ldentifying Bad Software Changes via Multimodal
Anomaly Detection for Online Service Systems

Nengwen Zhao, Junjie Chen, Zhaoyang Yu, Honglin Wang, Jiesong Li, Bin Qiu,
Hongyu Xu, Wenchi Zhang, Kaixin Sui, and Dan Pei

ESEC/FSE 2021

Software Change

e Software changes are frequent
in online service systems

v fix bugs

v' deploy new features

v adapt to environmental
change

v improve software
performance

Because of importing new code or configurations,
software changes are more likely to incur service outages

OREILLY"

The ' Site ~t

Reliability
Workbook

mplement SRE

Edited by Betsy Beyer,
Niall Richard Murphy, David K. Rensin,
Kent Kawahara & Stephen Thorne

Google SRE has found that roughly
70% of outages are due to changes
in a live system

Software Change Management

1. Problem 2. Change /
 Before deployment: risk analysis and (Online service | <" ication - S XY preparation, [_ J
impact assessment systems Developer Change ticket
* During deployment: reliable launching = @ liC_hange
review
strategy 5. Post-change 4 Dev] s
. . . o . . Deployment
* After deployment: moncltc?rlng \@ g)”" onitoring ST s ke
performance and identifying bad Operator Team
changes

Although each software change must be reviewed and tested before deployment, errors and bugs
could remain uncaught in the real production environment due to the discrepancies between testing

and production environment.

Empirical Study

Understand bad software changes

RQ1 RQ2 RQ3

Is the current practice

What is the percentage What are the root . -

o . . of identifying bad
of incidents induced by causes and behaviors of coftware changes 2004
bad software changes? bad changes? BES 8

enough?

Empirical Study-1

RQ1: What is the percentage of incidents
induced by bad software changes?

__ 80~
S 64%
@ 60 - 53% 51%
o 45% ,
8 a0 39%
C
(O]
Y 20 -
[O]
o
0 _ | | | | |
s1 S2 S3 S4 S5
Service

#Changes/day and #Incidents/day

Count

#Changes/Day
—== #lIncidents/Day
I’\\
) e 3 /’II ll\\ l' \\ . \ I A
[} v - -/ ~ \ Vi ks 1
) ¥\ ! y ‘Ilf)] \ £ A ! s \ ¥
\ \ V y v V "/ ;
! ! ! ! !
Aug 01 Aug 15 Aug 29 Sep 12 Sep 26
Date

In summary, software changes are indeed failure-prone, which could bring
great trouble for engineers and customers in software maintenance

Empirical Study-2

RQ2: What are the root causes
and behaviors of bad changes?

Percentage of different root causes

- 38%

N
o

31%

w
o
I

11% 12%

Percentage(%)
= N
o o

9%

o
|

| | |
Code Configuration Version

| |
Resource Others
defect error

contention

* Change type
e Code change (e.g., adding new features)
* Configuration change

* Infrastructure-layer change (e.g.,
replacing hardware devices)

Empirical Study-2

RQ2: What are the root causes and behaviors of bad changes?

Type

Change operation

Abnormal behaviors of multi-source monitoring data

Bad
software
change

Configuration error - Wrong IP address

Error messaegs in network logs (e.g., “address conflicted”); related machine
KPIs and business KPIs behave abnormally

Configuration error - Missing modification of correlated con-
figuration [49]

Error messages in application logs; business KPIs behave abnormally

Configuration error - Deleting white list by mistake

Business KPIs behave abnormally

Code performance - Slow SQL, full table scan and some related
database problems

Database (e.g., active session, lock wait) and related machine KPIs (e.g., disk
space, CPU usage) behave abnormally; response time increases

Code performance - Memory leak

“FullGC” log pattern appears frequently in GC log; machine KPIs (e.g., JVM
heap space, memory usage) behave abnormally; response time increases

Code performance - Code self-loop or dead loop

System load, CPU usage and other machine KPIs behave abnormally; re-
sponse time increases

Code logic bug - Wrong database table name; error date format

Error messages in application logs; success rate decreases

Resource contention

Related machine KPIs (e.g., I/O wait, CPU usage) behave abnormally

Expected
software

change

Replace high-performance server; Resource expansion [45]

Related machine KPIs (e.g., CPU usage, memory usage) decrease; response
time decreases

Traffic switch

CPU usage decreases

Code logic changes (e.g., some new steps are added to trans-
action process)

Related business KPIs behave abnormally (e.g., response time increases)

Various monitoring data (business KPIs, machine KPIs and logs) from multiple sources

could be influenced by software changes.

Abnormal data behavior does not necessarily mean that this software change is bad.

Empirical Study-3

RQ3: Is the current practice of identifying bad software changes good enough?

. * Software changes involve multi-source data
@ Business KPls @ * Directly applying it ignores the specific scenario
_ and characteristics of software change
Simple anomaly .

The drawback of the anomaly detection

: Bad or not?
detection methods algorithm itself

The current practice of identifying bad changes should be further improved, and it is
essential to propose an effective approach to tackle the above drawbacks.

Approach

Data Preparation Multimodal Anomaly Alerting with Analysis Action Decision
_________________________________ Detection ____ ____ ______Report _ .
. - | < i | i
- % Q0 N\ | |E| :
D — | &(& Multimodal ' Threshold ' Knowled JL
| Historical | Model " Selecti | nowledge > O
i | . Selection " base ar
Start Data Yool | lTesting i l | i Expected Adaptation! Finish
Change =2 A & | _—" Change ' Change
20 2 % F .2 A -5
i Real-time processing | A_ | | =& AnTl sis : |
: i I nomaly . Alerting y | . , i
" Data i Score | Report i Decision Incidents Roll Back :

__

Overview of SCWarn

Data Preparation

T1: Time systemd[1]: Reloaded System
L Log Logging Service. (L1)
parsing T2: Time vsftpd[*]: [billing] OK LOGIN:
Client /P (L2,L4)
T3: Time dd.forwarder[*]: WARNING

H1§t9rlcal (*): Queue is too big, removing old
training logs transactions... (L3)
. L1->Tl L2,L4->T2
2. Matching 03273

L1:2020-06-02T02:45:01 systemd[1]: Reloaded System Logging
Service.

L2:2020-06-02T02:45:01 vsftpd[132130]: [billing] OK LOGIN:
Client x.X.X.X

L3:2020-06-02T02:45:01 dd.forwarder[3706]: WARNING
(transaction.py:115): Queue is too big, removing old transactions...
L4:2020-06-02T02:45:01 vsftpd[132197]: [billing] OK LOGIN:
Client x.x.X.X

Log data preprocessing

Log
templates

3.Log

1000

900

~

0

serialization s«

Online
logs

400

10

10

Time series data

AU ALt A s AR A

(LLLILALLELLLALLLLA

[LHLALLELALLERALLRAL
PP AR A O O

Template T1
Template T2

Template T3

#New logs

Multi-source data
e Business KPIs

e Machine KPIs
* Logs

e e e e o e e o o o o o e = = = e

Time series format

-

10

e e e e — — —

Multimodal Anomaly Detection

Data Input Unimodal representation Multimodal represent- Prediction
preparation learning with LSTM tation fusion
s o]
Business it | ® ® @ Fully connected layer
Xt—we [A Al s |
KPIS worusvismnmn ; R —
K ® ®
"""""""""""""" B B B
0°, X)
___________ i f(t-wit) () P PtB+1
Maching AR e e % Q : : .
Xi > | — : > > >
KPIs e LA (AL A U "
Pt et : O ®
M rAM M
____________________________ MM, Xt ye) o @ g,
LSTM ¢t PY
Receiving | @? ® ® : N
Logs sy —» S0 XL L —— b, I OYONEO)
9 sre- . wrnama LWt i | & Lﬁi‘ 4 l: ' '
L © ®

:h ------------------------- fL(QL; X%—w:t)

11

Alerting with Analysis Report

Overall Health Score

Rank

100

Decision:

Unexpected

Expected

Type

Machine KPI

Linux log

Machine KPI

Business KPI

NO.C46072389

Service

Submit Time
Category
Emergency Action
Operation

Involved Monitoring Data Related machine KPIs of the 3 AIX servers, server logs and business KPIs of the E-TRAN system

Change Ticket

E-TRAN Expected Start Time 2020-08-01 19:30:00
2020-07-30 16:34:00 Expected End Time 2020-08-01 20:30:00
Server Type Normal

Roll back Risk Low

Adjustion of 3 AIX servers' resource parameters of the E-TRAN system

Abnormal Data Ranking

Name

CPU Utilization

Template "Starting
session of user*"

1/0 Wait

Response Time

Real Time KPI

40 (77, 52.012) QigetLN]
20 , I A ' I ‘
0

3000
2000 oo
1000

Provide a global view of the
software change and help
inspect related data
conveniently

12

Evaluation

Two benchmark systems:

Train-ticket
E-commerce

Metrics

Precision, recall, F1-score,
MTTD (mean time to detect)

Types and descriptions of bad software changes we
injected on the benchmark systems for evaluation

Failure type

Description

Code defect

F1- Create large Java objects in program, lead-
ing to frequent fullGC and OutOfMemory error

F2 - Inject delay into program to simulate code
performance issue

F3 - SQL statement defect leading to slow query

Configuration
error

F4 - Invalid paths which will be opened or exe-
cuted

F5 - Unsuitable size of JVM heap memory

F6 - Database port error

F7 - Limited number of database connections

F8 - Non-existent database table

Software version

F9 - Incompatible software version

Resource contention

F10 - CPU contention

13

Performance

Dataset A Dataset B
Approaches P R F1 MTTD | P R F1 MTTD
SCWarn 0.91 0.95 0.93 5.1 0.97 098 0.97 2.3
Gandalf-AD | 0.68 095 0.79 6.2 0.77 0.99 0.87 3.1
Funnel 0.77 0.69 0.73 14.0 0.76 0.87 0.81 6.4
Lumos 0.66 094 0.78 10.0 0.77 0.93 0.82 10.0
mFunnel 0.69 093 0.79 9.0 0.82 0.79 0.80 3.0
mLumos 0.85 0.83 0.84 10.0 0.72 099 0.83 10.0
Dataset A Dataset 8

Data source Approaches P R F1 MTID | P R F1 MTTD
Business KPls Donut 0.65 092 0.76 7.3 094 0.75 0.83 54
o B-LSTM 0.86 0.75 0.80 8.2 0.99 088 0.93 6.6
T LSTM-NDT 0.80 0.71 0.76 5.2 0.85 0.83 0.86 3.5
acie RS OmniAnomaly 071 0.99 0.83 5.4 0.88 0.87 0.87 3.2
Logs DeepLog 0.57 096 0.71 11.2 0.55 0.83 0.66 8.9

M-AE 0.79 0.85 0.81 5.1 0.82 090 0.86 2.6
Multi-source M-LSTM 0.80 095 0.87 5.3 0.99 094 096 3.2
data Multimodal AE 0.94 083 0.88 6.1 095 093 094 4.0

Multimodal LSTM 0.91 0.95 0.93 5.1 0.97 0.98 0.97 2.3

Our approach is indeed able to
identify bad software changes
accurately and timely,
outperforming baseline methods
and related anomaly detection
methods.

14

Conclusion

Software change is frequent but failure-prone.

To better understand bad software changes, we conduct the first empirical study based on
6 large-scale real-world data.

Inspired by the findings obtained from empirical study, we propose a novel approach named
SCWarn to identifying bad changes accurately and timely.

A An extensive study including various bad software changes confirms the effectiveness.

15

Thank you!

znwl7@mails.tsinghua.edu.cn

16

