An Empirical Investigation of Practical Log Anomaly Detection for Online Service Systems

Nengwen Zhao, Honglin Wang, Zeyan Li, Xiao Peng, Gang Wang, Zhu Pan, Yong Wu, Zhen Feng, Xidao Wen, Wenchi Zhang, Kaixin Sui, Dan Pei

ESEC/FSE 2021 (Industry track)

Log Anomaly Detection

Log data is a valuable data source in online service systems, which records detailed information of system running status and user behavior.

09:37:53 INFO AllocateBlock 09:37:54 INFO Receiving block 09:37:54 INFO Receiving block 09:37:54 INFO Receiving block

09:38:49 WARN Redundant addStoredBlock

- Log anomaly detection: identify abnormal system behavior
- Assist engineers in identifying incidents promptly and diagnose incidents rapidly

Traditional Log Anomaly Detection

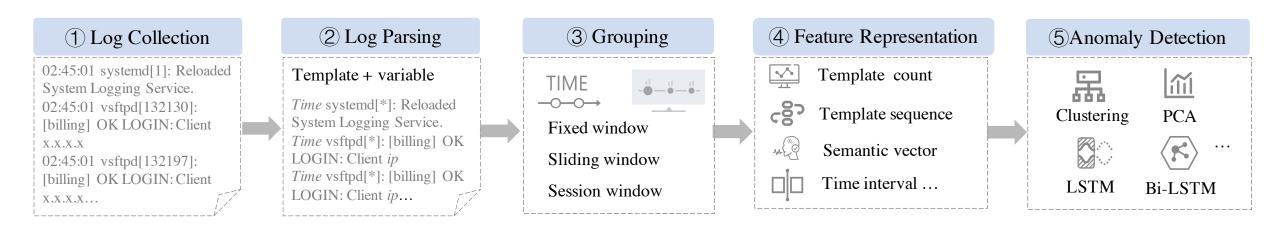
• Keywords and regular expressions

1. It is tedious to set manual rules for such numerous and various logs

2. Setting rules requires intensive domain knowledge, while the manpower of experienced engineers is limited.

3. Services are usually under frequent software changes. Thus the manual rules should be constantly updated and maintained.

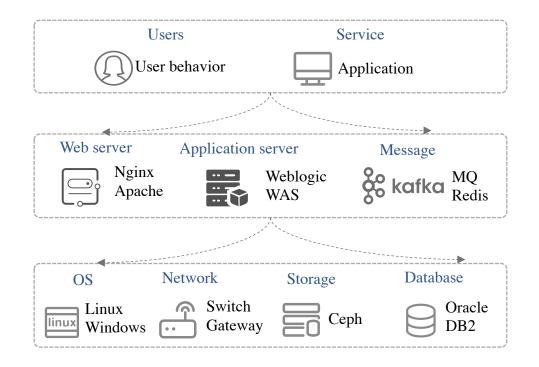
Pipeline of Log Anomaly Detection



Pipeline of existing log anomaly detection approaches

Practical Challenges

1. Various logs and complex abnormal patterns



1. Keywords JVMDUMP013I Processed

dump event "systhrow", detail "java/lang /OutOfMemoryError".

4. Variable value

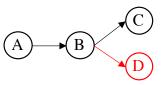
Response time

2. Template count

А

5. Variable distribution

3. Template sequence



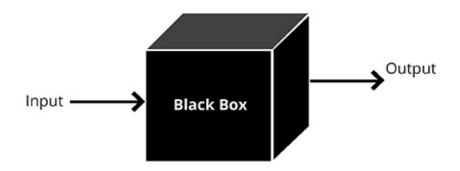
6. Time interval

08:00 INFO Receiving block 08:01 INFO Allocate block 08:02 ... 08:35 INFO Receiving block

Practical Challenges

2. Poor interpretability

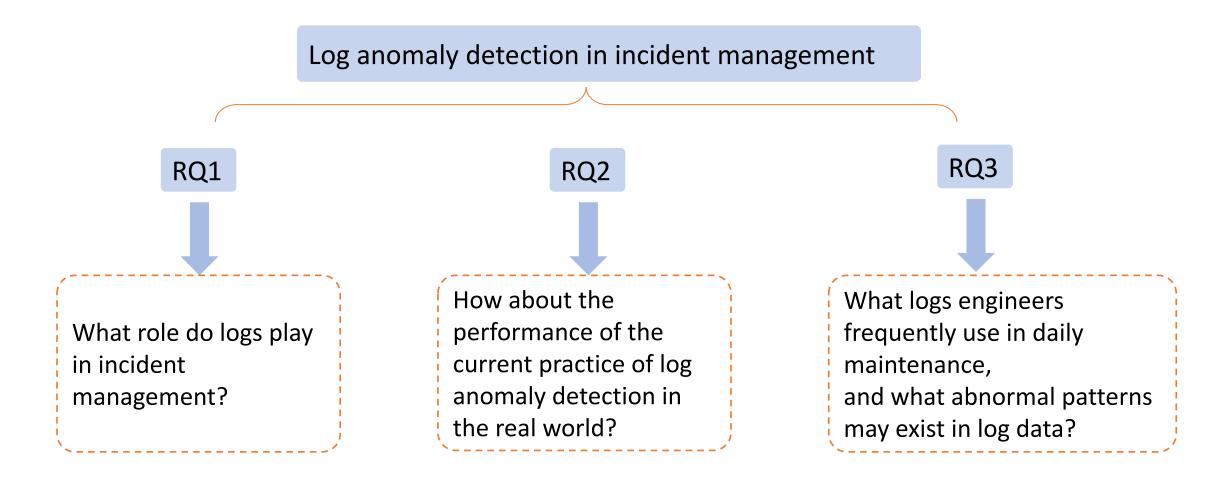
- Most of existing algorithms work as a "black box".
- Engineers cannot gain any intuitive and actionable insights from the abstract results



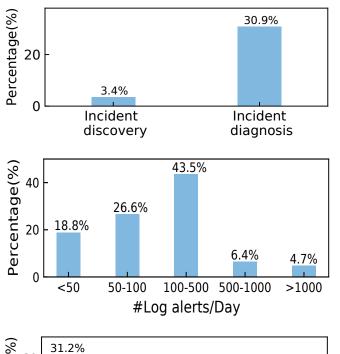
3. Lack of domain knowledge

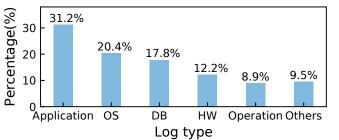
- Incorporating domain knowledge is necessary due to the variety of logs and abnormal patterns.
- Handle some special situations and ensure human-computer interactive log analysis, to enhance the performance and interpretability.

Empirical Study



Empirical Study





Туре	Example logs	Abnormal patterns	Incident scenarios			
Application	Application orman	Template count (e.g., #"connection refused" increases), new	System unavailability, applica-			
Application	Application error	log pattern (unknown error messages)	tion error			
Operation system	Linux, Windows,	Keywords (e.g., "soft lockup" and "page allocation failure"),	OOM, node hang, hardware fai			
Operation system	AIX	<pre>#total logs, template count (e.g., #"creating session" decreases)</pre>	ures			
Database	Oracle, DB2,	Keywords (e.g, "ORA-", "Level: Error"), new log pattern	Database server down, perfor			
Database	MySQL	Reywords (e.g., ORA-, Level: Error), new log pattern	mance degradation, SQL defect			
Hardware (Network de- vices) Switch, F5		Keywords (e.g., illegal state transition, address conflict de-	IP address conflicted			
		tected), new log pattern, template count				
Hardware (Storage)	Ceph	Keywords (e.g., "no reply", and "time out"), new log pattern	Disk failure, space exhaustion			
Distributed system	HDFS, OpenStack	Keywords (e.g., "IOException"), template sequence (wrong or-	Task failed, instance failure			
Distributed system	TIDI'S, Openstack	der of execution), new log pattern	Task falled, ilistance fallure			
Operation	User behavior	Template count, template sequence	Illegal operation, security issue			
Middleware (Web	Nginx access,	Variable distribution (e.g., return code, and IP address), #total	System unavailability, illegal			
server)	Apache access	logs	user access, security threat			
Middleware (WM CC)	CMS C1 parallal	Keywords ("OutOfMemory"), template count (e.g.,#"FullGC"	GC overhead limit exceeded, full			
Middleware (JVM GC) CMS, G1, paralle		increases), variable value (GC time cost)	heap space, memory leak			
Middleware (Message	IBM MQ	Keywords (e.g., "error occur", "ended abnormally", and "excep-	Magaaga guqua atuali			
queue)		tion"), new log pattern	Message queue stuck			

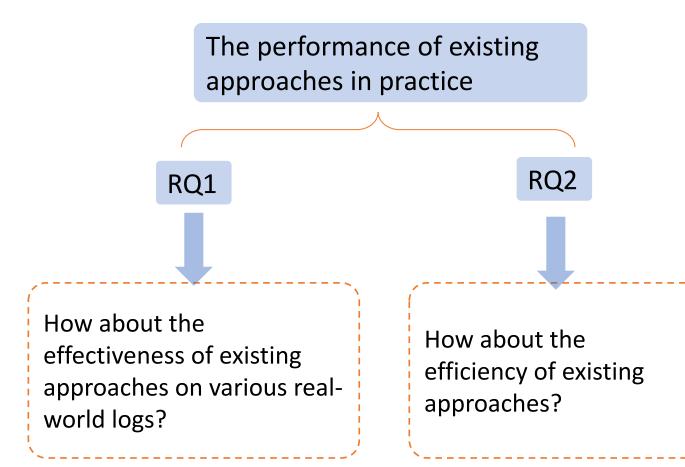
Empirical Study

1. Log anor	naly detection	on is valuab	le for incl	dent management.	
		Application	Application error	log pattern (unknown error messages)	System unavailability, appli- tion error
1.0.0%		That wate (Storage)		thod in current practice du	e to better
1.8.8%		That wate (Storage)		thod in current practice du r from satisfying.	e to better
interpretak		ne performa	ance is fai	r from satisfying.	
interpretak	oility, while th	ne performa	ance is fai	r from satisfying.	

effective and generic log anomaly detection approach is in urgent demand.

Log type

Experimental Study



Dataset	Туре	#Logs	#Pos/#Neg
D1	Application error	26,918	3/720
D2	Application error	84,139	7/1446
D3	User operation	9,080	2/38
D4	Nginx access	2,856,793	32/3036
D5	JVM GC (CMS)	217,613	13/398
D6	JVM GC (Parallel)	64,208	27/469
D7	DB2	16,133	2/74
D8	Linux system	771,083	4/768
D9	Linux system	3,227,843	5/1459
<i>D</i> 10	Linux system	1,087,956	6/1288

Deatails of our experimental datasets

Effectiveness and Efficiency

Approach	PCA			LogCluster		IM		DeepLog			LogAnomaly				
Dataset	Р	R	F1	P	R	F1	Р	R	F1	Р	R	F1	Р	R	F1
D1	0.40	1.00	0.57	0.38	1.00	0.55	0.51	1.00	0.68	0.64	0.33	0.44	0.45	0.67	0.54
D2	0.56	0.43	0.48	0.50	0.57	0.53	0.34	0.43	0.38	0.71	0.86	0.78	0.71	0.86	0.78
D3	0.67	0.50	0.57	0.72	0.50	0.59	0.43	1.00	0.60	0.43	0.50	0.46	0.62	0.50	0.55
D4	0.20	0.44	0.28	0.24	0.53	0.33	0.32	0.21	0.26	0.17	0.38	0.23	0.22	0.34	0.27
D5	0.92	1.00	0.96	0.80	1.00	0.89	0.87	1.00	0.93	0.91	1.00	0.95	0.91	1.00	0.95
D6	0.64	1.00	0.78	0.86	0.81	0.83	0.82	1.00	0.90	0.93	0.96	0.94	0.92	1.00	0.96
D7	0.42	0.50	0.46	0.44	0.50	0.47	0.58	0.25	0.35	0.57	1.00	0.73	0.53	1.00	0.69
D8	0.10	0.25	0.14	0.35	0.25	0.29	0.14	0.25	0.18	1.00	0.50	0.66	1.00	0.50	0.66
<i>D</i> 9	0.18	0.60	0.28	0.28	1.00	0.44	0.44	0.40	0.42	0.32	1.00	0.48	0.54	0.60	0.57
D10	0.29	0.33	0.31	0.43	0.33	0.37	0.29	1.00	0.45	0.74	0.50	0.60	1.00	0.50	0.67
Mean F1 (Std)	0.48 (0.24) 0.53 (0.19)				0.52 (0.24)			0.63 (0.22)			0.66 (0.19)				

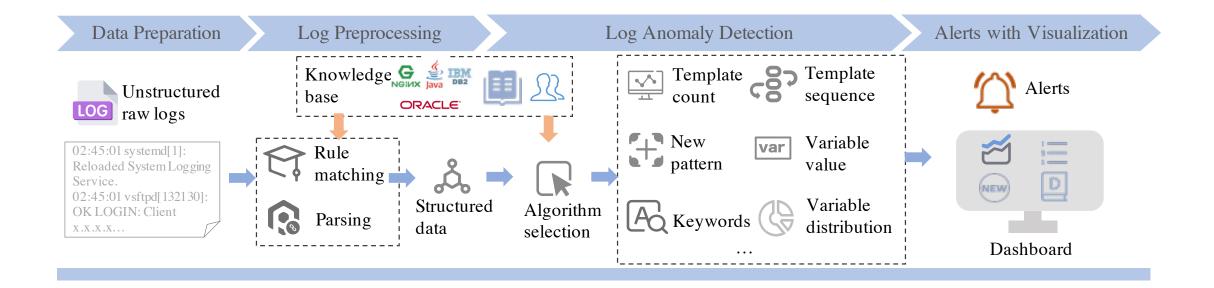
Approach	PCA	LogCluster	IM	DeepLog	LogAnomaly
Training (min)	0.89	5.40	4.60	34.67	48.54
Detection (s)	0.23	0.56	0.38	1.02	1.78

Summary

Dataset	Р	R	F1	Р	R	F1	Р	R	F1	Р	R	F1	Р	R	F1
1. Abou	it eff	ectiv	enes	s, exi	sting	appr	oach	es pe	rform	n uns [.]	tably	on d	iffere	nt®	
				0.72	0.50	0.50		1 00			0.50				0.55
dataset	5,1110	anny	uue		e var	lety 0	ling	abiio	lilla	parte			еш	IIIali	JI <u>1.27</u>
of each	ann	roach	0.96												
orcaci	app	loaci	0.78												
D7	0.42	0.50	0.46	0.44	0.50	0.47	0.58	0.25	0.35	0.57	1.00	0.73	0.53	1.00	0.69
D10	0.29	0.33	0.31	0.43	0.33	0.37	0.29	1.00	0.45	0.74	0.50	0.60	1.00	0.50	0.6

2. About efficiency, all studied approaches could achieve satisfactory detection time, while deep learning based approaches require higher training time than statistical approaches.

LogAD



Core Ideas

Keywords

distribution

Dashboard

Lessons Learned

There exists a gap between the research of algorithms and real application scenarios.

A single algorithm is usually not a panacea in practice.

Choose appropriate logs for anomaly detection.

Human-computer interactive log analysis.

Conclusion

We propose several significant practical challenges when applying log anomaly detection approaches in academic to practice.

We conduct the first empirical study and an experimental study based on real-world data and obtain several key observations, supporting these challenges.

We propose a generic log anomaly detection system named LogAD to tackle these challenges together.

Hope our work can provide some inspiration and guidance for practitioners and researchers to apply log anomaly detection to practice.

Thank you!

znw17@mails.tsinghua.edu.cn