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Software Change

• Software changes are frequent
in online service systems
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Google SRE has found that roughly 
70% of outages are due to changes 
in a live system

ü fix bugs
ü deploy new features
ü adapt to environmental 

change
ü improve software 

performance
ü …

Because of importing new code or configurations, 
software changes are more likely to incur service outages 



Software Change Management
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2. Change
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Online service
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• Before deployment: risk analysis and 
impact assessment 

• During deployment: reliable launching 
strategy 

• After deployment: monitoring 
performance and identifying bad 
changes 

Although each software change must be reviewed and tested before deployment, errors and bugs 
could remain uncaught in the real production environment due to the discrepancies between testing 
and production environment.



Empirical Study
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What is the percentage 
of incidents induced by 
bad software changes? 

What are the root 
causes and behaviors of 
bad changes? 

Is the current practice 
of identifying bad 
software changes good 
enough? 

RQ1 RQ2 RQ3

Understand bad software changes



Empirical Study-1
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RQ1: What is the percentage of incidents 
induced by bad software changes? 

#Changes/day and #Incidents/day

In summary, software changes are indeed failure-prone, which could bring 
great trouble for engineers and customers in software maintenance



Empirical Study-2
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• Change type
• Code change (e.g., adding new features)
• Configuration change
• Infrastructure-layer change (e.g., 

replacing hardware devices)Percentage of different root causes 

RQ2: What are the root causes 
and behaviors of bad changes? 



Empirical Study-2
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• Various monitoring data (business KPIs, machine KPIs and logs) from multiple sources 
could be influenced by software changes. 

• Abnormal data behavior does not necessarily mean that this software change is bad. 

RQ2: What are the root causes and behaviors of bad changes? 



Empirical Study-3
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RQ3: Is the current practice of identifying bad software changes  good enough? 

Bad or not?

Business KPIs

Simple anomaly
detection methods

• Software changes involve multi-source data
• Directly applying it ignores the specific scenario 

and characteristics of software change
• The drawback of the anomaly detection 

algorithm itself

The current practice of identifying bad changes should be further improved, and it is 
essential to propose an effective approach to tackle the above drawbacks.



Approach
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Data Preparation 
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L1: 2020-06-02T02:45:01 systemd[1]: Reloaded System Logging 
Service.
L2: 2020-06-02T02:45:01 vsftpd[132130]: [billing] OK LOGIN: 
Client x.x.x.x
L3: 2020-06-02T02:45:01 dd.forwarder[3706]: WARNING 
(transaction.py:115): Queue is too big, removing old transactions...
L4: 2020-06-02T02:45:01 vsftpd[132197]: [billing] OK LOGIN: 
Client x.x.x.x

Historical
training logs

Time series data

3. Log
serialization

T1: Time systemd[1]: Reloaded System 
Logging Service. (L1)
T2: Time vsftpd[*]: [billing] OK LOGIN: 
Client IP (L2,L4)
T3: Time dd.forwarder[*]: WARNING 
(*): Queue is too big, removing old 
transactions... (L3)

1. Log
parsing

Log
templates

L1 -> T1 L2, L4 -> T2
L3 -> T3

Online
logs

2. Matching

Multi-source data
• Business KPIs
• Machine KPIs
• Logs

Time series format
Log data preprocessing



Multimodal Anomaly Detection
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Alerting with Analysis Report 
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Provide a global view of the 
software change and help 
inspect related data 
conveniently



Evaluation
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Types and descriptions of bad software changes we 
injected on the benchmark systems for evaluation 

• Two benchmark systems:
• Train-ticket
• E-commerce

• Metrics
• Precision, recall, F1-score,

MTTD (mean time to detect)



Performance
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Our approach is indeed able to 
identify bad software changes 
accurately and timely,
outperforming baseline methods
and related anomaly detection
methods.



Conclusion
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Software change is frequent but failure-prone. 

To better understand bad software changes, we conduct the first empirical study based on 
large-scale real-world data. 

Inspired by the findings obtained from empirical study, we propose a novel approach named 
SCWarn to identifying bad changes accurately and timely.

An extensive study including various bad software changes confirms the effectiveness.



Thank you!
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