang, Hanmo You, Lingming Zhang, and Ming Yan.
2020. Practical Accuracy Estimation for Efficient Deep Neural Network Testing.
ACM Transactions on Software Engineering and Methodology (TOSEM) 29, 4 (2020),
1–35. https://doi.org/10.1145/3394112

[9] Junjie Chen, Shu Zhang, Xiaoting He, Qingwei Lin, Hongyu Zhang, Dan Hao,
Yu Kang, Feng Gao, Zhangwei Xu, Yingnong Dang, and Dongmei Zhang. 2020.
How Incidental are the Incidents? Characterizing and Prioritizing Incidents for
Large-Scale Online Service Systems. In 35th IEEE/ACM International Conference
on Automated Software Engineering. 373–384. https://doi.org/10.1145/3324884.
3416624

[10] Yujun Chen, Xian Yang, Hang Dong, Xiaoting He, Hongyu Zhang, Qingwei Lin,
Junjie Chen, Pu Zhao, Yu Kang, Feng Gao, et al. 2020. Identifying linked incidents
in large-scale online service systems. In Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. 304–314. https://doi.org/10.1145/3368089.3409768

[11] Zhuangbin Chen, Yu Kang, Liqun Li, Xu Zhang, Hongyu Zhang, Hui Xu, Yangfan
Zhou, Li Yang, Jeffrey Sun, Zhangwei Xu, et al. 2020. Towards intelligent incident
management: why we need it and how we make it. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 1487–1497. https://doi.org/10.1145/
3368089.3417055

[12] Google Cloud. [n.d.]. https://status.cloud.google.com/summary.
[13] Datadog. [n.d.]. https://www.datadoghq.com/. [Online; accessed 10-Feb-2021].
[14] Finale Doshi-Velez and Been Kim. 2017. Towards a rigorous science of inter-

pretable machine learning. arXiv preprint arXiv:1702.08608 (2017).
[15] Min Du, Zhi Chen, Chang Liu, Rajvardhan Oak, and Dawn Song. 2019. Lifelong

anomaly detection through unlearning. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. 1283–1297. https://doi.
org/10.1145/3319535.3363226

[16] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. Deeplog: Anomaly
detection and diagnosis from system logs through deep learning. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
1285–1298. https://doi.org/10.1145/3133956.3134015

[17] Dynatrace. [n.d.]. https://www.dynatrace.com/. [Online; accessed 10-Feb-2021].
[18] E-commerce. [n.d.]. https://github.com/alibaba/eCommerceSearchBench. [On-

line; accessed 10-Feb-2021].
[19] Elasticsearch. [n.d.]. https://github.com/elastic/elasticsearch. [Online; accessed

10-Feb-2021].
[20] Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. 2009. Execution anomaly

detection in distributed systems through unstructured log analysis. In 2009 ninth
IEEE international conference on data mining. IEEE, 149–158. https://doi.org/10.
1109/ICDM.2009.60

[21] Wanling Gao, Fei Tang, Lei Wang, Jianfeng Zhan, Chunxin Lan, Chunjie Luo, Yun-
you Huang, Chen Zheng, Jiahui Dai, Zheng Cao, et al. 2019. AIBench: an industry
standard internet service AI benchmark suite. arXiv preprint arXiv:1908.08998
(2019).

[22] Aitor Gartziandia. 2021. Microservice-based Performance Problem Detection in
Cyber-Physical System Software Updates. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Companion Proceedings (ICSE-Companion).
IEEE, 147–149. https://doi.org/10.1109/ICSE-Companion52605.2021.00062

[23] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT
press.

[24] Haryadi S Gunawi, Mingzhe Hao, Riza O Suminto, Agung Laksono, Anang D
Satria, Jeffry Adityatama, and Kurnia J Eliazar. 2016. Why does the cloud stop

computing? Lessons from hundreds of service outages. In Proceedings of the
Seventh ACM Symposium on Cloud Computing. 1–16. https://doi.org/10.1145/
2987550.2987583

[25] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R Lyu. 2017. Drain: An online
log parsing approach with fixed depth tree. In 2017 IEEE International Conference
on Web Services (ICWS). IEEE, 33–40. https://doi.org/10.1109/ICWS.2017.13

[26] Shilin He, Jieming Zhu, Pinjia He, and Michael R Lyu. 2016. Experience re-
port: system log analysis for anomaly detection. In 2016 IEEE 27th Interna-
tional Symposium on Software Reliability Engineering (ISSRE). IEEE, 207–218.
https://doi.org/10.1109/ISSRE.2016.21

[27] Shilin He, Jieming Zhu, Pinjia He, and Michael R. Lyu. 2016. Experience Report:
System Log Analysis for Anomaly Detection. In 27th IEEE International Sympo-
sium on Software Reliability Engineering, ISSRE 2016, Ottawa, ON, Canada, October
23-27, 2016. IEEE Computer Society, 207–218. https://doi.org/10.1109/ISSRE.2016.
21

[28] Scott Heidbrink, Kathryn N Rodhouse, and Daniel M Dunlavy. 2020. Multi-
modal Deep Learning for Flaw Detection in Software Programs. arXiv preprint
arXiv:2009.04549 (2020).

[29] Jens Henriksson, Christian Berger, Markus Borg, Lars Tornberg, Cristofer En-
glund, Sankar Raman Sathyamoorthy, and Stig Ursing. 2019. Towards struc-
tured evaluation of deep neural network supervisors. In 2019 IEEE Interna-
tional Conference On Artificial Intelligence Testing (AITest). IEEE, 27–34. https:
//doi.org/10.1109/AITest.2019.00-12

[30] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[31] Xiaofeng Hou, Jiacheng Liu, Chao Li, and Minyi Guo. 2019. Unleashing the
Scalability Potential of Power-Constrained Data Center in the Microservice Era.
In Proceedings of the 48th International Conference on Parallel Processing (Kyoto,
Japan) (ICPP 2019). Association for Computing Machinery, New York, NY, USA,
Article 10, 10 pages. https://doi.org/10.1145/3337821.3337857

[32] Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and
Tom Soderstrom. 2018. Detecting spacecraft anomalies using lstms and non-
parametric dynamic thresholding. In Proceedings of the 24th ACM SIGKDD In-
ternational Conference on Knowledge Discovery & Data Mining. ACM, 387–395.
https://doi.org/10.1145/3219819.3219845

[33] InfluxDB. [n.d.]. https://github.com/influxdata/influxdb. [Online; accessed
10-Feb-2021].

[34] Mohammad S Islam, William Pourmajidi, Lei Zhang, John Steinbacher, Tony
Erwin, and Andriy Miranskyy. 2021. Anomaly detection in a large-scale cloud
platform. In 2021 IEEE/ACM 43rd International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). IEEE, 150–159. https://doi.org/10.
1109/ICSE-SEIP52600.2021.00024

[35] Jiajun Jiang, Weihai Lu, Junjie Chen, Qingwei Lin, Pu Zhao, Yu Kang, Hongyu
Zhang, Yingfei Xiong, Feng Gao, Zhangwei Xu, et al. 2020. How to mitigate
the incident? an effective troubleshooting guide recommendation technique for
online service systems. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 1410–1420. https://doi.org/10.1145/3368089.3417054

[36] Kubernetes. [n.d.]. https://kubernetes.io/. [Online; accessed 10-Feb-2021].
[37] Steffen Lehnert. 2011. A review of software change impact analysis. Univ.-

Bibliothek.
[38] Sebastien Levy, Randolph Yao, YoujiangWu, Yingnong Dang, Peng Huang, Zheng

Mu, Pu Zhao, Tarun Ramani, Naga Govindaraju, Xukun Li, et al. 2020. Predictive
and Adaptive Failure Mitigation to Avert Production Cloud {VM} Interruptions.
In 14th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 20). 1155–1170.

[39] Ze Li, Qian Cheng, Ken Hsieh, Yingnong Dang, Peng Huang, Pankaj Singh,
Xinsheng Yang, Qingwei Lin, Youjiang Wu, Sebastien Levy, et al. 2020. Gandalf:
An Intelligent, End-To-End Analytics Service for Safe Deployment in Large-Scale
Cloud Infrastructure. In 17th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 20). 389–402.

[40] Qingwei Lin, Ken Hsieh, Yingnong Dang, Hongyu Zhang, Kaixin Sui, Yong
Xu, Jian-Guang Lou, Chenggang Li, Youjiang Wu, Randolph Yao, et al. 2018.
Predicting Node failure in cloud service systems. In Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. ACM, 480–490. https://doi.org/10.
1145/3236024.3236060

[41] Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei Chen.
2016. Log clustering based problem identification for online service systems. In
2016 IEEE/ACM 38th International Conference on Software Engineering Companion
(ICSE-C). IEEE, 102–111.

[42] P. Liu, H. Xu, Q. Ouyang, R. Jiao, Z. Chen, S. Zhang, J. Yang, L. Mo, J. Zeng, W.
Xue, and D. Pei. 2020. Unsupervised Detection of Microservice Trace Anomalies
through Service-Level Deep Bayesian Networks. In 2020 IEEE 31st International
Symposium on Software Reliability Engineering (ISSRE). 48–58. https://doi.org/10.
1109/ISSRE5003.2020.00014

[43] LogStash. [n.d.]. https://github.com/elastic/logstash. [Online; accessed 10-Feb-
2021].

https://en.wikipedia.org/wiki/68-95-99.7_rule
https://grafana.com/
https://www.elastic.co/kibana
https://doi.org/10.1145/3379597.3387447
https://doi.org/10.1145/3379597.3387447
https://doi.org/10.1109/ICSE-SEIP.2019.00020
https://doi.org/10.1109/ASE.2019.00042
https://doi.org/10.1109/ASE.2019.00042
https://doi.org/10.1145/3394112
https://doi.org/10.1145/3324884.3416624
https://doi.org/10.1145/3324884.3416624
https://doi.org/10.1145/3368089.3409768
https://doi.org/10.1145/3368089.3417055
https://doi.org/10.1145/3368089.3417055
https://status.cloud.google.com/summary
https://www.datadoghq.com/
https://doi.org/10.1145/3319535.3363226
https://doi.org/10.1145/3319535.3363226
https://doi.org/10.1145/3133956.3134015
https://www.dynatrace.com/
https://github.com/alibaba/eCommerceSearchBench
https://github.com/elastic/elasticsearch
https://doi.org/10.1109/ICDM.2009.60
https://doi.org/10.1109/ICDM.2009.60
https://doi.org/10.1109/ICSE-Companion52605.2021.00062
https://doi.org/10.1145/2987550.2987583
https://doi.org/10.1145/2987550.2987583
https://doi.org/10.1109/ICWS.2017.13
https://doi.org/10.1109/ISSRE.2016.21
https://doi.org/10.1109/ISSRE.2016.21
https://doi.org/10.1109/ISSRE.2016.21
https://doi.org/10.1109/AITest.2019.00-12
https://doi.org/10.1109/AITest.2019.00-12
https://doi.org/10.1145/3337821.3337857
https://doi.org/10.1145/3219819.3219845
https://github.com/influxdata/influxdb
https://doi.org/10.1109/ICSE-SEIP52600.2021.00024
https://doi.org/10.1109/ICSE-SEIP52600.2021.00024
https://doi.org/10.1145/3368089.3417054
https://kubernetes.io/
https://doi.org/10.1145/3236024.3236060
https://doi.org/10.1145/3236024.3236060
https://doi.org/10.1109/ISSRE5003.2020.00014
https://doi.org/10.1109/ISSRE5003.2020.00014
https://github.com/elastic/logstash

Identifying Bad Software Changes via Multimodal Anomaly Detection for Online Service Systems ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

[44] Minghua Ma, Zheng Yin, Shenglin Zhang, Sheng Wang, Christopher Zheng, Xin-
hao Jiang, Hanwen Hu, Cheng Luo, Yilin Li, Nengjun Qiu, et al. 2020. Diagnosing
root causes of intermittent slow queries in cloud databases. Proceedings of the
VLDB Endowment 13, 10 (2020), 1176–1189. https://doi.org/10.14778/3389133.
3389136

[45] Minghua Ma, Shenglin Zhang, Dan Pei, Xin Huang, and Hongwei Dai. 2018.
Robust and rapid adaption for concept drift in software system anomaly detection.
In 2018 IEEE 29th International Symposium on Software Reliability Engineering
(ISSRE). IEEE, 13–24. https://doi.org/10.1109/ISSRE.2018.00013

[46] Ajay Mahimkar, Zihui Ge, Jia Wang, Jennifer Yates, Yin Zhang, Joanne Emmons,
Brian Huntley, and Mark Stockert. 2011. Rapid detection of maintenance induced
changes in service performance. In Proceedings of the Seventh Conference on
emerging Networking EXperiments and Technologies. ACM, 13. https://doi.org/10.
1145/2079296.2079309

[47] Ajay Anil Mahimkar, Han Hee Song, Zihui Ge, Aman Shaikh, Jia Wang, Jennifer
Yates, Yin Zhang, and Joanne Emmons. 2011. Detecting the performance impact
of upgrades in large operational networks. ACM SIGCOMM Computer Communi-
cation Review 41, 4 (2011), 303–314. https://doi.org/10.1145/1851182.1851219

[48] KeMao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective automated test-
ing for android applications. In Proceedings of the 25th International Symposium on
Software Testing and Analysis. 94–105. https://doi.org/10.1145/2931037.2931054

[49] Sonu Mehta, Ranjita Bhagwan, Rahul Kumar, Chetan Bansal, Chandra Maddila, B
Ashok, Sumit Asthana, Christian Bird, and Aditya Kumar. 2020. Rex: Preventing
bugs and misconfiguration in large services using correlated change analysis. In
17th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 20). 435–448.

[50] Weibin Meng, Ying Liu, Yichen Zhu, Shenglin Zhang, Dan Pei, Yuqing Liu, Yihao
Chen, Ruizhi Zhang, Shimin Tao, Pei Sun, et al. 2019. LogAnomaly: Unsupervised
Detection of Sequential and Quantitative Anomalies in Unstructured Logs.. In
IJCAI. 4739–4745.

[51] Animesh Nandi, Atri Mandal, Shubham Atreja, Gargi B Dasgupta, and Subhra-
jit Bhattacharya. 2016. Anomaly detection using program control flow graph
mining from execution logs. In Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. 215–224. https:
//doi.org/10.1145/2939672.2939712

[52] Sasho Nedelkoski, Jorge Cardoso, and Odej Kao. 2019. Anomaly detection
from system tracing data using multimodal deep learning. In 2019 IEEE 12th
International Conference on Cloud Computing (CLOUD). IEEE, 179–186. https:
//doi.org/10.1109/CLOUD.2019.00038

[53] Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and An-
drew Y Ng. 2011. Multimodal deep learning. In ICML.

[54] NumPy. [n.d.]. https://numpy.org/. [Online; accessed 10-Feb-2021].
[55] pandas. [n.d.]. https://pandas.pydata.org/. [Online; accessed 10-Feb-2021].
[56] Jamie Pool, Ebrahim Beyrami, Vishak Gopal, Ashkan Aazami, Jayant Gupchup,

Jeff Rowland, Binlong Li, Pritesh Kanani, Ross Cutler, and Johannes Gehrke. 2020.
Lumos: A Library for Diagnosing Metric Regressions in Web-Scale Applications.
arXiv preprint arXiv:2006.12793 (2020).

[57] Prometheus. [n.d.]. https://prometheus.io/. [Online; accessed 10-Feb-2021].
[58] PyTorch. [n.d.]. https://pytorch.org/. [Online; accessed 10-Feb-2021].
[59] D. Ramachandram and G. W. Taylor. 2017. Deep Multimodal Learning: A Survey

on Recent Advances and Trends. IEEE Signal Processing Magazine 34, 6 (2017),
96–108. https://doi.org/10.1109/MSP.2017.2738401

[60] Hansheng Ren, Bixiong Xu, Yujing Wang, Chao Yi, Congrui Huang, Xiaoyu
Kou, Tony Xing, Mao Yang, Jie Tong, and Qi Zhang. 2019. Time-series anom-
aly detection service at microsoft. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 3009–3017.
https://doi.org/10.1145/3292500.3330680

[61] scikit learn. [n.d.]. https://scikit-learn.org/.
[62] SCWarn. [n.d.]. https://github.com/FSEwork/SCWarn. [Online; accessed 24-Feb-

2021].
[63] Andrea Stocco, Michael Weiss, Marco Calzana, and Paolo Tonella. 2020. Mis-

behaviour Prediction for Autonomous Driving Systems. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering (Seoul, South
Korea) (ICSE ’20). Association for Computing Machinery, New York, NY, USA,
359–371. https://doi.org/10.1145/3377811.3380353

[64] Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. 2019. Robust
Anomaly Detection for Multivariate Time Series through Stochastic Recurrent
Neural Network. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. New York, NY, USA. https://doi.org/
10.1145/3292500.3330672

[65] Train-Ticket. [n.d.]. https://github.com/FudanSELab/train-ticket/. [Online;
accessed 10-Feb-2021].

[66] András Vargha and Harold D Delaney. 2000. A critique and improvement of
the CL common language effect size statistics of McGraw and Wong. Journal of
Educational and Behavioral Statistics 25, 2 (2000), 101–132.

[67] Anthony J Viera, Joanne M Garrett, et al. 2005. Understanding interobserver
agreement: the kappa statistic. Fam med 37, 5 (2005), 360–363.

[68] T. Wang, W. Zhang, J. Xu, and Z. Gu. 2020. Workflow-Aware Automatic Fault
Diagnosis for Microservice-Based Applications With Statistics. IEEE Transactions
on Network and Service Management 17, 4 (2020), 2350–2363. https://doi.org/10.
1109/TNSM.2020.3022028

[69] Frank Wilcoxon. 1992. Individual comparisons by ranking methods. In Break-
throughs in statistics. Springer, 196–202.

[70] Haowen Xu, Wenxiao Chen, Nengwen Zhao, Zeyan Li, Jiahao Bu, Zhihan Li,
Ying Liu, Youjian Zhao, Dan Pei, Yang Feng, Jie Chen, Zhaogang Wang, and
Honglin Qiao. 2018. Unsupervised Anomaly Detection via Variational Auto-
Encoder for Seasonal KPIs in Web Applications. In Proceedings of the 2018 World
Wide Web Conference (Lyon, France) (WWW ’18). International World Wide
Web Conferences Steering Committee, 187–196. https://doi.org/10.1145/3178876.
3185996

[71] Yong Xu, Kaixin Sui, Randolph Yao, Hongyu Zhang, Qingwei Lin, Yingnong Dang,
Peng Li, Keceng Jiang, Wenchi Zhang, Jian-Guang Lou, et al. 2018. Improving
service availability of cloud systems by predicting disk error. In 2018 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 18). 481–494.

[72] He Yan, Ashley Flavel, Zihui Ge, Alexandre Gerber, Dan Massey, Christos Pa-
padopoulos, Hiren Shah, and Jennifer Yates. 2012. Argus: End-to-end service
anomaly detection and localization from an isp’s point of view. In 2012 Proceedings
IEEE INFOCOM. IEEE, 2756–2760. https://doi.org/10.1109/INFCOM.2012.6195694

[73] Lin Yang, Junjie Chen, Zan Wang, Weijing Wang, Jiajun Jiang, Xuyuan Dong,
and Wenbin Zhang. 2021. Semi-supervised Log-based Anomaly Detection via
Probabilistic Label Estimation. In 43rd IEEE/ACM International Conference on
Software Engineering. 1448–1460. https://doi.org/10.1109/ICSE43902.2021.00130

[74] Ennan Zhai, Ang Chen, Ruzica Piskac, Mahesh Balakrishnan, Bingchuan Tian,
Bo Song, and Haoliang Zhang. 2020. Check before You Change: Preventing Cor-
related Failures in Service Updates. In 17th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 20). 575–589.

[75] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khurshid.
2018. DeepRoad: GAN-Based Metamorphic Testing and Input Validation Frame-
work for Autonomous Driving Systems. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering (Montpellier, France)
(ASE 2018). Association for Computing Machinery, New York, NY, USA, 132–142.
https://doi.org/10.1145/3238147.3238187

[76] Shenglin Zhang, Ying Liu,WeibinMeng, Zhiling Luo, Jiahao Bu, Sen Yang, Peixian
Liang, Dan Pei, Jun Xu, Yuzhi Zhang, et al. 2018. Prefix: Switch failure prediction
in datacenter networks. Proceedings of the ACM on Measurement and Analysis of
Computing Systems 2, 1 (2018), 2.

[77] Shenglin Zhang, Ying Liu, Dan Pei, Yu Chen, Xianping Qu, Shimin Tao, and Zhi
Zang. 2015. Rapid and robust impact assessment of software changes in large
internet-based services. In Proceedings of the 11th ACM Conference on Emerging
Networking Experiments and Technologies. ACM, 2. https://doi.org/10.1145/
2716281.2836087

[78] Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu Zhang, Yingnong Dang,
Chunyu Xie, Xinsheng Yang, Qian Cheng, and et. al. 2019. Robust Log-Based
Anomaly Detection on Unstable Log Data (ESEC/FSE 2019). Association for Com-
putingMachinery, New York, NY, USA, 807–817. https://doi.org/10.1145/3338906.
3338931

[79] Nengwen Zhao, Junjie Chen, Zhou Wang, Xiao Peng, Gang Wang, Yong Wu,
Fang Zhou, Zhen Feng, Xiaohui Nie, Wenchi Zhang, Kaixin Sui, and Dan Pei.
2020. Real-time incident prediction for online service systems. In ESEC/FSE ’20:
28th ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 315–326. https://doi.org/10.1145/3368089.
3409672

[80] Nengwen Zhao, Panshi Jin, Lixin Wang, Xiaoqin Yang, Rong Liu, Wenchi Zhang,
Kaixin Sui, and Dan Pei. 2020. Automatically and Adaptively Identifying Se-
vere Alerts for Online Service Systems. In IEEE INFOCOM 2020-IEEE Confer-
ence on Computer Communications. IEEE, 2420–2429. https://doi.org/10.1109/
INFOCOM41043.2020.9155219

[81] Nengwen Zhao, Jing Zhu, Yao Wang, Minghua Ma, Wenchi Zhang, and et.al.
2019. Automatic and Generic Periodicity Adaptation for KPI Anomaly Detection.
IEEE Transactions on Network and Service Management (2019). https://doi.org/10.
1109/TNSM.2019.2919327

[82] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wenhai Li, and Dan Ding. 2018.
Fault analysis and debugging of microservice systems: Industrial survey, bench-
mark system, and empirical study. IEEE Transactions on Software Engineering
(2018). https://doi.org/10.1109/TSE.2018.2887384

[83] Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi Xie, Zibin Zheng, andMichael R.
Lyu. 2019. Tools and Benchmarks for Automated Log Parsing. In Proceedings of
the 41st International Conference on Software Engineering: Software Engineering
in Practice (ICSE-SEIP ’19). IEEE Press, 121–130. https://doi.org/10.1109/ICSE-
SEIP.2019.00021

https://doi.org/10.14778/3389133.3389136
https://doi.org/10.14778/3389133.3389136
https://doi.org/10.1109/ISSRE.2018.00013
https://doi.org/10.1145/2079296.2079309
https://doi.org/10.1145/2079296.2079309
https://doi.org/10.1145/1851182.1851219
https://doi.org/10.1145/2931037.2931054
https://doi.org/10.1145/2939672.2939712
https://doi.org/10.1145/2939672.2939712
https://doi.org/10.1109/CLOUD.2019.00038
https://doi.org/10.1109/CLOUD.2019.00038
https://numpy.org/
https://pandas.pydata.org/
https://prometheus.io/
https://pytorch.org/
https://doi.org/10.1109/MSP.2017.2738401
https://doi.org/10.1145/3292500.3330680
https://scikit-learn.org/
https://github.com/FSEwork/SCWarn
https://doi.org/10.1145/3377811.3380353
https://doi.org/10.1145/3292500.3330672
https://doi.org/10.1145/3292500.3330672
https://github.com/FudanSELab/train-ticket/
https://doi.org/10.1109/TNSM.2020.3022028
https://doi.org/10.1109/TNSM.2020.3022028
https://doi.org/10.1145/3178876.3185996
https://doi.org/10.1145/3178876.3185996
https://doi.org/10.1109/INFCOM.2012.6195694
https://doi.org/10.1109/ICSE43902.2021.00130
https://doi.org/10.1145/3238147.3238187
https://doi.org/10.1145/2716281.2836087
https://doi.org/10.1145/2716281.2836087
https://doi.org/10.1145/3338906.3338931
https://doi.org/10.1145/3338906.3338931
https://doi.org/10.1145/3368089.3409672
https://doi.org/10.1145/3368089.3409672
https://doi.org/10.1109/INFOCOM41043.2020.9155219
https://doi.org/10.1109/INFOCOM41043.2020.9155219
https://doi.org/10.1109/TNSM.2019.2919327
https://doi.org/10.1109/TNSM.2019.2919327
https://doi.org/10.1109/TSE.2018.2887384
https://doi.org/10.1109/ICSE-SEIP.2019.00021
https://doi.org/10.1109/ICSE-SEIP.2019.00021

	Abstract
	1 Introduction
	2 Background and Empirical Study
	2.1 Software Change Management
	2.2 An Empirical Study of Software Changes
	2.3 Summary

	3 Approach
	3.1 Data Preparation
	3.2 Multimodal Anomaly Detection
	3.3 Alerting with Analysis Report
	3.4 Action Decision

	4 Evaluation
	4.1 Experiment Setup
	4.2 RQ4: Performance of Identifying Bad Software Changes
	4.3 RQ5: Effectiveness of Multimodal LSTM
	4.4 RQ6: Time Efficiency
	4.5 RQ7: Parameter Sensitivity

	5 Discussion
	5.1 Success Stories
	5.2 Lessons Learned
	5.3 Threats to Validity
	5.4 Limitations and Future Work

	6 Related Work
	7 Conclusion
	References

