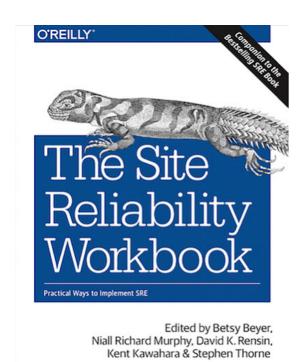
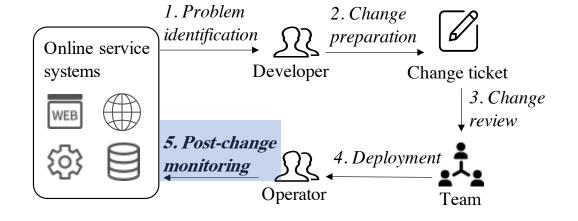
Identifying Bad Software Changes via Multimodal Anomaly Detection for Online Service Systems

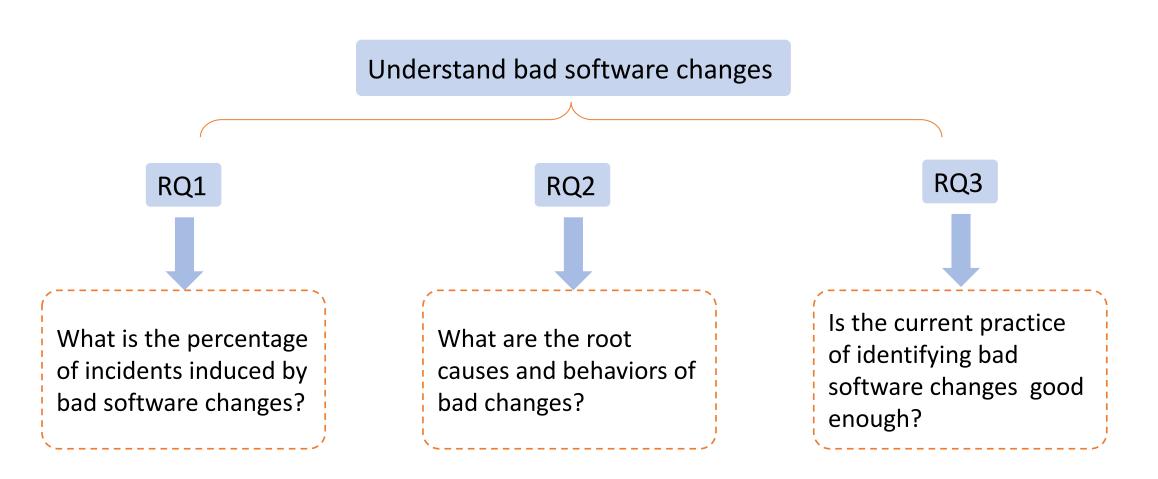

Nengwen Zhao, Junjie Chen, Zhaoyang Yu, Honglin Wang, Jiesong Li, Bin Qiu, Hongyu Xu, Wenchi Zhang, Kaixin Sui, and Dan Pei

ESEC/FSE 2021

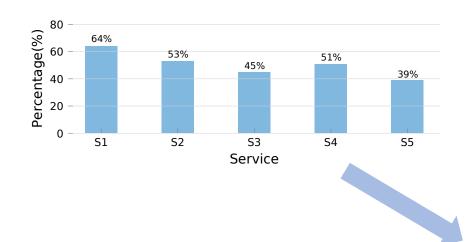
Software Change

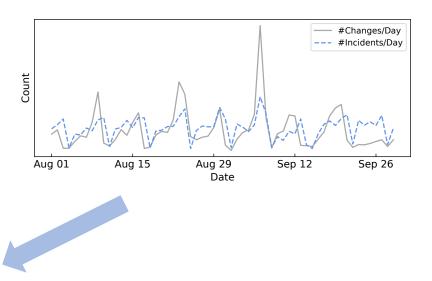
- Software changes are frequent in online service systems
 - ✓ fix bugs
 - ✓ deploy new features
 - ✓ adapt to environmental change
 - ✓ improve software performance
 - **✓** ...


Because of importing new code or configurations, software changes are more likely to incur service outages

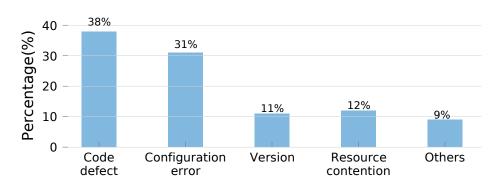

Google SRE has found that roughly 70% of outages are due to changes in a live system

Software Change Management


- Before deployment: risk analysis and impact assessment
- During deployment: reliable launching strategy
- After deployment: monitoring performance and identifying bad changes


Although each software change must be reviewed and tested before deployment, errors and bugs could remain uncaught in the real production environment due to the discrepancies between testing and production environment.

RQ1: What is the percentage of incidents induced by bad software changes?


#Changes/day and #Incidents/day

In summary, software changes are indeed failure-prone, which could bring great trouble for engineers and customers in software maintenance

RQ2: What are the root causes and behaviors of bad changes?

Percentage of different root causes

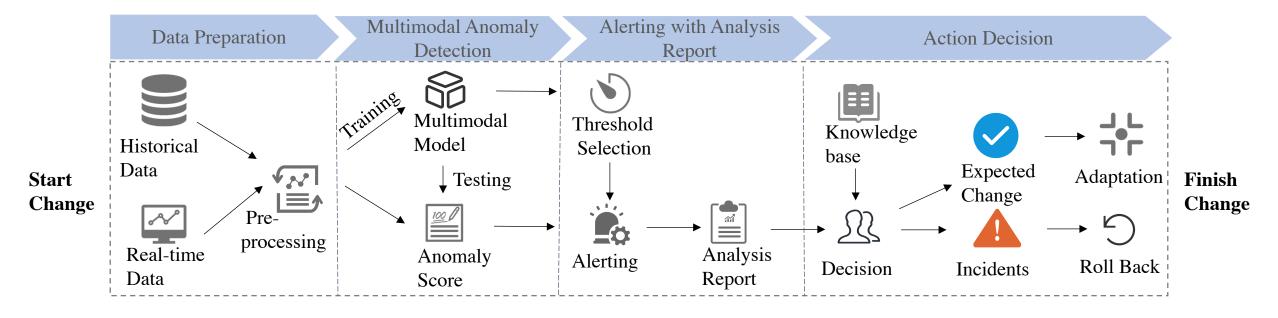
- Change type
 - Code change (e.g., adding new features)
 - Configuration change
 - Infrastructure-layer change (e.g., replacing hardware devices)

RQ2: What are the root causes and behaviors of bad changes?

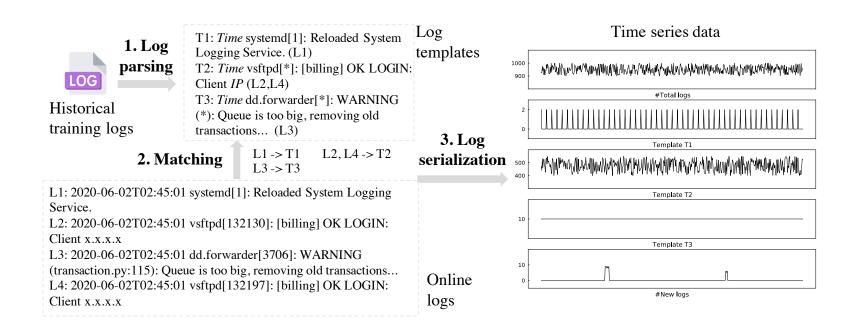
Type	Change operation	Abnormal behaviors of multi-source monitoring data					
	Configuration error - Wrong IP address	Error messaegs in network logs (e.g., "address conflicted"); related machine					
		KPIs and business KPIs behave abnormally					
Bad	Configuration error - Missing modification of correlated con-	Error messages in application logs; business KPIs behave abnormally					
software	figuration [49]						
change	Configuration error - Deleting white list by mistake	Business KPIs behave abnormally					
	Code performance - Slow SQL, full table scan and some related	Database (e.g., active session, lock wait) and related machine KPIs (e.g., disk					
	database problems	space, CPU usage) behave abnormally; response time increases					
	Code performance - Memory leak	"FullGC" log pattern appears frequently in GC log; machine KPIs (e.g., JVM					
		heap space, memory usage) behave abnormally; response time increases					
	Code performance - Code self-loop or dead loop	System load, CPU usage and other machine KPIs behave abnormally; re-					
		sponse time increases					
	Code logic bug - Wrong database table name; error date format	Error messages in application logs; success rate decreases					
	Resource contention	Related machine KPIs (e.g., I/O wait, CPU usage) behave abnormally					
Expected	Replace high-performance server; Resource expansion [45]	Related machine KPIs (e.g., CPU usage, memory usage) decrease; response					
software		time decreases					
change	Traffic switch	CPU usage decreases					
	Code logic changes (e.g., some new steps are added to trans-	Related business KPIs behave abnormally (e.g., response time increases)					
	action process)						

- Various monitoring data (business KPIs, machine KPIs and logs) from multiple sources could be influenced by software changes.
- Abnormal data behavior does not necessarily mean that this software change is bad.

RQ3: Is the current practice of identifying bad software changes good enough?



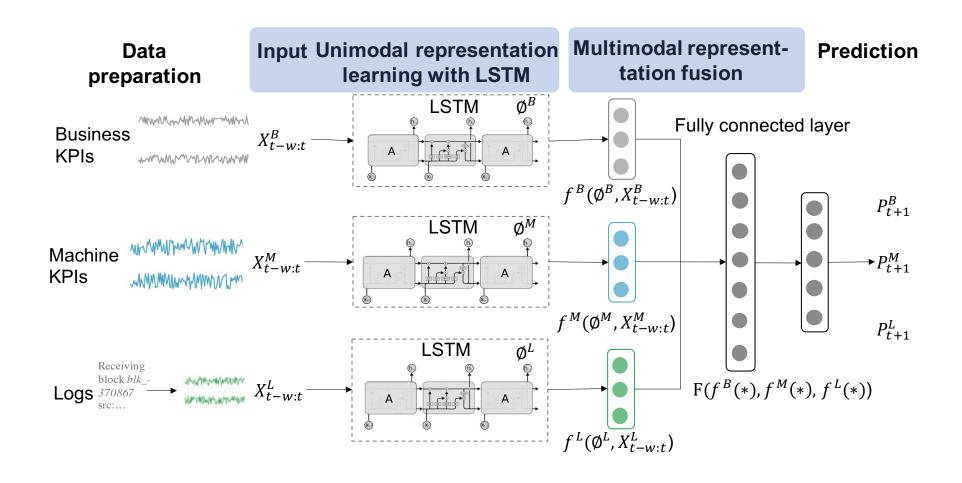
- Software changes involve multi-source data
- Directly applying it ignores the specific scenario and characteristics of software change
- The drawback of the anomaly detection algorithm itself


The current practice of identifying bad changes should be further improved, and it is essential to propose an effective approach to tackle the above drawbacks.

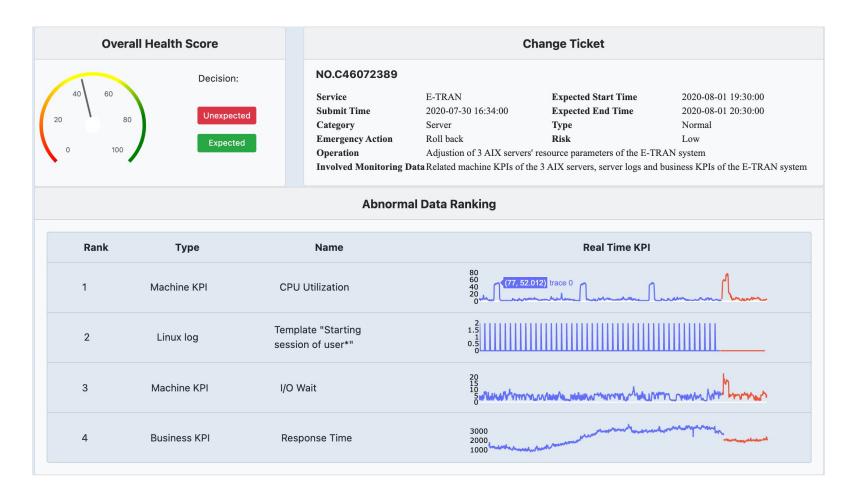
Approach

Overview of SCWarn

Data Preparation



Log data preprocessing


Multi-source data
Business KPIs
Machine KPIs
Logs

Time series format

Multimodal Anomaly Detection

Alerting with Analysis Report

Provide a global view of the software change and help inspect related data conveniently

Evaluation

- Two benchmark systems:
 - Train-ticket
 - E-commerce
- Metrics
 - Precision, recall, F1-score,
 MTTD (mean time to detect)

Types and descriptions of bad software changes we injected on the benchmark systems for evaluation

Failure type	Description				
	F1 - Create large Java objects in program, lead-				
Code defect	ing to frequent fullGC and OutOfMemory error				
	F2 - Inject delay into program to simulate code				
	performance issue				
	<i>F3</i> - SQL statement defect leading to slow query				
	F4 - Invalid paths which will be opened or exe-				
Configuration	cuted				
	<i>F5</i> - Unsuitable size of JVM heap memory				
error	<i>F6</i> - Database port error				
	<i>F7</i> - Limited number of database connections				
	F8 - Non-existent database table				
Software version	F9 - Incompatible software version				
Resource contention	F10 - CPU contention				

Performance

	Dataset ${\mathcal A}$				Dataset ${\cal B}$				
Approaches	P	R	F1	MTTD	P	R	F1	MTTD	
SCWarn	0.91	0.95	0.93	5.1	0.97	0.98	0.97	2.3	
Gandalf-AD	0.68	0.95	0.79	6.2	0.77	0.99	0.87	3.1	
Funnel	0.77	0.69	0.73	14.0	0.76	0.87	0.81	6.4	
Lumos	0.66	0.94	0.78	10.0	0.77	0.93	0.82	10.0	
mFunnel	0.69	0.93	0.79	9.0	0.82	0.79	0.80	3.0	
mLumos	0.85	0.83	0.84	10.0	0.72	0.99	0.83	10.0	

		Dataset ${\mathcal A}$			Dataset ${\cal B}$				
Data source	Approaches	P	R	F1	MTTD	P	R	F1	MTTD
Business KPIs	Donut	0.65	0.92	0.76	7.3	0.94	0.75	0.83	5.4
Dusilless Kr is	B-LSTM	0.86	0.75	0.80	8.2	0.99	0.88	0.93	6.6
Machine KPIs	LSTM-NDT	0.80	0.71	0.76	5.2	0.85	0.83	0.86	3.5
Machine Kris	OmniAnomaly	0.71	0.99	0.83	5.4	0.88	0.87	0.87	3.2
Logs	DeepLog	0.57	0.96	0.71	11.2	0.55	0.83	0.66	8.9
	M-AE	0.79	0.85	0.81	5.1	0.82	0.90	0.86	2.6
Multi-source	M-LSTM	0.80	0.95	0.87	5.3	0.99	0.94	0.96	3.2
data	Multimodal AE	0.94	0.83	0.88	6.1	0.95	0.93	0.94	4.0
	Multimodal LSTM	0.91	0.95	0.93	5.1	0.97	0.98	0.97	2.3

Our approach is indeed able to identify bad software changes accurately and timely, outperforming baseline methods and related anomaly detection methods.

Conclusion

Software change is frequent but failure-prone.

To better understand bad software changes, we conduct the first empirical study based on large-scale real-world data.

Inspired by the findings obtained from empirical study, we propose a novel approach named SCWarn to identifying bad changes accurately and timely.

An extensive study including various bad software changes confirms the effectiveness.

Thank you!

znw17@mails.tsinghua.edu.cn