
Identifying Bad Software Changes via Multimodal
Anomaly Detection for Online Service Systems

Nengwen Zhao, Junjie Chen, Zhaoyang Yu, Honglin Wang, Jiesong Li, Bin Qiu,
Hongyu Xu, Wenchi Zhang, Kaixin Sui, and Dan Pei

ESEC/FSE 2021

1

Software Change

• Software changes are frequent
in online service systems

2

Google SRE has found that roughly
70% of outages are due to changes
in a live system

ü fix bugs
ü deploy new features
ü adapt to environmental

change
ü improve software

performance
ü …

Because of importing new code or configurations,
software changes are more likely to incur service outages

Software Change Management

Change ticketDeveloper

Operator

2. Change
preparation

3. Change
review

Team

5. Post-change
monitoring 4. Deployment

Online service
systems

1. Problem
identification

3
.
C
h

3

• Before deployment: risk analysis and
impact assessment

• During deployment: reliable launching
strategy

• After deployment: monitoring
performance and identifying bad
changes

Although each software change must be reviewed and tested before deployment, errors and bugs
could remain uncaught in the real production environment due to the discrepancies between testing
and production environment.

Empirical Study

4

What is the percentage
of incidents induced by
bad software changes?

What are the root
causes and behaviors of
bad changes?

Is the current practice
of identifying bad
software changes good
enough?

RQ1 RQ2 RQ3

Understand bad software changes

Empirical Study-1

Aug 01 Aug 15 Aug 29 6eS 12 6eS 26
DDte

Co
un

t

#ChDnges/DDy
#Incidents/DDy

5

61 62 63 64 65
6ervice

0

20

40

60

80

3e
rc
en
ta
ge
(%
)

64%
53%

45%
51%

39%

RQ1: What is the percentage of incidents
induced by bad software changes?

#Changes/day and #Incidents/day

In summary, software changes are indeed failure-prone, which could bring
great trouble for engineers and customers in software maintenance

Empirical Study-2

6

CRde
defect

CRnfiguratiRn
errRr

9erViRn ReVRurce
cRntentiRn

2therV
0

10

20

30

40

3e
rc
en
ta
ge
(%
) 38%

31%

11% 12%
9%

• Change type
• Code change (e.g., adding new features)
• Configuration change
• Infrastructure-layer change (e.g.,

replacing hardware devices)Percentage of different root causes

RQ2: What are the root causes
and behaviors of bad changes?

Empirical Study-2

7

• Various monitoring data (business KPIs, machine KPIs and logs) from multiple sources
could be influenced by software changes.

• Abnormal data behavior does not necessarily mean that this software change is bad.

RQ2: What are the root causes and behaviors of bad changes?

Empirical Study-3

8

RQ3: Is the current practice of identifying bad software changes good enough?

Bad or not?

Business KPIs

Simple anomaly
detection methods

• Software changes involve multi-source data
• Directly applying it ignores the specific scenario

and characteristics of software change
• The drawback of the anomaly detection

algorithm itself

The current practice of identifying bad changes should be further improved, and it is
essential to propose an effective approach to tackle the above drawbacks.

Approach

9

Historical
Data

DecisionAlerting

Tra
inin
g

Testing

Real-time
Data

Start
Change

Multimodal
Model

Anomaly
Score Incidents

Expected
Change

Roll Back

Adaptation

Threshold
Selection

Finish
Change

Pre-
processing

Knowledge
base

Analysis
Report

Multimodal Anomaly
Detection

Alerting with Analysis
Report Action DecisionData Preparation

Overview of SCWarn

Data Preparation

10

L1: 2020-06-02T02:45:01 systemd[1]: Reloaded System Logging
Service.
L2: 2020-06-02T02:45:01 vsftpd[132130]: [billing] OK LOGIN:
Client x.x.x.x
L3: 2020-06-02T02:45:01 dd.forwarder[3706]: WARNING
(transaction.py:115): Queue is too big, removing old transactions...
L4: 2020-06-02T02:45:01 vsftpd[132197]: [billing] OK LOGIN:
Client x.x.x.x

Historical
training logs

Time series data

3. Log
serialization

T1: Time systemd[1]: Reloaded System
Logging Service. (L1)
T2: Time vsftpd[*]: [billing] OK LOGIN:
Client IP (L2,L4)
T3: Time dd.forwarder[*]: WARNING
(*): Queue is too big, removing old
transactions... (L3)

1. Log
parsing

Log
templates

L1 -> T1 L2, L4 -> T2
L3 -> T3

Online
logs

2. Matching

Multi-source data
• Business KPIs
• Machine KPIs
• Logs

Time series format
Log data preprocessing

Multimodal Anomaly Detection

Business
KPIs

Machine
KPIs

Logs

Multimodal represent-
tation fusion

!!"#:!%

Unimodal representation
learning with LSTM

LSTM

LSTM

LSTM

Prediction

Receiving
block blk_-
370867
src:…

!!"#:!&

!!"#:!'

"!()%

"!()&

"!()'

∅%

∅&

∅'

$'(∅', !!"#:!')

$%(∅% , !!"#:!%)

$&(∅& , !!"#:!&)

F($%(∗), $& ∗ , $'(∗))

Input

Fully connected layer

Data
preparation

11

Alerting with Analysis Report

12

Provide a global view of the
software change and help
inspect related data
conveniently

Evaluation

13

Types and descriptions of bad software changes we
injected on the benchmark systems for evaluation

• Two benchmark systems:
• Train-ticket
• E-commerce

• Metrics
• Precision, recall, F1-score,

MTTD (mean time to detect)

Performance

14

Our approach is indeed able to
identify bad software changes
accurately and timely,
outperforming baseline methods
and related anomaly detection
methods.

Conclusion

15

Software change is frequent but failure-prone.

To better understand bad software changes, we conduct the first empirical study based on
large-scale real-world data.

Inspired by the findings obtained from empirical study, we propose a novel approach named
SCWarn to identifying bad changes accurately and timely.

An extensive study including various bad software changes confirms the effectiveness.

Thank you!

16

znw17@mails.tsinghua.edu.cn

