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Log Anomaly Detection

Log data is a valuable data source in online service systems, which records detailed
information of system running status and user behavior.

09:37:53 INFO AllocateBlock

09:37:54 INFO Receiving block
09:37:54 INFO Receiving block
09:37:54 INFO Receiving block

09:38:49 WARN Redundant addStoredBlock

Log anomaly detection: identify
abnormal system behavior

Assist engineers in identifying incidents
promptly and diagnose incidents
rapidly



Traditional Log Anomaly Detection

e Keywords and regular expressions

1. It is tedious to set manual rules for such numerous and various logs

2. Setting rules requires intensive domain knowledge, while the manpower of
experienced engineers is limited.

3. Services are usually under frequent software changes. Thus the manual rules
should be constantly updated and maintained.



Pipeline of Log Anomaly Detection

(1) Log Collection
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Pipeline of existing log anomaly detection approaches
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Practical Challenges

1. Various logs and complex abnormal patterns
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Practical Challenges

2. Poor interpretability 3. Lack of domain knowledge
* Most of existing algorithms * Incorporating domain knowledge is
work as a “black box”. necessary due to the variety of logs
* Engineers cannot gain any and abnormal patterns.
intuitive and actionable insights * Handle some special situations and
from the abstract results ensure human-computer

interactive log analysis, to enhance

- the performance and

Output interpretability.

Input _) Black Box



Empirical Study

Log anomaly detection in incident management

RQ1

What role do logs play
in incident
management?

RQ2

How about the
performance of the
current practice of log
anomaly detection in
the real world?

RQ3

What logs engineers
frequently use in daily
maintenance,

and what abnormal patterns
may exist in log data?
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Empirical Study

1. Log anomaly detection is valuable for incident management.

2. Engineers tend to use keyword-based method in current practice due to better
interpretability, while the performance is far from satisfying.

3. Log types and abnormal patterns are indeed diverse in practice. Thus a practical,
effective and generic log anomaly detection approach is in urgent demand.



Experimental Study

The performance of existing
approaches in practice

RQ1

How about the
effectiveness of existing
approaches on various real-
world logs?

Dataset | Type #Logs #Pos/#Neg
RQZ D1 Application error 26,918 3/720
D2 Application error 84,139 7/1446
D3 User operation 9,080 2/38
D4 Nginx access 2,856,793 32/3036
D5 JVM GC (CMS) 217,613 13/398
- D6 JVM GC (Parallel) 64,208 27/469
D7 DB2 16,133 2/74
D38 Linux system 771,083 4/768
How about the D9 Linux system 3,227,843 | 5/1459
effl cien cy Of existi ng D10 Linux system 1,087,956 6/1288

approaches?

Deatails of our experimental datasets
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Effectiveness and Efficiency

Approach PCA LogCluster IM DeepLog LogAnomaly
Dataset P R F1 P R F1 P R El P R F1 P R Fl
D1 0.40 1.00 0.57 0.38 1.00 0.55 0.51 1.00 0.68 0.64 0.33 0.44 0.45 0.67 0.54
D2 0.56 043 0.48 0.50 0.57 0.53 0.34 0.43 0.38 0.71 0.86 0.78 0.71 0.86 0.78
D3 0.67 050  0.57 0.72 0.50 0.59 0.43 1.00 0.60 0.43 0.50 0.46 0.62 0.50 0.55
D4 0.20 044 0.28 0.24 0.53 0.33 0.32 0.21 0.26 0.17 0.38 0.23 0.22 0.34 0.27
D5 0.92 1.00 0.96 0.80 1.00 0.89 0.87 1.00 0.93 0.91 1.00 0.95 0.91 1.00 0.95
D6 0.64 1.00 0.78 0.86 0.81 0.83 0.82 1.00 0.90 0.93 0.96 0.94 0.92 1.00 0.96
D7 0.42 050 046 0.44 0.50 0.47 0.58 0.25 0.35 0.57 1.00 0.73 0.53 1.00 0.69
D3 0.10 025 0.14 0.35 0.25 0.29 0.14 0.25 0.18 1.00 0.50 0.66 1.00 0.50 0.66
D9 0.18 060 0.28 0.28 1.00 0.44 0.44 0.40 0.42 0.32 1.00 0.48 0.54 0.60 0.57
D10 0.29 033 0.31 0.43 0.33 0.37 0.29 1.00 0.45 0.74 0.50 0.60 1.00 0.50 0.67

Mean F1 (Std) 0.48 (0.24) 0.53 (0.19) 0.52 (0.24) 0.63 (0.22) 0.66 (0.19)

Approach | PCA | LogCluster | IM | DeepLog | LogAnomaly

Training (min)
Detection (s)

0.89
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5.40
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4.60
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1.02

48.54
1.78
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Summary

1. About effectiveness, existing approaches perform unstably on different
datasets, mainly due to the variety of log abnormal patterns and the limitation

of each approach.

2. About efficiency, all studied approaches could achieve satisfactory detection
time, while deep learning based approaches require higher training time than
statistical approaches.
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Lessons Learned

There exists a gap
between the research of
algorithms and real
application scenarios.

Choose appropriate logs
for anomaly detection.

A single algorithm is
usually not a panacea in
practice.

Human-computer
interactive log analysis.
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Conclusion

We propose several significant practical challenges when applying log anomaly
detection approaches in academic to practice.

We conduct the first empirical study and an experimental study based on real-world
data and obtain several key observations, supporting these challenges.

We propose a generic log anomaly detection system named LogAD to tackle these
challenges together.

Hope our work can provide some inspiration and guidance for practitioners and
researchers to apply log anomaly detection to practice.
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