
An Empirical Investigation of Practical Log Anomaly Detection
for Online Service Systems

Nengwen Zhao∗
Tsinghua University; BNRist

Beijing, China

Honglin Wang
BizSeer

Beijing, China

Zeyan Li
Tsinghua University; BNRist

Beijing, China

Xiao Peng
China Everbright Bank

Beijing, China

Gang Wang
China Everbright Bank

Beijing, China

Zhu Pan
China Everbright Bank

Beijing, China

Yong Wu
China Everbright Bank

Beijing, China

Zhen Feng
China Everbright Bank

Beijing, China

Xidao Wen
Tsinghua University; BNRist

Beijing, China

Wenchi Zhang
BizSeer

Beijing, China

Kaixin Sui
BizSeer

Beijing, China

Dan Pei†
Tsinghua University; BNRist

Beijing, China

ABSTRACT
Log data is an essential and valuable resource of online service sys-
tems, which records detailed information of system running status
and user behavior. Log anomaly detection is vital for service relia-
bility engineering, which has been extensively studied. However,
we find that existing approaches suffer from several limitations
when deploying them into practice, including 1) inability to deal
with various logs and complex log abnormal patterns; 2) poor inter-
pretability; 3) lack of domain knowledge. To help understand these
practical challenges and investigate the practical performance of
existing work quantitatively, we conduct the first empirical study
and an experimental study based on large-scale real-world data. We
find that logs with rich information indeed exhibit diverse abnormal
patterns (e.g., keywords, template count, template sequence, vari-
able value, and variable distribution). However, existing approaches
fail to tackle such complex abnormal patterns, producing unsatis-
factory performance. Motivated by obtained findings, we propose
a generic log anomaly detection system named LogAD based on
ensemble learning, which integrates multiple anomaly detection
approaches and domain knowledge, so as to handle complex situ-
ations in practice. About the effectiveness of LogAD, the average
F1-score achieves 0.83, outperforming all baselines. Besides, we
also share some success cases and lessons learned during our study.
To our best knowledge, we are the first to investigate practical log

∗BNRist: Beijing National Research Center for Information Science and Technology
†Dan Pei is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’21, August 23–28, 2021, Athens, Greece
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8562-6/21/08. . . $15.00
https://doi.org/10.1145/3468264.3473933

anomaly detection in the real world deeply. Our work is helpful
for practitioners and researchers to apply log anomaly detection to
practice to enhance service reliability.

CCS CONCEPTS
• Software and its engineering→Maintaining software.

KEYWORDS
Log Anomaly Detection, Online Service Systems, Practical Chal-
lenges

ACM Reference Format:
Nengwen Zhao, Honglin Wang, Zeyan Li, Xiao Peng, Gang Wang, Zhu Pan,
Yong Wu, Zhen Feng, Xidao Wen, Wenchi Zhang, Kaixin Sui, and Dan Pei.
2021. An Empirical Investigation of Practical Log Anomaly Detection for
Online Service Systems. In Proceedings of the 29th ACM Joint European Soft-
ware Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE ’21), August 23–28, 2021, Athens, Greece. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3468264.3473933

1 INTRODUCTION
Log data is an important and valuable data source in online service
systems, which records detailed information of system running
status and user behavior. Log anomaly detection, aiming to identify
abnormal system behavior, could assist engineers in identifying
incidents promptly and diagnose incidents rapidly [30, 40, 41, 53].
Therefore, log anomaly detection is vital for service reliability and
incident management [20, 21].

In traditional monitoring, engineers manually examine logs and
write rules (keywords and regular expressions) to detect anom-
alies based on their domain knowledge. However, as the scale and
complexity of service systems increase, it is challenging to detect
log anomalies by manual rules due to the following reasons. 1) An
online service system involves many components such as hard-
ware, virtual machines, database, and network, generating a large
number and variety of logs, about TBs per day [55]. It is tedious

https://doi.org/10.1145/3468264.3473933
https://doi.org/10.1145/3468264.3473933

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece N. Zhao, H. Wang, Z. Li, X. Peng, G. Wang, P. Zhu, Y. Wu, Z. Feng, X. Wen, W. Zhang, K. Sui, D. Pei

to set manual rules for such numerous and various logs. 2) Setting
rules requires intensive domain knowledge, while the manpower of
experienced engineers is limited. Besides, different engineers may
have different preferences when making rules. 3) Service systems
are usually under frequent software changes. Thus the manual rules
should be constantly updated and maintained, which is also labor-
intensive [31]. In summary, it is time-consuming and error-prone to
detect log anomalies via manual rules in large-scale systems. Thus,
it is imperative to design an automated log anomaly detection ap-
proach to replace manual effort.

To overcome the drawbacks of manual rules, tremendous efforts
have been dedicated into automated log anomaly detection [19, 23,
25, 29, 30, 35, 38, 42, 45, 47, 48, 50, 51, 53]. Although the superiority
of existing work has been illustrated in their papers, we encounter
several practical challenges when applying them to the real world.
1) Inability to handle various logs and complex abnormal patterns.
In practice, each service component could generate logs, leading
to the diversity of log types. Besides, log messages contain rich
information, including timestamps, templates, and variables [25],
which can be obtained via log parsing [55]. Thus log abnormal pat-
terns are also diverse, such as template count [35, 37, 47], template
sequence [18, 25, 26, 38, 39, 52], variable value [25] and variable
distribution. Existing approaches, however, are mainly evaluated on
limited public datasets (HDFS [46], OpenStack [52], and BGL [2, 40])
and can only deal with one or two types of abnormal patterns. 2)
Poor interpretability. Existing work simply provides the result of
whether the current time is abnormal or not. However, engineers
are confused about why it is an anomaly and how the normal pat-
tern should behave. Equipping with an interpretable explanation,
engineers could gain some actionable insights to diagnose and mit-
igate the anomaly more efficiently. 3) Lack of domain knowledge.
Existing work targets at automated log anomaly detection without
human involvement. Incorporating domain knowledge, however,
could not only deal with some special situations, but also allow
the interaction between humans and algorithms to improve the
performance, which is more friendly to engineers. In summary,
existing approaches cannot be applied directly to practice.

To help understand the role of log anomaly detection in incident
management and the above challenges intuitively, we performed the
first empirical study based on large-scale real-world data, and ob-
tained three key findings. 1) Log anomaly detection is indeed bene-
ficial to incident discovery and diagnosis. 2) Engineers still prefer to
use keyword-based strategy in current practice instead of advanced
approaches due to poor interpretability. However, keywords-based
strategy is also unsatisfactory, producing false alarms and missing
alarms. 3) Log types and abnormal patterns are indeed diverse. We
summarized some common-used logs in engineers’ daily operation
and maintenance and corresponding abnormal patterns through
historical incident analysis and interviews with engineers. To fur-
ther confirm the above challenges quantitatively, we conducted an
extensive experimental study to evaluate five typical unsupervised
log anomaly detection approaches (PCA [47], LogCluster [35], In-
variant Mining [37], DeepLog [25] and LogAnomaly [38]) on ten
real-world log datasets from different service components with
various abnormal patterns. The results show that all of these ap-
proaches perform unstably on different datasets, and the average

F1-score is lower than 0.7. Consequently, we could conclude that
existing approaches are not generic and effective in the real world.

Motivated by the findings obtained from empirical study and
experimental study, we propose a generic and effective log anom-
aly detection system named LogAD, integrating a knowledge base
and multiple anomaly detection techniques to address the above
challenges. LogAD contains four components, data preparation, log
preprocessing, log anomaly detection, and alerts with visualiza-
tion. More specifically, we first collect unstructured raw logs to
prepare for anomaly detection. The goal of log preprocessing is to
transform raw logs into structured data. In addition to the widely-
used log parsing technique (Drain [28] used in LogAD), we also
import rule matching based on the knowledge base. It is because
that not all logs can be well processed with an automated parsing
algorithm without human involvement. Rule matching could utilize
domain knowledge to extract valuable information and enhance
performance (tackle the third challenge). Afterwards, appropriate
anomaly detection algorithms are selected based on the configura-
tions in the knowledge base or engineers’ selection. LogAD fuses
multiple anomaly detection techniques to handle complex abnor-
mal types (tackle the first challenge). After identifying anomalies,
LogAD generates an alert with an interpretable report, which could
assist engineers in understanding this alert and gaining insights to
diagnose the problem (tackle the second challenge).

We evaluated the performance of LogAD on ten log datasets
with different abnormal patterns used in the experimental study.
The results show that LogAD could achieve the best F1-score (0.83
on average) across all datasets. Besides, LogAD has been applied
in a large company and we also share some success cases to help
understand the practical usage of LogAD. These cases demonstrate
that LogAD could assist incident management from multiple as-
pects (e.g., predicting OOM failure, detecting network issues, and
detecting database server down). Moreover, we also share some
lessons learned during our study. We believe our work is helpful for
practitioners and researchers to apply the technique of log anomaly
detection to practice to enhance service reliability.

To sum up, this paper has the following major contributions:
• We point out several practical challenges of log anomaly de-
tection. Besides, we conduct the first empirical study and an
experimental study on large-scale real-world data to further sup-
port these challenges. Some key observations obtained from our
study could provide some guidance for the practical usage of log
anomaly detection.

• Inspired by the observations, we propose an effective and generic
log anomaly detection system named LogAD, which incorporates
domain knowledge and multiple anomaly detection approaches
to tackle diverse abnormal patterns with good interpretability.

• The effectiveness of LogAD is confirmed based on real-world log
data. Besides, LogAD has been applied in a large company, and
we share some real-world cases and lessons learned.

2 BACKGROUND
2.1 Log Anomaly Detection
Log anomaly detection strives to identify abnormal behavior of
systems and users. Following the existing work [31], the general
pipeline of log anomaly detection can be summarized with Figure 1,

An Empirical Investigation of Practical Log Anomaly Detection for Online Service Systems ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

02:45:01 systemd[1]: Reloaded
System Logging Service.
02:45:01 vsftpd[132130]:
[billing] OK LOGIN: Client
x.x.x.x
02:45:01 vsftpd[132197]:
[billing] OK LOGIN: Client
x.x.x.x…

Template + variable

LSTM

Clustering PCA

Template count

Template sequence
Fixed window

Sliding window

Session window

Semantic vector

Time interval … Bi-LSTM

…

① Log Collection ② Log Parsing ③ Grouping ④ Feature Representation ⑤Anomaly Detection

Time systemd[*]: Reloaded
System Logging Service.
Time vsftpd[*]: [billing] OK
LOGIN: Client ip
Time vsftpd[*]: [billing] OK
LOGIN: Client ip…

Figure 1: Pipeline of existing log anomaly detection approaches

including five main steps: log collection, log parsing, grouping,
feature representation, and anomaly detection.

Log Collection. Log collectionmainly contains agent-basedmethod
(e.g., Filebeat [4] and Logstash [10]) and syslog-based method (e.g.,
syslog-ng [17] and Rsyslog [15]). A log message usually contains
a timestamp and detailed information indicating what has hap-
pened [31]. As systems grow in scale and complexity, logs are
generated at an ever-increasing rate. For example, a service system
in a large company could generate about 2 TB of log data daily [36].

Log Parsing. Logs are usually unstructured texts, generated using
the printf function with a string template and detailed information.
Log parsing aims to transform raw logs into structured templates
(constant parts) and variables (variable parts) [55]. Log parsing
has been extensively studied in the literature, such as Drain [28],
Spell [24], LogMine [27] and LogSig [43]. Zhu et al. conducted an
experience report of existing log parsing algorithms on large-scale
log datasets [55], demonstrating the superiority of Drain.

Grouping. Due to contextual time dependency existing in logs,
we cannot consider only a single log message for anomaly detec-
tion. Thus we need to split raw logs into a set of log sequences
using different grouping strategies. As introduced in [31], common
methods include fixed time windows, sliding time windows, and
session windows (e.g., splitting HDFS logs using blockid).

Feature Representation. Existing approaches have designed var-
ious features, such as template count [35, 37, 47] recording the
number of each template in the window, template sequence [25, 38]
recording the order of task execution, log semantic feature [33, 53]
which characterizes the semantic information using the techniques
of natural language processing (NLP), and variable value [25] which
represents the behavior of some key variables (e.g., response time).

Anomaly Detection. Anomaly detection is adopted to identify
anomalies from extracted features, containing two categories. 1) Tra-
ditional statistical methods. He et al. have provided a detailed expe-
rience report [31] about these traditional statistical methods, includ-
ing PCA [47], LogCluster [35], InvariantMining [37] and some other
classification-based supervised methods [22, 34]. 2) Deep learning
based methods. In recent years, deep learning has been widely used
in log anomaly detection. DeepLog[25] and LogAnomaly [38] train
a prediction model on normal log data and predict which template
will arrive using LSTM-based models. Once the arrived log tem-
plate violates the top-k predicted results, this log is regarded as
an anomaly. LogRobust [53] adopts an attention-based Bi-LSTM
classification model to detect anomalies based on semantic features.
In this paper, we mainly focus on unsupervised approaches since it
is difficult to obtain high-quality and sufficient anomaly labels to
construct supervised classification models.

2.2 Practical Challenges
Although many approaches have been proposed to identify log
anomalies, they perform not well when applying them to the real
world. The significant challenges can be summarized as follows.

2.2.1 Various Logs and Complex Abnormal Patterns. Each com-
ponent in large-scale service systems would generate logs, from
hardware-layer (e.g., switch log) to middleware-layer (e.g., Apache
access log) and application-layer (e.g., business error log). These
logs reflect the system status from different angles and may ex-
hibit different patterns. However, existing approaches are mainly
evaluated on several public datasets (HDFS [46], BGL [2] and Open-
Stack [25]), which are not representative and generic.

In addition to the variety of logs, logs with rich information
could also perform different abnormal patterns. Based on existing
work and empirical analysis, we introduce six common abnormal
patterns, and Figure 2 presents some intuitive explanations.

• Keywords. Once some negative keywords (e.g., “OutOfMemory”)
appear in a log message, this log is abnormal.

• Template count [31, 35, 37, 47]. The number of some templates
increases or decreases dramatically.

• Template sequence [18, 25, 26, 38, 39, 52]. Template sequence
could reflect the order of task execution. For example, the normal
sequence isA → B → C , whileA → B → D violating the normal
pattern is an anomaly.

• Variable value [25]. Some variables in logs may have specific
physical meaning (e.g., time cost), which could be extracted and
aggregated into a metric with time-series format. Thus we could
identify the anomaly of variable value from the time series.

• Variable distribution. Some variables are categorical, e.g., return
code, URL, and IP in Nginx access log, whose distribution should
be considered. For example, the increase in 502 (bad gateway)
return code would lead to abnormal distribution of HTTP return
codes, indicating system unavailability.

• Time interval [33]. Some performance issues (e.g., network con-
gestion) may induce long time intervals between logs. Time in-
terval anomaly could also result in template count anomaly.

In addition to the above log abnormal patterns, there are also
other situations. For example, the number of total logs increases or
decreases dramatically; new emerging log patterns cannot match
any log templates extracted from training data. As a result, a prac-
tical log anomaly detection system needs to have the ability to deal
with various logs and complex abnormal patterns.

2.2.2 Poor Interpretability. Current work aims to design novel
algorithms to improve detection performance. However, most of

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece N. Zhao, H. Wang, Z. Li, X. Peng, G. Wang, P. Zhu, Y. Wu, Z. Feng, X. Wen, W. Zhang, K. Sui, D. Pei

Keywords Template count Template sequence

Variable value Variable distribution

A B
C

D

Return
code

Time
cost

JVMDUMP013I Processed
dump event “systhrow”,
detail “java/lang
/OutOfMemoryError".

A

B

8:01 INFOAllocate block
08:02 …
08:35 INFO Receiving block

Time interval

Figure 2: Various log abnormal patterns in the real world

these algorithms work as a “black box”. It is difficult for engineers
to intuitively figure out what the anomalies are, why the current
time is abnormal, and how the expected normal patterns should
behave. Besides, engineers cannot gain any intuitive and actionable
insights from the abstract feature vectors. Thus, methods that could
reflect the natures of anomalies with a friendly visualization are
highly desired in practice. In this way, engineers could understand
the results better and investigate the anomaly immediately.

2.2.3 Lack of Domain Knowledge. Existing approaches are pro-
posed for automated log anomaly detection with little human in-
volvement. Based on our observations, however, incorporating do-
main knowledge is necessary due to the variety of logs and abnor-
mal patterns. For example, faced with various logs, which log files
are more critical and should bemonitored, which anomaly detection
approach is appropriate, and for multiple variables in logs, which
variables have physical meaning and need to be monitored. All
of these should be determined by experienced experts and cannot
be completely replaced by automated algorithms. Besides, fusing
domain knowledge could help handle some special situations and
ensure human-computer interactive log analysis, to enhance the
performance and interpretability.

3 EMPIRICAL STUDY
To better understand the role of log anomaly detection in incident
management and support the above challenges, we conducted an
empirical study to answer the following research questions (RQs):
• RQ1: What role do logs play in incident management?
• RQ2: How about the performance of the current practice of log
anomaly detection in the real world?

• RQ3: What logs engineers frequently use in daily maintenance,
and what abnormal patterns may exist in log data?
To answer these questions, we analyzed tens of thousands of

incidents andmillions of alerts related to logs over the last two years
from a large company, which supports tens of millions of users and
contains hundreds of services. Due to the privacy policy, we hid the
specific number of incidents. Besides, we also interviewed several
experienced engineers from different teams (e.g., business, database,
and network) to obtain some practical feedback.

3.1 RQ1: Logs in Incident Management
In general, incident ticket records detailed information about how
the incident was detected (“Summary” attribute) and the detailed
steps of troubleshooting (“Diagnosis process” attribute). To answer
this question, we set keywords (i.e., “log”) to search the “Summary”

and “Diagnosis process” attributes, to count the number of inci-
dents that were discovered via log anomalies and the number of
incidents whose diagnosis involved logs. The results are displayed
in Figure 3. Only 3.4% of incidents are discovered via log anomalies,
probably due to the insensitivity of engineers on log anomalies
and the drawbacks of the current practice of log anomaly detection
(see §3.2). The role of logs in incident discovery may be further
enhanced via a more effective log anomaly detection approach. In
terms of incident diagnosis, 30.9% of incidents involve log data
in troubleshooting. Considering that some low-quality tickets do
not record detailed diagnosis process, the actual percentage could
be larger. The results demonstrate that log data is a valuable data
source in incident diagnosis. Usually, utilizing logs for troubleshoot-
ing also aims to identify log anomalies during the incident [30, 35].
Overall, an effective log anomaly detection approach could not only
enable more timely and accurate incident discovery, but also could
improve the efficiency of incident diagnosis.

3.2 RQ2: Current Practice
The current practice of log anomaly detection in the company
we cooperated with is setting keywords (e.g., “error” and “time
out”) manually. Based on the feedback from engineers, existing
approaches, especially deep learning based ones, are black-box and
cannot provide intuitive results. Poor interpretability makes it diffi-
cult to understand results intuitively and gain actionable insights
to diagnose the anomaly. Besides, tuning parameters of black-box
models is also challenging. In comparison, configuring keywords
based on domain knowledge is more acceptable for engineers (sup-
porting the second and third challenges).

To study the performance of the current practice, we counted the
number of alerts generated from logs per day, and the distribution
of #log alerts/day is presented in Figure 4. It is clear that there
are tens to hundreds of log alerts per day. The percentage of #log
alerts/day larger than 100 accounts for 54.6%, and the average #log
alerts/day is 282. Based on the results of RQ1 (incident discovery
via log anomalies accounts for 3.8%), we infer that the current
practice of log anomaly detection may bring some invalid alarms.
Moreover, engineers confirm the incapability of keyword-based
methods due to the following reasons. 1) In large-scale systems,
various and numerous logs are generated per day. It is error-prone
and labor-intensive to configure all keywords correctly; 2) Simple
keyword strategy could generate some false positives (occurrence
of some keywords does not necessarily mean an incident) and false
negatives (some keywords are missed, or some incidents are not
reflected on keywords) [31]. Typically, to enhance performance
and adapt to the dynamic environment, engineers tend to spend
significant efforts to maintain and update rules constantly (e.g.,
adding new “AND” and “OR” conditions). Consequently, a practical
and effective log anomaly detection approach to save efforts is in
urgent demand.

3.3 RQ3: Log Types and Log Abnormal Patterns
As introduced in §2.2, various logs and complex log abnormal pat-
terns exist in practice. To confirm it, we counted the percentage of
alerts generated from different kinds of logs. Intuitively, logs, where
engineers set alerting rules, are more critical than others. As shown

An Empirical Investigation of Practical Log Anomaly Detection for Online Service Systems ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Incident
 discovery

Incident
 diagnosis

0

20

Pe
rc

en
ta

ge
(%

)

3.4%

30.9%

Figure 3: The percentage of logs used
in incident discovery and diagnosis

<50 50-100 100-500 500-1000 >1000
#Log alerts/Day

0

20

40

Pe
rc

en
ta

ge
(%

)

18.8%
26.6%

43.5%

6.4% 4.7%

Figure 4: The distribution of the num-
ber of log alerts per day

Application OS DB HW Operation Others
Log type

0

10

20

30

Pe
rc

en
ta

ge
(%

)

31.2%

20.4% 17.8%
12.2% 8.9% 9.5%

Figure 5: The percentage of different
types of log alerts

Table 1: Some typical common-used log files, corresponding abnormal patterns and incident scenarios

Type Example logs Abnormal patterns Incident scenarios

Application Application error Template count (e.g., #“connection refused” increases), new
log pattern (unknown error messages)

System unavailability, applica-
tion error

Operation system Linux, Windows,
AIX

Keywords (e.g., “soft lockup” and “page allocation failure”),
#total logs, template count (e.g., #“creating session” decreases)

OOM, node hang, hardware fail-
ures

Database Oracle, DB2,
MySQL Keywords (e.g, “ORA-”, “Level: Error”), new log pattern Database server down, perfor-

mance degradation, SQL defect
Hardware (Network de-
vices) Switch, F5 Keywords (e.g., illegal state transition, address conflict de-

tected), new log pattern, template count IP address conflicted

Hardware (Storage) Ceph Keywords (e.g., “no reply”, and “time out”), new log pattern Disk failure, space exhaustion

Distributed system HDFS, OpenStack Keywords (e.g., “IOException”), template sequence (wrong or-
der of execution), new log pattern Task failed, instance failure

Operation User behavior Template count, template sequence Illegal operation, security issue
Middleware (Web
server)

Nginx access,
Apache access

Variable distribution (e.g., return code, and IP address), #total
logs

System unavailability, illegal
user access, security threat

Middleware (JVM GC) CMS, G1, parallel Keywords (“OutOfMemory”), template count (e.g.,#“FullGC”
increases), variable value (GC time cost)

GC overhead limit exceeded, full
heap space, memory leak

Middleware (Message
queue) IBM MQ Keywords (e.g., “error occur”, “ended abnormally”, and “excep-

tion”), new log pattern Message queue stuck

in Figure 5, it is clear that the logs generated from application, oper-
ation systems (OS), database (DB), hardware (HW), and operation
account for a substantial part (about 90%). To further support it, we
interviewed several engineers from different teams. Our goal is to
understand which logs engineers find most valuable, which logs are
frequently inspected during daily maintenance, and what abnormal
patterns these logs typically exhibit. Based on the discussion results,
we summarized some typical common-used logs, the corresponding
abnormal patterns, and potential incident scenarios, as shown in
Table 1. We obtain two key findings from this table. First, the abnor-
mal patterns existing in logs are indeed diverse, and moreover, a
log file may exhibit more than one abnormal pattern. For example,
the anomalies in JVM Garbage Collection (GC) logs contain the
appearance of keywords “OutOfMemory”, the increase in “FullGC”
template (template count), and the rise of GC time cost and heap
space (variable value). Second, different abnormal behavior in a log
file may indicate different potential incidents. Taking Nginx access
logs recording HTTP requests as an example, the anomaly of return
code distribution (e.g., 502 accounts for a large part) may indicate
system unavailability. The anomaly of IP address distribution (e.g.,
the increase in the number of an IP) may indicate an illegal user
is frequently trying to access the website. Therefore, log anomaly
detection is a complex task, and various situations should be taken
into consideration, which a single algorithm cannot solve.

3.4 Summary
• Log anomaly detection is valuable for incident management.
• Engineers tend to use keyword-based method in current prac-
tice due to better interpretability. However, the performance of
keyword-based strategy is far from satisfying.

• Log types and abnormal patterns are indeed diverse in practice.
Thus a practical, effective and generic log anomaly detection ap-
proach to tackling such complex situations is in urgent demand.

4 EXPERIMENTAL STUDY
To further illustrate the performance of existing approaches in prac-
tice quantitatively, we conducted an experimental study based on
several real-world datasets. We selected five popular unsupervised
log anomaly detection approaches, including statistical approaches
(PCA [47], LogCluster [35] and IM [37]) and deep learning based
approaches (DeepLog [25] and LogAnomaly [38]), aiming to answer
the following two research questions:
• RQ4: How about the effectiveness of the studied approaches on
various real-world log data with different abnormal patterns?

• RQ5: How about the efficiency of the studied approaches?

4.1 Datasets and Measurements
We collected ten real-world log datasets from different service com-
ponents, as displayed in Table 2. D1 and D2 are application error

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece N. Zhao, H. Wang, Z. Li, X. Peng, G. Wang, P. Zhu, Y. Wu, Z. Feng, X. Wen, W. Zhang, K. Sui, D. Pei

Table 2: Details of our experimental datasets

Dataset Type #Logs #Pos/#Neg
D1 Application error 26,918 3/720
D2 Application error 84,139 7/1446
D3 User operation 9,080 2/38
D4 Nginx access 2,856,793 32/3036
D5 JVM GC (CMS) 217,613 13/398
D6 JVM GC (Parallel) 64,208 27/469
D7 DB2 16,133 2/74
D8 Linux system 771,083 4/768
D9 Linux system 3,227,843 5/1459
D10 Linux system 1,087,956 6/1288

logs which record the application-layer error information of a ser-
vice. D3 is user operation log, which records the users’ actions on
servers (such as logging in, logging out, and executing commands).
D4 is Nginx access log recording HTTP requests. D5 and D6 are
collected from JVM GC with two different GC strategies (CMS and
parallel). D7 is DB2 database log. D8, D9, and D10 are Linux system
logs from three servers, where different tasks are running. The
abnormal patterns of these datasets are diverse (see Table 1).

We adopt precision, recall, and F1-score as evaluation measure-
ments, which have been widely used in existing work [25, 31, 38].
About data labeling, it is inappropriate to label single log message
since we need to refer to the contextual information to determine
the current time is abnormal or not. Based on the grouping methods
discussed in [31], we split all logs by sliding time window (win-
dow size is 10 minutes and step size is 5 minutes). Motivated by
the label of public datasets (e.g., HDFS and OpenStack), we label
a time window as an anomaly if an incident (e.g., illegal access
in D4, frequent FullGC in D5 and D6, server unavailability in D8,
D9 and D10) occurs during the window. All log messages during
the time window are regarded as a whole. The number of positive
(abnormal) and negative (normal) samples are presented in Table 2.

4.2 Experiment Setup
We split each dataset into a training set and a testing set in the
ratio of 6:4, where the training set is all normal data. It is easy to
obtain sufficient normal data in practice since services tend to run
stably without failures. For the studied approaches, we used the
parameters provided by their papers. The log parsing approach we
adopted is Drain [28], whose superiority has been demonstrated in
[55]. The implementation of Drain is based on LogParser [9] and
the implementation of statistical approaches (PCA, LogCluster, and
IM) is based on loglizer [8, 31]. All approaches are implemented
by Python with widely-used libraries, including NumPy [11], pan-
das [12], scikit-learn [16], Pytorch [13], etc. Our experimental study
was conducted on Ubuntu 18.04.1 with 24-core Intel Xeon(R) CPU
E5-2620 v3@2.40GHz, 64GB memory, 64-bit operating system.

4.3 RQ4: Effectiveness
Table 3 presents the precision, recall, and F1-score of five stud-
ied approaches on different datasets. Clearly, although these ap-
proaches achieve promising performance on several public datasets
(HDFS [46], BGL [2] and OpenStack [52]), they perform not well

and unstably on various real-world data. The average F1-score
of the five approaches could only achieve 0.48∼0.66. Besides, deep
learning based approaches perform better than traditional statistical
approaches, indicating the superiority of deep learning techniques.

The reasons for the unsatisfactory performance can be summa-
rized as three points. First, the abnormal patterns of public log
datasets are relatively simple. Taking HDFS as an example, some
abnormal blocks contain negative keywords (e.g., “IOException”,
“Unexpected error”, and “does not belong to any file”). The number of
total logs of some abnormal blocks is far fewer than normal blocks.
We also tried to set some manual rules to detect anomalies from
HDFS dataset, and the F1-score could also achieve about 0.86. There-
fore, it is inappropriate to demonstrate the efficacy and practicality
of log anomaly detection algorithms using such simple datasets.
Second, these approaches perform unstably with high standard
deviations due to various abnormal patterns. These approaches fail
to consider comprehensive information in logs, which limits the
types of anomalies (see Figure 2) they can detect. For example, PCA
and LogCluster deal with template count; DeepLog deals with tem-
plate sequence and variable value; LogAnomaly tackles template
count and template sequence. Third, the poor performance of log
parsing could destroy detection accuracy. We observe that even the
state-of-the-art log parsing algorithm (Drain) performs not well on
some logs, requiring manual adjustment using domain knowledge.
For example, access log (D4) composing with IP, URL, and return
code, could be transformed into structural information with domain
rule, while it is unsuitable for log parsing algorithm based on word
frequency, resulting in low F1-score on all approaches.

The results further support the proposed challenges in §2.2 quan-
titatively. Thus we need to propose a practical and generic log
anomaly detection system to overcome the challenges.

4.4 RQ5: Efficiency
Time efficiency is a vital factor for log anomaly detection, to guar-
antee timely incident discovery and efficient incident diagnosis.
Table 4 presents the average time cost on ten experimental datasets,
including offline training time on all training samples (including log
parsing) and online detection time on a 10-minute timewindow (one
sample). We find that the average online prediction time of these
approaches is in a satisfactory range, less than 2 seconds (nearly
real time). About offline training, statistical approaches require
relative short time, about several minutes. In comparison, DeepLog
and LogAnomaly require tens of minutes to train the model. It is be-
cause they adopt template sequence as features which is very large,
and LSTM model also takes much time to train. Considering that
the training process is conducted offline and will not destroy the ef-
ficiency of anomaly detection, long training time is also acceptable.
However, faced with TBs logs generated per day, high training cost
may take up many computation resources, and make the model
cannot update flexibly to accommodate to software changes.

5 APPROACH
Motivated by the findings obtained from the empirical study and
experimental study, we propose a generic log anomaly detection
system named LogAD to tackle the practical challenges together
in §2.2, which could handle various logs and complex abnormal

An Empirical Investigation of Practical Log Anomaly Detection for Online Service Systems ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 3: Precision (P), recall (R) and F1-score (F1) of studied approaches on experimental datasets

Approach PCA LogCluster IM DeepLog LogAnomaly
Dataset P R F1 P R F1 P R F1 P R F1 P R F1
D1 0.40 1.00 0.57 0.38 1.00 0.55 0.51 1.00 0.68 0.64 0.33 0.44 0.45 0.67 0.54
D2 0.56 0.43 0.48 0.50 0.57 0.53 0.34 0.43 0.38 0.71 0.86 0.78 0.71 0.86 0.78
D3 0.67 0.50 0.57 0.72 0.50 0.59 0.43 1.00 0.60 0.43 0.50 0.46 0.62 0.50 0.55
D4 0.20 0.44 0.28 0.24 0.53 0.33 0.32 0.21 0.26 0.17 0.38 0.23 0.22 0.34 0.27
D5 0.92 1.00 0.96 0.80 1.00 0.89 0.87 1.00 0.93 0.91 1.00 0.95 0.91 1.00 0.95
D6 0.64 1.00 0.78 0.86 0.81 0.83 0.82 1.00 0.90 0.93 0.96 0.94 0.92 1.00 0.96
D7 0.42 0.50 0.46 0.44 0.50 0.47 0.58 0.25 0.35 0.57 1.00 0.73 0.53 1.00 0.69
D8 0.10 0.25 0.14 0.35 0.25 0.29 0.14 0.25 0.18 1.00 0.50 0.66 1.00 0.50 0.66
D9 0.18 0.60 0.28 0.28 1.00 0.44 0.44 0.40 0.42 0.32 1.00 0.48 0.54 0.60 0.57
D10 0.29 0.33 0.31 0.43 0.33 0.37 0.29 1.00 0.45 0.74 0.50 0.60 1.00 0.50 0.67

Mean F1 (Std) 0.48 (0.24) 0.53 (0.19) 0.52 (0.24) 0.63 (0.22) 0.66 (0.19)

Table 4: Average time cost comparison

Approach PCA LogCluster IM DeepLog LogAnomaly
Training (min) 0.89 5.40 4.60 34.67 48.54
Detection (s) 0.23 0.56 0.38 1.02 1.78

patterns. More specifically, LogAD contains four steps: data prepa-
ration, log preprocessing, log anomaly detection, and alerts with
visualization. There are three core ideas of LogAD. First, LogAD inte-
grates multiple anomaly detection techniques to deal with complex
scenarios (tackle the first challenge). The second one is importing
a knowledge base fusing expert experience, which could assist log
preprocessing (§5.1), selecting corresponding algorithms (§5.2) and
setting keywords (tackle the third challenge). The last one is LogAD
provides an intuitive alert report with good interpretability for en-
gineers to understand the alerts (tackle the second challenge). In
the following, we will introduce three main components in detail.

5.1 Log Preprocessing
The goal of log preprocessing is to transform unstructured logs into
structured information. In the experimental study (§4), we observe
that even the state-of-the-art log parsing algorithm (Drain [28])
performs not well on some logs and often requires manual ad-
justments on templates (e.g., merging and deleting). Besides, auto-
mated log parsing fails to handle complex situations. For example,
the formats of log timestamps are diverse in practice, about tens
of types, e.g., “05/01/21 21:40:00”, “05/01/2021 09:40:00 PM” and
“20210501|214000|895”. It is a daunting task for an automated algo-
rithm to identify various timestamps accurately without domain
knowledge. To address the problem, LogAD imports a knowledge
base to assist log preprocessing from three perspectives. First, the
templates of some generic logs (e.g., Oracle and DB2) are usually
fixed. Thus we could store these templates as knowledge. In this
way, if we want to detect anomalies on similar logs, it will save re-
sources and efforts of log parsing and manual adjustments. Second,
for some special logs which are inappropriate to use parsing algo-
rithm (e.g., access log), LogAD could directly adopt rule matching to
transform raw logs into structured information (e.g., access logs can
be split into timestamp, IP, URL, and return code). Third, some key
variables (e.g., heap space in GC logs) could be selected for further

variable anomaly detection. Consequently, equipping log parsing
with a knowledge base, raw log data could be well transformed into
structured information for further anomaly detection.

5.2 Log Anomaly Detection
As presented in §3, log messages contain rich information (tem-
plate, variable, and timestamp) and exhibit diverse log abnormal
patterns. Therefore, it is notoriously hard for a single algorithm
to work well faced with such complex situations. In our system,
we leverage the idea of ensemble learning and integrate multiple
anomaly detection techniques [45]. In this way, engineers could
select one or more suitable anomaly detection components based on
domain knowledge to detect specific abnormal patterns for differ-
ent logs. Although existing work [45] adopts multiple approaches
(PCA, LogCluster and IM) to detect anomalies more accurately, it is
not designed for tackling various abnormal patterns. For template
count, we propose to adopt LSTM-based multivariate time-series
anomaly detection technique (§5.2.2). Besides, it is the first time to
notice variable distribution, and we utilize the popular distribution
distance measurement (JS divergence) to detect anomalies (§5.2.5).
The techniques of template sequence (§5.2.3) and variable value
(§5.2.4) are from existing work. In the following, we will introduce
the anomaly detection techniques equipped in LogAD in detail.

5.2.1 Keywords. Although keyword-based strategy is relatively
simple, it cannot be replaced since it is the most direct way to
identify failures. Based on our experience, setting rare, specific and
fatal keywords(e.g., “OutOfMemory” and “IOException”) is more
valuable and accurate. The keywords of different logs(see Table 1)
are maintained in the knowledge base. Once the keyword appears
in online logs, an alert would be generated.

5.2.2 Template Count. Existing work (e.g., PCA [47]) encodes a
template count feature vector for each time window and detects
anomalies on this vector, which is not intuitive for engineers. In
LogAD, we characterize the behavior of template count using tem-
plate time series at a regular interval (e.g., one minute). The number
of a template per minute should follow a normal pattern. In this
way, engineers could grasp an overview of the patterns of template
count. Usually, a log file may have tens to hundreds of templates.
Detecting anomalies on each template series would consume many
resources and incur numerous alerts. Based on our observation,

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece N. Zhao, H. Wang, Z. Li, X. Peng, G. Wang, P. Zhu, Y. Wu, Z. Feng, X. Wen, W. Zhang, K. Sui, D. Pei

Knowledge
base

Unstructured
raw logs

Rule
matching

02:45:01 systemd[1]:
Reloaded System Logging
Service.
02:45:01 vsftpd[132130]:
OK LOGIN: Client
x.x.x.x…

Template
count

Template
sequence

Variable
value

New
pattern

Keywords
Variable
distributionParsing

Alerts

Structured
data

Log Preprocessing Log Anomaly DetectionData Preparation

Algorithm
selection

Alerts with Visualization

Dashboard…

Figure 6: Overview of LogAD

there exists some relationship among the number of different tem-
plates. For example, the decrease in template A may lead to an
increase in template B. Thus we could use the multivariate time se-
ries anomaly detection technique (LSTM-based algorithm [32] used
in LogAD) and regard all template series as an overall entity, which
could not only enhance accuracy and identify potential correlated
anomalies but also save computation resources.

5.2.3 Template Sequence. Template sequence typically profiles the
process of task execution (e.g., batch tasks and distributed system
tasks). Recently, some approaches adopt LSTM-based models to
learn the normal template sequence [25, 38]. Once the arrived log
template violates the top-k predicted template, it is regarded as an
anomaly. However, directly applying LSTM-based approaches fails
to provide the normal sequence intuitively, which is unfriendly
to engineers. In general, the workflow of task execution can be
characterized as a finite state automaton (FSA). Thus it would be
better to provide a normal workflow visualization generated from
logs so that engineers can have a global view of the task execution
process. In LogAD, we build a FSA based on [25] since it has over-
come several drawbacks of other related work (e.g., CloudSeer [52]).
When online detection, once the arrived logs violate the workflow
graph, they are considered as anomalies.

5.2.4 Variable Value. Some variables in logs with specific physical
meaning are vital and should be monitored closely, e.g., time cost
and heap space in GC logs. The variable value can be aggregated
into time series with a regular interval (e.g., one minute). Thus we
could leverage the technique of time series anomaly detection to
detect the anomalies of variable value. Specifically, we find that
there are usually two types of variable value series, seasonal and
stationary. We first utilize auto-correlation coefficient [44, 54] to
determine the variable series is seasonal or not. Then we adopt
Holt-winters for seasonal series [49] and 3-σ for stationary series.

5.2.5 Variable Distribution. Some variables are categorical, instead
of continuous value, for example, IP address, URL, and return code
in access logs; city, ISP, version, and browser in transaction logs.
Taking an intuitive example, the number of requests from different
cities in normal situations tends to follow a regular distribution.
Once the number of requests from a city decreases dramatically,
the distribution changes accordingly, indicating local system un-
availability or city ISP issues. Thus for categorical variables, we
mainly focus on the distribution anomaly. LogAD utilizes Jensen-
Shannon (JS) divergence [7] to characterize the distance between
two distributions (ranging from 0 to 1). Specifically, the normal

range of distribution distance can be learned from historical data.
When online detection, once the distribution of current data is far
away from the historical data (exceeding the threshold), we can
infer current time is an anomaly.

In summary, here we just introduce several typical anomaly
detection algorithms. During practical usage, the anomaly detec-
tion module is extensible, and engineers could add new anomaly
detection techniques to suit their needs.

5.3 Alerting with Visualization
After an anomaly is detected via the above anomaly detection mod-
ule, an alert would be triggered. Different from existing approaches,
LogAD provides an interpretable report for this alert, including the
time series of template count (help understand the historical pat-
tern of each template), normal template sequence with FSA (help
understand the workflow of task execution), the time series of spe-
cific variable value, and distribution of log variables. In this way,
engineers could easily understand why current logs are abnormal.
More importantly, the interpretable report could assist engineers
in taking action to diagnose and mitigate the anomaly.

6 EVALUATION AND CASE STUDY
6.1 Performance and Application
To demonstrate the efficacy of LogAD, we compare it with the
best performance of baseline methods on ten real-world datasets
in §4. The results are displayed in Figure 7. It is clear that the
average F1-score of LogAD achieves 0.83, outperforming baseline
approaches. In comparison, the average F1-score of baselines only
achieve 0.48 ∼ 0.66 (Table 3). We further investigated the reasons for
the superiority of LogAD. First of all, through integrating multiple
anomaly detection techniques, LogAD can deal with various logs
and complex abnormal patterns. In comparison, existing work can
handle only one or two abnormal patterns, incurring unsatisfac-
tory and unstable performance across all datasets. Second, LogAD
incorporates a knowledge base accumulating rich expert experi-
ence to tackle some special cases. For example, the performance
of log parsing could be enhanced, some crucial keywords as prior
knowledge are configured in LogAD and so on. Third, the anomaly
detection techniques used in LogAD are effective compared with
some existing work, which could enable LogAD to identify anom-
alies accurately. For example, LSTM-based multivariate template
count anomaly detection performs better than PCA. Consequently,
the results confirm the practical effectiveness of LogAD.

An Empirical Investigation of Practical Log Anomaly Detection for Online Service Systems ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
Dataset

0.0
0.2
0.4
0.6
0.8
1.0

F1
-s

co
re

LogAD Best F1-score of baselines

Figure 7: F1-score comparison between LogAD and the best
performance of baseline approaches

Raw log Topic 1 Topic 2 Influx
DB

Redis

ES

Front-end
web
service

Preprocess-
ing module

Anomaly
detection
module

Flink

Write (raw data)

Query Rules

Write Query

Data

Write (structured data)
Query and return data

Figure 8: Architecture of LogAD in practice

Figure 8 presents the deployment architecture of LogAD. In de-
tail, raw log data are pushed to Kafka [1]. The log preprocessing
module consumes raw logs from Kafka in real time, and the out-
putted structured data are also pushed to a new Kafka topic for
further anomaly detection. We adopt Apache Flink [5] to imple-
ment log preprocessing module and anomaly detection algorithms
in the computation layer, which can process the stream data with
high performance and low latency in a distributed way. All log
anomalies detected by the anomaly detection core are stored in a
time-series database (InfluxDB [6]) with the format of (timestamp,
anomaly). Knowledge base in LogAD is maintained in Redis [14]
since the rules would not occupy too much space, and Redis as
an in-memory data structure store is highly efficient. Besides, all
raw logs and structured information are indexed into ElasticSearch
(ES) [3] via consuming Kafka, so that data become available for
search immediately. Finally, the front-end web service could read
data from ES and InfluxDB to provide a visualization for engineers.

We interviewed several engineers and they appreciated LogAD
from two aspects. 1) The anomaly detection techniques are white-
box, so that engineers could understand the reported anomalies
with good interpretability and grasp normal patterns. 2) Engineers
could obtain comprehensive information intuitively. For example,
engineers only know the appearance of OOM using keywords on
GC logs. However, LogAD could present various information like
heap space, time cost and GC frequency.

6.2 Case Study
We introduce three success cases collected from the real world.

6.2.1 Case 1: Predicting OOM Failure. A historical OOM failure
was discovered by traditional keyword-based (“OutOfMemory”)
method. With LogAD, as presented in Figure 9(a), we could predict
the failure in advance via the increase in the number of “FullGC”
templates. It is because this OOM failure is not transient, which
is induced by frequent FullGC operation. Thus we could predict it
through the abnormal behavior of FullGC templates. Meanwhile,

the variables also behave abnormally (increase in GC time cost and
heap space), which could assist engineers in analyzing the problem.
In comparison, existing approaches fail to analyze templates and
variables together and provide an interpretable report. Overall,
LogAD could enable engineers to predict OOM failure in advance
and provide key variable analysis for failure diagnosis.

6.2.2 Case 2: Identifying Illegal Access. Usually, Nginx access logs
record the HTTP requests and contain time, URL, user IP and return
code. As a common log type in the real world, access logs can be
transformed into the combination of these variables with the help
of a knowledge base. As shown in Figure 9(b), LogAD detected
the illegal access problem via a spike of the number of total logs,
achieving more than 4000 requests per minute (pink band). Through
the analysis of variable distribution, we find the IP-1 and URL a
account for a large part. Thus we could easily find the illegal user
and the behavior. However, keyword-based method cannot handle
access log because it does not have negative keywords (setting
error return code, e.g., 404, could cause many false alarms). Besides,
existing approaches in academic also fail to detect and analyze
the problem, because access log is unsuitable for log parsing, and
they cannot analyze variable distribution. Actually, special logs in
practice like access logs should be treated specially with human
involvement, including processing them with defined manual rules
and selecting suitable anomaly detection methods.

6.2.3 Case 3: Detecting Unavailable Server. In traditional monitor-
ing, engineers adopt an agent to regularly check the availability of
servers (e.g., one hour). We find that the abnormal status of servers
could be identified more accurately and timely via the analysis
of server system logs. In this case, the server is hung due to the
occurrence of deadlock. We could detect the problem via the signif-
icant decrease in the number of total logs and some templates (pink
bands in Figure 9(c)). It is because server hang will cause the tasks
on the server to fail to run, so the number of system logs and some
templates (each template generally represents a type of task) will
be significantly reduced. For example, sessions cannot be created in
the server (Template: “systemd: Starting Session * of user root”) and
the data collection agent does not work (Template: “dd.collector[*]:
INFO (collector.py:*): Finished run *. Collection time: *s.”). When
engineers notice the problem, they will reboot the server to mitigate
the incident. Thus the number of total logs and some templates
would increase due to server restart (green bands in Figure 9(c)).

7 DISCUSSION
7.1 Lessons Learned
There exists a gap between the research of algorithms and real ap-
plication scenarios. Log anomaly detection algorithm has been
extensively studied in the literature. In the real world, however,
it is critical to find suitable application scenarios for algorithms
and solve practical problems. We want to answer how to apply
log anomaly detection properly to service reliability management
and what practical issues could be solved by log anomaly detection.
Through our study, we find that log anomaly detection could assist
in identifying illegal requests with access logs, detecting network
failures with network device logs, detecting database problems with
database logs, and so on.

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece N. Zhao, H. Wang, Z. Li, X. Peng, G. Wang, P. Zhu, Y. Wu, Z. Feng, X. Wen, W. Zhang, K. Sui, D. Pei

Aug 01 Aug 02 Aug 03 Aug 04
0

100

200

300

Variable: GC time
Aug 01 Aug 02 Aug 03 Aug 04

200x104

400x104

600x104

800x104

VariablH: HHap VpacH

Aug 01 Aug 02 Aug 03 Aug 04
0

10

20

TeamSalte: Full *C: C0S *: [C0S-FonFurrent-mark:
 * seFs] [Times: user * sys *, real * seFs]

2019-08-04T13:13:08.857: [Full GC 2019-08-
04T13:13:08.858: [CMS2019-08-04T13:13:18.180: [CMS-
concurrent-mark: 16.639/16.669 secs] [Times: user=38.45
sys=0.31, real=16.66 secs]
(concurrent mode failure): 7864319K->7864319K(7864320K),

53.3661840 secs] 9279935K->7874993K(9279936K), [CMS
Perm : 239273K->239264K(524288K)], 53.3666690 secs]
[Times: user=62.76 sys=0.00, real=53.36 secs]

(a) Predicting OOM failure

Jun 09 Jun 10 Jun 11 Jun 12
1000

2000

3000

4000

#Toal loJs

0 20 40 60 80
PeUcentage(%)

d

c

b

a

VaULable: 8RL

0 20 40 60 80
3ercentage(%)

2therV
I3-5
I3-4
I3-3
I3-2
I3-1

VariabOe: I3 addreVV

(b) Identifying illegal access

SeS 01 SeS 03 SeS 05 SeS 07
0

500

1000
#7otal logs

SeS 01 SeS 03 SeS 05 SeS 07
0

10

20

dbus[*]: [system] Successfully activated service
 'org.freedesktoS.Sroblems'

SeS 01 SeS 03 SeS 05 SeS 07
0

5

10

15

7emSOate: dd.FoOOeFtor[*]: I1)O (FoOOeFtor.Sy:*):
)inished run *. CoOOeFtion time: *s. (mit time: *s

SeS 01 SeS 03 SeS 05 SeS 07
0

200

7emSlate: systemd: Starting Session * of user root.

(c) Detecting unavailable server

Figure 9: Illustration of three cases

A single algorithm is usually not a panacea in practice. In academic,
log anomaly detection algorithms are solely evaluated on several
public datasets, and the generality cannot be demonstrated. In real
applications, a single algorithm cannot always perform well due
to diverse situations, unsatisfactory data quality, and customized
demand, which usually require human involvement and a combi-
nation of multiple algorithms to achieve promising performance.
In particular, this argument can be extended to other tasks. For
example, the patterns of time series are also diverse in practice,
including seasonal, stationary and variable, which also requires
different time series anomaly detection algorithms.

Choose appropriate logs for anomaly detection. Although various
logs exist in practice, from infrastructure-layer to application-layer,
it is unnecessary to detect anomalies on all log files. Monitoring
all logs would waste too many computation resources and incur
numerous alerts, and some alerts are false alarms or unimportant,
resulting in alert fatigue for engineers. In general, we summarize
several principles for selecting logs. 1) Select familiar and frequently
used logs in daily operation and maintenance, so that the alerts
are valuable and actionable for engineers in incident discovery and
diagnosis. 2) Critical application logs reflecting the service quality
directly and generic component logs (e.g., Oracle, DB2, and Hadoop)
with rich expert knowledge are preferred. 3) Select well-formatted
logs (e.g., single-line). In some log files, a log message is distributed
in multiple lines (e.g., java dump logs), which brings significant
challenges to process such logs.

Human-computer interactive log analysis. It is challenging to de-
tect log anomalies automatically without any human involvement.
Both log parsing and log anomaly detection require domain knowl-
edge from experienced experts. For log parsing, engineers should
get involved to transform some special logs into structured data
(e.g., Nginx access log) and extracting some important variables for
variable anomaly detection. For log anomaly detection, engineers
need to get involved to decide what abnormal pattern the log could
behave. Consequently, it is a formidable task for an algorithm to
make such decisions without the help of domain experts.

7.2 Threats to Validity
Implementation. The internal threat to validity mainly lying in
our study is the implementation of our system and compared ap-
proaches. To reduce this threat, two authors have carefully checked
the code, and the implementation of compared approaches is based

on the open-source library. In particular, we implemented them
based on a matured framework, which has been presented in §4.2.

Diversity of evaluation datasets. Our experimental study used ten
real-world log datasets from different service components, but the
results might not represent other types of logs. It is challenging
to evaluate the performance on all kinds of logs, and our datasets
include various logs, from infrastructure-layer to application-layer.
Thus we are confident that the results can demonstrate the efficacy
of LogAD. In the future, we will reduce this threat by conducting
an experimental study on more log datasets.

Evaluation measurements. Following existing work, we used
precision/recall/F1-score as measurements. However, we did not
study the sensitivity of parameters (e.g., window size). In the future,
we will conduct parameter analysis and consider more comprehen-
sive metrics such as precision-recall curve, to reduce this threat.

8 CONCLUSION
In this paper, we propose several significant practical challenges
when applying log anomaly detection approaches in academic to
practice, including the inability to deal with various logs and abnor-
mal patterns, poor interpretability, and lack of domain knowledge.
To help understand practical log anomaly detection, we conduct the
first empirical study and an experimental study based on large-scale
real-world data and obtain several key observations, supporting
these challenges. Inspired by the findings, we propose a generic log
anomaly detection system named LogAD to tackle these challenges
together. LogAD contains three core ideas: incorporating multiple
anomaly detection techniques to handle diverse abnormal patterns,
importing a knowledge base fusing domain experience, and visually
providing an interpretable report. The average F1-score of LogAD
achieves 0.83, demonstrating its effectiveness. To our best knowl-
edge, we are the first to investigate practical log anomaly detection
in industrial scenarios. We believe that our work can provide some
inspiration and guidance for practitioners and researchers to apply
log anomaly detection to practice.

ACKNOWLEDGMENTS
We thank Junjie Chen for his helpful discussions on this work. This
work is supported by the National Key Research and Development
Program of China (Grant No.2019YFE0105500), the State Key Pro-
gram of National Natural Science of China under Grant 62072264,
and the Beijing National Research Center for Information Science
and Technology (BNRist) key projects.

An Empirical Investigation of Practical Log Anomaly Detection for Online Service Systems ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

REFERENCES
[1] Apache Kafka: A distributed streaming platform.. https://kafka.apache.org. [On-

line; accessed 04-May-2021].
[2] BGL Dataset. https://www.usenix.org/cfdr-data.
[3] Elasticsearch. https://www.elastic.co/elasticsearch/. [Online; accessed 04-May-

2021].
[4] Filebeat. https://www.elastic.co/beats/filebeat. [Online; accessed 04-May-2021].
[5] Flink, Scalable Stream and Batch Data Processing. https://flink.apache.org/.

[Online; accessed 04-May-2021].
[6] InfluxDB. https://www.influxdata.com/. [Online; accessed 04-May-2021].
[7] Jensen–Shannon divergence. https://en.wikipedia.org/wiki/Jensen-Shannon_

divergence. [Online; accessed 04-May-2021].
[8] loglizer. https://github.com/logpai/loglizer. [Online; accessed 04-May-2021].
[9] logparser. https://github.com/logpai/logparser. [Online; accessed 04-May-2021].
[10] Logstash. https://www.elastic.co/logstash. [Online; accessed 04-May-2021].
[11] NumPy. https://numpy.org/. [Online; accessed 04-May-2020].
[12] pandas. https://pandas.pydata.org/. [Online; accessed 04-May-2020].
[13] PyTorch. https://pytorch.org/. [Online; accessed 40-May-2021].
[14] Redis. https://redis.io/. [Online; accessed 04-May-2021].
[15] Rsyslog. https://www.rsyslog.com/. [Online; accessed 04-May-2021].
[16] scikit-learn. https://scikit-learn.org/.
[17] syslog-ng. https://www.syslog-ng.com/. [Online; accessed 04-May-2021].
[18] Hen Amar, Lingfeng Bao, Nimrod Busany, David Lo, and Shahar Maoz. 2018.

Using finite-state models for log differencing. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 49–59. https://doi.org/10.1145/3236024.
3236069

[19] Christophe Bertero, Matthieu Roy, Carla Sauvanaud, and Gilles Trédan. 2017.
Experience report: Log mining using natural language processing and application
to anomaly detection. In 2017 IEEE 28th International Symposium on Software
Reliability Engineering (ISSRE). IEEE, 351–360. https://doi.org/10.1109/ISSRE.
2017.43

[20] Junjie Chen, Xiaoting He, Qingwei Lin, Yong Xu, Hongyu Zhang, Dan Hao, Feng
Gao, Zhangwei Xu, Yingnong Dang, and Dongmei Zhang. 2019. An empirical
investigation of incident triage for online service systems. In Proceedings of the
41st International Conference on Software Engineering: Software Engineering in
Practice. 111–120. https://doi.org/10.1109/ICSE-SEIP.2019.00020

[21] Junjie Chen, Shu Zhang, Xiaoting He, Qingwei Lin, Hongyu Zhang, Dan Hao,
Yu Kang, Feng Gao, Zhangwei Xu, Yingnong Dang, and Dongmei Zhang. 2020.
How Incidental are the Incidents? Characterizing and Prioritizing Incidents for
Large-Scale Online Service Systems. In 35th IEEE/ACM International Conference
on Automated Software Engineering. 373–384. https://doi.org/10.1145/3324884.
3416624

[22] Mike Chen, Alice X Zheng, Jim Lloyd, Michael I Jordan, and Eric Brewer. 2004.
Failure diagnosis using decision trees. In International Conference on Autonomic
Computing, 2004. Proceedings. IEEE, 36–43. https://doi.org/10.1109/ICAC.2004.
1301345

[23] Rui Chen, Shenglin Zhang, Dongwen Li, Yuzhe Zhang, Fangrui Guo, Weibin
Meng, Dan Pei, Yuzhi Zhang, Xu Chen, and Yuqing Liu. 2020. LogTransfer: Cross-
System Log Anomaly Detection for Software Systems with Transfer Learning.
In 2020 IEEE 31st International Symposium on Software Reliability Engineering
(ISSRE). IEEE, 37–47. https://doi.org/10.1109/ISSRE5003.2020.00013

[24] Min Du and Feifei Li. 2016. Spell: Streaming parsing of system event logs. In
2016 IEEE 16th International Conference on Data Mining (ICDM). IEEE, 859–864.
https://doi.org/10.1109/ICDM.2016.0103

[25] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. Deeplog: Anomaly
detection and diagnosis from system logs through deep learning. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
1285–1298. https://doi.org/10.1145/3133956.3134015

[26] Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. 2009. Execution anomaly
detection in distributed systems through unstructured log analysis. In 2009 ninth
IEEE international conference on data mining. IEEE, 149–158. https://doi.org/10.
1109/ICDM.2009.60

[27] Hossein Hamooni, Biplob Debnath, Jianwu Xu, Hui Zhang, Guofei Jiang, and
Abdullah Mueen. 2016. Logmine: Fast pattern recognition for log analytics.
In Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management. 1573–1582. https://doi.org/10.1145/2983323.2983358

[28] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R Lyu. 2017. Drain: An online
log parsing approach with fixed depth tree. In 2017 IEEE International Conference
on Web Services (ICWS). IEEE, 33–40. https://doi.org/10.1109/ICWS.2017.13

[29] Shilin He, Pinjia He, Zhuangbin Chen, Tianyi Yang, Yuxin Su, and Michael R Lyu.
2020. A Survey on Automated Log Analysis for Reliability Engineering. arXiv
preprint arXiv:2009.07237 (2020).

[30] Shilin He, Qingwei Lin, Jian-Guang Lou, Hongyu Zhang, Michael R Lyu, and
Dongmei Zhang. 2018. Identifying impactful service system problems via log
analysis. In Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.

60–70. https://doi.org/10.1145/3236024.3236083
[31] Shilin He, Jieming Zhu, Pinjia He, and Michael R. Lyu. 2016. Experience Report:

System Log Analysis for Anomaly Detection. In 27th IEEE International Sympo-
sium on Software Reliability Engineering, ISSRE 2016, Ottawa, ON, Canada, October
23-27, 2016. IEEE Computer Society, 207–218. https://doi.org/10.1109/ISSRE.2016.
21

[32] Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and
Tom Soderstrom. 2018. Detecting spacecraft anomalies using lstms and non-
parametric dynamic thresholding. In Proceedings of the 24th ACM SIGKDD In-
ternational Conference on Knowledge Discovery & Data Mining. ACM, 387–395.
https://doi.org/10.1145/3219819.3219845

[33] Xiaoyun Li, Pengfei Chen, Linxiao Jing, Zilong He, and Guangba Yu. 2020. Swiss-
Log: Robust and Unified Deep Learning Based Log Anomaly Detection for Diverse
Faults. In 2020 IEEE 31st International Symposium on Software Reliability Engi-
neering (ISSRE). IEEE, 92–103. https://doi.org/10.1109/ISSRE5003.2020.00018

[34] Yinglung Liang, Yanyong Zhang, Hui Xiong, and Ramendra Sahoo. 2007. Failure
prediction in ibm bluegene/l event logs. In Seventh IEEE International Conference
on Data Mining (ICDM 2007). IEEE, 583–588. https://doi.org/10.1109/ICDM.2007.
46

[35] Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei Chen.
2016. Log clustering based problem identification for online service systems. In
2016 IEEE/ACM 38th International Conference on Software Engineering Companion
(ICSE-C). IEEE, 102–111.

[36] Jinyang Liu, Jieming Zhu, Shilin He, Pinjia He, Zibin Zheng, and Michael R
Lyu. 2019. Logzip: Extracting hidden structures via iterative clustering for log
compression. In 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 863–873. https://doi.org/10.1109/ASE.2019.
00085

[37] Jian-Guang Lou, Qiang Fu, Shengqi Yang, Ye Xu, and Jiang Li. 2010. Mining
Invariants from Console Logs for System Problem Detection.. In USENIX Annual
Technical Conference. 1–14.

[38] Weibin Meng, Ying Liu, Yichen Zhu, Shenglin Zhang, Dan Pei, Yuqing Liu, Yihao
Chen, Ruizhi Zhang, Shimin Tao, Pei Sun, et al. 2019. LogAnomaly: Unsupervised
Detection of Sequential and Quantitative Anomalies in Unstructured Logs.. In
IJCAI. 4739–4745.

[39] Animesh Nandi, Atri Mandal, Shubham Atreja, Gargi B Dasgupta, and Subhra-
jit Bhattacharya. 2016. Anomaly detection using program control flow graph
mining from execution logs. In Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. 215–224. https:
//doi.org/10.1145/2939672.2939712

[40] Adam Oliner and Jon Stearley. 2007. What supercomputers say: A study of five
system logs. In 37th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN’07). IEEE, 575–584. https://doi.org/10.1109/DSN.
2007.103

[41] Tongqing Qiu, Zihui Ge, Dan Pei, Jia Wang, and Jun Xu. 2010. What happened
in my network: mining network events from router syslogs. In Proceedings of
the 10th ACM SIGCOMM conference on Internet measurement. 472–484. https:
//doi.org/10.1145/1879141.1879202

[42] Ruben Sipos, Dmitriy Fradkin, Fabian Moerchen, and Zhuang Wang. 2014.
Log-based predictive maintenance. In Proceedings of the 20th ACM SIGKDD
international conference on knowledge discovery and data mining. 1867–1876.
https://doi.org/10.1145/2623330.2623340

[43] Liang Tang, Tao Li, and Chang-Shing Perng. 2011. LogSig: Generating sys-
tem events from raw textual logs. In Proceedings of the 20th ACM interna-
tional conference on Information and knowledge management. 785–794. https:
//doi.org/10.1145/2063576.2063690

[44] Michail Vlachos, Philip Yu, and Vittorio Castelli. 2005. On Periodicity Detection
and Structural Periodic Similarity. In Proceedings of the 2005 SIAM International
Conference on DataMining, SDM 2005. https://doi.org/10.1137/1.9781611972757.40

[45] X. Xia, W. Zhang, and J. Jiang. 2019. Ensemble Methods for Anomaly Detection
Based on System Log. In 2019 IEEE 24th Pacific Rim International Symposium on
Dependable Computing (PRDC). https://doi.org/10.1109/PRDC47002.2019.00034

[46] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael Jordan. 2009.
Online system problem detection by mining patterns of console logs. In 2009
Ninth IEEE International Conference on Data Mining. IEEE, 588–597. https:
//doi.org/10.1109/ICDM.2009.19

[47] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I Jordan. 2009.
Detecting large-scale system problems by mining console logs. In Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles. 117–132.
https://doi.org/10.1145/1629575.1629587

[48] R. B. Yadav, P. S. Kumar, and S. V. Dhavale. 2020. A Survey on Log Anomaly
Detection using Deep Learning. In 2020 8th International Conference on Reliability,
Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO).
1215–1220. https://doi.org/10.1109/ICRITO48877.2020.9197818

[49] He Yan, Ashley Flavel, Zihui Ge, Alexandre Gerber, Dan Massey, Christos Pa-
padopoulos, Hiren Shah, and Jennifer Yates. 2012. Argus: End-to-end service
anomaly detection and localization from an isp’s point of view. In 2012 Proceedings
IEEE INFOCOM. IEEE, 2756–2760.

https://kafka. apache.org
https://www.usenix.org/cfdr-data
https://www.elastic.co/elasticsearch/
https://www.elastic.co/beats/filebeat
https://flink.apache.org/
https://www.influxdata.com/
https://en.wikipedia.org/wiki/Jensen-Shannon_divergence
https://en.wikipedia.org/wiki/Jensen-Shannon_divergence
https://github.com/logpai/loglizer
https://github.com/logpai/logparser
https://www.elastic.co/logstash
https://numpy.org/
https://pandas.pydata.org/
https://pytorch.org/
https://redis.io/
https://www.rsyslog.com/
https://scikit-learn.org/
https://www.syslog-ng.com/
https://doi.org/10.1145/3236024.3236069
https://doi.org/10.1145/3236024.3236069
https://doi.org/10.1109/ISSRE.2017.43
https://doi.org/10.1109/ISSRE.2017.43
https://doi.org/10.1109/ICSE-SEIP.2019.00020
https://doi.org/10.1145/3324884.3416624
https://doi.org/10.1145/3324884.3416624
https://doi.org/10.1109/ICAC.2004.1301345
https://doi.org/10.1109/ICAC.2004.1301345
https://doi.org/10.1109/ISSRE5003.2020.00013
https://doi.org/10.1109/ICDM.2016.0103
https://doi.org/10.1145/3133956.3134015
https://doi.org/10.1109/ICDM.2009.60
https://doi.org/10.1109/ICDM.2009.60
https://doi.org/10.1145/2983323.2983358
https://doi.org/10.1109/ICWS.2017.13
https://doi.org/10.1145/3236024.3236083
https://doi.org/10.1109/ISSRE.2016.21
https://doi.org/10.1109/ISSRE.2016.21
https://doi.org/10.1145/3219819.3219845
https://doi.org/10.1109/ISSRE5003.2020.00018
https://doi.org/10.1109/ICDM.2007.46
https://doi.org/10.1109/ICDM.2007.46
https://doi.org/10.1109/ASE.2019.00085
https://doi.org/10.1109/ASE.2019.00085
https://doi.org/10.1145/2939672.2939712
https://doi.org/10.1145/2939672.2939712
https://doi.org/10.1109/DSN.2007.103
https://doi.org/10.1109/DSN.2007.103
https://doi.org/10.1145/1879141.1879202
https://doi.org/10.1145/1879141.1879202
https://doi.org/10.1145/2623330.2623340
https://doi.org/10.1145/2063576.2063690
https://doi.org/10.1145/2063576.2063690
https://doi.org/10.1137/1.9781611972757.40
https://doi.org/10.1109/PRDC47002.2019.00034
https://doi.org/10.1109/ICDM.2009.19
https://doi.org/10.1109/ICDM.2009.19
https://doi.org/10.1145/1629575.1629587
https://doi.org/10.1109/ICRITO48877.2020.9197818

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece N. Zhao, H. Wang, Z. Li, X. Peng, G. Wang, P. Zhu, Y. Wu, Z. Feng, X. Wen, W. Zhang, K. Sui, D. Pei

[50] Lin Yang, Junjie Chen, Zan Wang, Weijing Wang, Jiajun Jiang, Xuyuan Dong,
and Wenbin Zhang. 2021. Semi-supervised log-based anomaly detection via
probabilistic label estimation. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). IEEE, 1448–1460. https://doi.org/10.1109/ICSE43902.
2021.00130

[51] Kun Yin, Meng Yan, Ling Xu, Zhou Xu, Zhao Li, Dan Yang, and Xiaohong Zhang.
2020. Improving Log-Based Anomaly Detectionwith Component-Aware Analysis.
In 2020 IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 667–671. https://doi.org/10.1109/ICSME46990.2020.00069

[52] Xiao Yu, Pallavi Joshi, Jianwu Xu, Guoliang Jin, Hui Zhang, and Guofei Jiang.
2016. Cloudseer: Workflow monitoring of cloud infrastructures via interleaved
logs. ACM SIGARCH Computer Architecture News 44, 2 (2016), 489–502. https:
//doi.org/10.1145/2980024.2872407

[53] Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu Zhang, Yingnong Dang,
Chunyu Xie, Xinsheng Yang, Qian Cheng, Ze Li, et al. 2019. Robust log-based

anomaly detection on unstable log data. In Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 807–817. https://doi.org/10.1145/3338906.
3338931

[54] Nengwen Zhao, Jing Zhu, Yao Wang, Minghua Ma, Wenchi Zhang, Dapeng Liu,
Ming Zhang, andDan Pei. 2019. Automatic andGeneric Periodicity Adaptation for
KPI Anomaly Detection. IEEE Transactions on Network and Service Management
16, 3 (2019), 1170–1183. https://doi.org/10.1109/INFOCOM41043.2020.9155219

[55] Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi Xie, Zibin Zheng, andMichael R.
Lyu. 2019. Tools and Benchmarks for Automated Log Parsing. In Proceedings of
the 41st International Conference on Software Engineering: Software Engineering
in Practice (ICSE-SEIP ’19). IEEE Press, 121–130. https://doi.org/10.1109/ICSE-
SEIP.2019.00021

https://doi.org/10.1109/ICSE43902.2021.00130
https://doi.org/10.1109/ICSE43902.2021.00130
https://doi.org/10.1109/ICSME46990.2020.00069
https://doi.org/10.1145/2980024.2872407
https://doi.org/10.1145/2980024.2872407
https://doi.org/10.1145/3338906.3338931
https://doi.org/10.1145/3338906.3338931
https://doi.org/10.1109/INFOCOM41043.2020.9155219
https://doi.org/10.1109/ICSE-SEIP.2019.00021
https://doi.org/10.1109/ICSE-SEIP.2019.00021

	Abstract
	1 Introduction
	2 Background
	2.1 Log Anomaly Detection
	2.2 Practical Challenges

	3 Empirical Study
	3.1 RQ1: Logs in Incident Management
	3.2 RQ2: Current Practice
	3.3 RQ3: Log Types and Log Abnormal Patterns
	3.4 Summary

	4 Experimental Study
	4.1 Datasets and Measurements
	4.2 Experiment Setup
	4.3 RQ4: Effectiveness
	4.4 RQ5: Efficiency

	5 Approach
	5.1 Log Preprocessing
	5.2 Log Anomaly Detection
	5.3 Alerting with Visualization

	6 Evaluation and Case study
	6.1 Performance and Application
	6.2 Case Study

	7 Discussion
	7.1 Lessons Learned
	7.2 Threats to Validity

	8 Conclusion
	References

