
Identifying Root-Cause Metrics for
Incident Diagnosis in Online Service Systems

Canhua Wu†¶, Nengwen Zhao†¶, Lixin Wang‡, Xiaoqin Yang‡, Shining Li‡, Ming Zhang‡, Xing Jin‡,
Xidao Wen†¶, Xiaohui Nie†¶, Wenchi Zhang§, Kaixin Sui§, Dan Pei∗†¶

†Tsinghua University ‡China Construction Bank §BizSeer
¶Beijing National Research Center for Information Science and Technology (BNRist)

Abstract—Incidents in online service systems could incur poor
user experience and tremendous economic loss. To reduce the
influence of incidents and guarantee service reliability, it is
critical to identify root-cause metrics for engineers with clues to
assist incident diagnosis. However, it is a challenging task due to
the complicated dependencies and huge volume of various metrics
in large-scale systems. Existing approaches are based on either
anomaly detection or correlation analysis, performing not well in
terms of accuracy or efficiency. To better understand the problem
of root-cause metric identification, we conduct a preliminary
study based on real-world data analysis and interactions with
engineers. The key observation is that root-cause metrics should
satisfy two requirements. One is that the metric is expected to
behave abnormally during the incident; the other is that the
anomaly pattern should meet physical meaning and engineers’
demand. Motivated by the findings obtained from the study, we
propose an effective approach named PatternMatcher to identi-
fying root-cause metrics accurately. Specifically, PatternMatcher
contains three steps, where coarse-grained anomaly detection
aiming to filter out normal metrics, anomaly pattern classification
aiming to filter out unimportant anomaly patterns, and root-
cause metric ranking. An extensive study on four real-world
datasets including 113 incident cases from a large commercial
bank demonstrates that PatternMatcher outperforms all baseline
approaches, achieving top-3 average accuracy of 0.91. Moreover,
we have deployed PatternMatcher in practice and shared some
successful cases from real deployment.

Index Terms—Root-cause metric, incident diagnosis, anomaly
pattern classification

I. INTRODUCTION

Recently, online service systems have become increasingly
popular in our daily life, such as search engines, online
shopping, and social networks. To ensure service quality and
user experience, various control measurements have been em-
ployed to guarantee that services are running normally [1], [2].
Nonetheless, incidents (or unplanned interruptions) are still
inevitable in practice due to the complexity and the large scale
of service systems [2]. These incidents might incur tremendous
economic loss and user dissatisfaction. For example, a recent
survey [3] reveals that the average cost of server downtime
per hour is between $301,000 and $400,000. Therefore, it is
critical to accurately locate the root cause after an incident
occurs to restore the service as soon as possible.

In general, once an incident occurs, engineers tend to collect
all related metrics and investigate their behaviors, aiming to
find out the root cause or some clues for further diagnosis. For

∗ Dan Pei is the corresponding author.

example, if the response time of a service increases dramati-
cally, engineers would check the metrics of the infrastructure
layer (e.g., network, server, and database) associated with the
service. If we found that the CPU usage of a server is high,
it indicates that the high latency may be incurred by server
overload, and the incident could be mitigated by killing the
high-load session or restarting the server. According to our
observations, however, hundreds to thousands of metrics need
to be inspected for one incident, and there could be tens of
incidents one day in large-scale service systems. Thus, it is
time-consuming and error-prone for engineers to manually
check so many potentially relevant metrics to locate the root
cause. Therefore, an automated root-cause metric identification
approach is highly desired.

In the literature, many efforts have been devoted to auto-
matically identifying root-cause metrics [4], [5], [6], [7], but
they still suffer from various limitations in practice. First, the
majority of the approaches use statistical anomaly detection
methods to identify suspicious root-cause metrics such as KDE
(Kernel Density Estimation) in FluxRank [4] and ε-statistic in
ε-diagnosis [5]. However, these anomaly detection methods do
not perform well in practice. Taking KDE for example, it is
challenging for engineers to select appropriate kernel functions
and bandwidths which are crucial for the overall accuracy.
Besides, it is unreasonable to estimate a distribution given
limited data points. Second, all approaches ignore the physical
meaning of metrics and anomaly patterns. For example, a
sudden decrease of CPU usage may be wrongly identified
as a root-cause metric using existing works, while the CPU
decrease pattern means more CPU resources are released,
which is a good phenomenon and cannot incur incidents.
Besides, different anomaly patterns may indicate different
severity levels in diagnosis (§II-B), which should be consid-
ered in ranking root-cause metrics. Third, some approaches
based on correlation analysis rely on long-term historical
data [6], leading to efficiency and resource bottlenecks faced
with thousands of candidate metrics in practice. Thus it is
imperative to develop an effective and practical approach to
identifying root-cause metrics.

To better understand the problem of identifying root-cause
metrics in practice, we conducted a preliminary study based on
large-scale real-world data and interviews with engineers. We
obtain three key findings through the study. First, identifying
root-cause metrics is indeed helpful for engineers to conduct

incident diagnosis, while the current practice in the real world
is far from satisfactory (§II-B1). Second, anomaly patterns
should be incorporated in analyzing root-cause metrics and
can provide more comprehensive information for engineers to
enhance the interpretability and performance by filtering out
abnormal but unconcerned patterns (§II-B2). Third, diverse
anomaly patterns exist in the real world, which may represent
different severity levels and explanatory power to root cause,
which should be considered in incident diagnosis (§II-B3).

Inspired by the insights learned from the study and to over-
come the aforementioned limitations, we propose a novel root-
cause metric identification approach named PatternMatcher.
PatternMatcher contains three components: coarse-grained
anomaly detection, anomaly pattern classification, and root-
cause metric ranking. More specifically, PatternMatcher first
conducts a two-sample test to filter out normal metrics to
reduce search space. This is because root-cause metrics should
behave abnormally when an incident occurs. After identifying
anomalies, PatternMatcher draws support from 1-D CNN
(One-Dimensional Convolutional Neural Network) [8] and
classifies abnormal segments into different patterns, each of
which indicates a different physical meaning. Besides, pat-
tern classification could further filter out some false positive
patterns that engineers are not concerned about to improve
the accuracy. Finally, PatternMatcher sorts candidate metrics
based on our designed ranking strategy, considering both
anomaly scores in the first step and pattern weights in the
second step. In this way, engineers could investigate the root
cause according to our recommended ranking list.

To illustrate the effectiveness of PatternMatcher, we con-
ducted an extensive experimental study on four datasets
containing diverse incidents (113 cases in total) from a
large commercial bank which supports hundreds of millions
of users and hosts hundreds of service systems. We com-
pare PatternMatcher with several baseline approaches, i.e.,
FluxRank [4], ε-diagnosis [5], CETS [6] and MicroCause [7].
The Avg@3 accuracy of PatternMatcher could achieve 0.91
on average on four datasets. In comparison, four baseline
approaches could only achieve 0.70, 0.44, 0.66 and 0.40.
The contributions of two main components of PatternMatcher
(anomaly pattern classification and ranking) are also con-
firmed. In terms of time efficiency, PatternMatcher could
provide ranking results within dozens of seconds faced with
thousands of candidate metrics, which is satisfactory for engi-
neers in practice. More importantly, PatternMatcher has been
deployed in a large commercial bank and engineers appreciate
its value in assisting incident diagnosis. To show the practical
usage of PatternMatcher, we introduce the deployment archi-
tecture and some successful cases collected from practice.

To summarize, this work has the following contributions:

• We conducted the first preliminary study to investigate the
problem of identifying root-cause metrics and the necessity
of considering anomaly patterns.

• We propose a novel approach named PatternMatcher to
identifying root-cause metrics for incident diagnosis. The

14:45

Incident

15:00

Restart
database

15:20 15:55

Restart Nginx Expansion and restart
database server

RecoveryWrong mitigation actions
Time

(a) An incident case with long TTM due to inaccurate root
cause analysis

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00
Time

0.00

0.25

0.50

0.75

1.00

Va
lu

e

system.load.norm

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00
Time

0

5000

10000

Va
lu

e

system.mem.free

(b) A case to illustrate the importance of anomaly pattern

Fig. 1: Real-world case analysis

core component in PatternMatcher is an effective anomaly
pattern classification based on 1-D CNN [8].

• Extensive experiments based on various real incidents
demonstrate the effectiveness of PatternMatcher, achiev-
ing Avg@3 accuracy of 0.91 on four datasets on av-
erage and outperforming baseline approaches. Besides,
PatternMatcher has been deployed in practice.

II. MOTIVATION AND PROBLEM FORMULATION

A. Motivation Case

Identifying root-cause metrics for incident diagnosis is
critical for online service systems, to guarantee short TTM
(Time to Mitigate) and service reliability. To illustrate the
importance of accurate root cause analysis, we present a real-
world incident case in Fig. 1(a). This incident was noticed
at 14:45 during busy hours. After preliminary diagnosis,
engineers restarted the database and Nginx at 15:00 and 15:20,
respectively, but the incident was not mitigated successfully.
Finally, engineers located that the root cause was the capacity
problem of the database server leading to system overload. The
incident was solved at 15:55 by expanding the capacity and
restarting the server. Overall, the total TTM is 70 minutes,
during which the service quality and user experience were
severely damaged. If engineers could notice the abnormal
behaviors of related metrics (e.g., CPU usage) of the database
server, the incident could be mitigated much earlier. This
case vividly demonstrates that identifying root-cause metrics
is valuable for incident diagnosis.

In addition to identifying the abnormal metrics, the spe-
cific anomaly pattern is also essential for incident diagno-
sis. Fig. 1(b) presents an intuitive example to illustrate the
significance of anomaly patterns when analyzing the root
cause. We observe that both two metrics (system.load.norm
and system.mem.free) behave abnormally during the incident
time (pink bands). However, after further investigating the
anomaly patterns, we noticed that the system.mem.free could
be excluded because the increase pattern of system.mem.free
is often a positive phenomenon and is unlikely to be the root

cause. If engineers ignore it, they may take incorrect mitigation
actions (e.g., expanding memory), resulting in a longer TTM.

Through actual case analysis, we find that identifying the
root-cause metrics is vital for incident diagnosis to save TTM.
In addition, we should pay extra attention to the specific
abnormal behavior of different metrics to enhance the accuracy
and interpretability of root cause analysis.

B. Preliminary Study

To better understand the problem of identifying root-cause
metrics in practice, we conducted a preliminary study based
on real-world data analysis and interviews with engineers.
Specifically, we collected historical incidents and metrics of 14
online service systems from a large commercial bank. The total
size of various metric data exceeds 50GB, and the total number
of metrics is over 260K, including application (e.g., response
time and success rate), storage (e.g., average write/read time),
network (e.g., average round-trip time) and so on. To our best
knowledge, this is the first study that focuses on root-cause
metric identification and anomaly patterns. In this study, we
aim to answer the following three questions:

• How about the current practice of identifying root-cause
metrics?

• Are anomaly patterns necessary for identifying root-cause
metrics?

• What types of anomaly patterns exist in practice?
1) Current Practice: We interviewed dozens of engineers

from different teams in a large commercial bank. These
engineers with rich experience frequently diagnose incidents
in their daily work via inspecting various monitoring metrics.
Thus the interview results are quite convincing. In current
practice, we find that engineers tend to adopt some monitoring
and visualization tools (e.g., Grafana [9] and Kibana [10]) to
inspect the behavior of related metrics. In practice, the number
of candidate metrics is way larger than that of what engineers
can properly investigate. To address this issue, engineers draw
support from some simple yet efficient anomaly detection
methods (e.g., 3-σ) to filter out some normal metrics which are
unlikely to have correlations with the incident. Nevertheless,
it is still far from satisfactory due to the natural limitation of
anomaly detection methods, and the number of abnormal met-
rics requiring manual examination is still large after the rough
filtering process. Consequently, it is imperative to develop an
automated, accurate, and efficient approach to identifying root-
cause metrics for incident diagnosis.

2) The Necessity of Anomaly Pattern: According to the
feedback of engineers, they confirmed the significance of
anomaly patterns in the task of identifying root-cause metrics
(and some other tasks in service reliability management).
The reasons can be summarized as follows. First, providing
specific anomaly patterns could assist engineers to obtain more
comprehensive information. For example, an abrupt anomaly
(e.g., spike) indicates a sudden incident, while a trending
anomaly (e.g., steady increase) indicates a slowly deteriorating
incident. Second, some anomaly patterns are not concerned
by engineers, which could bring some inaccurate results and

incurring long TTM. Existing time series anomaly detection
works identify statistical anomalies but fail to consider the
physical meaning of the metrics and corresponding anomalies.
For example, the decrease in CPU usage and the increase
in transaction volume are statistical anomalies, but they are
positive phenomenons and cannot be root-cause metrics. Such
abnormal but positive patterns should be further filtered to
improve performance. As a result, anomaly patterns should
be well incorporated when identifying root-cause metrics to
enhance accuracy and interpretability.

3) Typical Anomaly Patterns: To answer this question, we
analyzed numerous metrics from the real world. Through our
analysis and discussions with engineers, we summarized 13
typical anomaly patterns, displayed in Fig. 2. We observe that
anomaly patterns are indeed diverse in practice, and a metric
could exhibit more than one anomaly pattern. Besides, we
further analyzed the physical meanings of different anomaly
patterns. As shown in Table I, we present detailed explanations
of these anomaly patterns, including corresponding example
metrics and problem scenarios. It is clear that different patterns
may represent different problems. For example, the “steady in-
crease” of memory usage may indicate a deteriorating capacity
issue, and the “single spike” of response time may indicate
that the system is jammed briefly but then recovered quickly.
These patterns can be divided into two categories based on
whether the metric resumes to a normal state in the end (Type-
1 and Type-2). Interestingly, we observe that different anomaly
patterns may represent different severity levels and explanatory
power to root cause. Intuitively, Type-1 patterns are much
more severe than Type-2 ones because the former means that
the anomaly is still continuing, while the latter is a transient
anomaly and recovers quickly.

4) Summary: Through this preliminary study, we obtain the
following key findings that largely motivate our work.

• Identifying root-cause metrics is critical for troubleshooting,
while the current practice in the real world is unsatisfactory.

• Incorporating anomaly patterns is indeed helpful for iden-
tifying root-cause metrics, to further enhance the accuracy
and interpretability.

• There exist diverse anomaly patterns with different physical
meanings and different explanatory power to root causes,
which should also be noticed.

C. Problem Formulation

In this paper, we aim to propose an effective and ef-
ficient approach to identifying root-cause metrics to assist
incident diagnosis. Specifically, when an incident (e.g., success
rate decreases dramatically) occurs, all related metrics are
collected, such as the infrastructure components supporting
the service, including database, server, hardware and so on.
Then, we expect to rapidly identify root-cause metrics from
numerous candidate metrics and provide a ranking list to
engineers, to guide further troubleshooting. Importantly, the
root-cause metrics need to meet two requirements. One is that
the metrics should behave abnormally during the occurrence

Type-1
patterns

Type-2
patterns

Fig. 2: Typical anomaly patterns summarized from large-scale real-world data

TABLE I: Detailed explanations of anomaly patterns, including corresponding example metrics and problem scenarios

Type Anomaly patterns Example metrics Examples of problem scenarios

Type-1:
Still in
abnormal
state

Sudden increase
system.cpu.pct usage; system.mem.bu-
ffered; system.net.packets in.error

A sudden high-load task occupies many resources;
Cyclic calls due to configuration errors or bugs

Sudden decrease
system.net.packets in.count; weblogi-
c.webapp.sessions; app.response.rate

Network disconnection; Request
obstruction; Power outage

Level shift up
system.mem.pct usage;
system.io.w await

A sudden high-load task lasts for a while;
Bursted user request

Level shift down
system.cpu.idle; system.mem.free;
app.success.rate

Increase in bad blocks on disk;
Power outage; Server down

Steady increase system.disk.used; oracle.tablespace.used Memory leak caused by buggy code;
Insufficient resourcesSteady decrease system.mem.free; oracle.tablespace.free

Type-2:
Recover
to normal
state

Single spike oracle.lock.wait; system.disk.await Transient network jitter; A temporary high-load task
Single dip system.net.bytes rcvd; app.success.rate Network/system stuck and recovery
Transient level shift up oracle.read.sequential; oracle.lock.wait A high-load task takes up resources for a while and

has been released;
A faulty disk has been replaced

Transient level shift
down

system.cpu.idle;system.mem.free

Multiple spikes system.io.await; app.response.time Continuously unstable system;
Network fluctuationsMultiple dips system.net.bytes sent; app.success.rate

Fluctuations
system.mem.used;app.response.rate;
system.cpu.pct usage

Server restarts continuously;
Continuously unstable system

of this incident, and the other is that its anomaly pattern should
satisfy the physical meaning and engineers’ demand.

III. APPROACH

Motivated by the insights learned from the preliminary
study, we propose an effective approach to identifying root-
cause metrics named PatternMatcher. As presented in Fig. 3,
PatternMatcher contains three components: coarse-grained
anomaly detection, anomaly pattern classification, and root-
cause metric ranking. Specifically, when an incident occurs in
the online service system, PatternMatcher would be triggered,
and related metrics to this incident would be collected based
on system topology. First, PatternMatcher utilizes two-sample
hypothesis test as the coarse-grained anomaly detection algo-
rithm because of its high efficiency and accuracy. It can filter
out the metrics performing normally during the occurrence of
this incident so that the search space could be significantly
reduced. Afterwards, we propose a novel anomaly pattern
classification approach based on 1-D CNN [8], to further
analyze the specific anomaly patterns of abnormal metrics.
The goal is to filter out abnormal metrics whose anomaly
patterns are not concerned by engineers, so as to improve
the accuracy and provide more comprehensive information to
engineers. Finally, we design a ranking strategy taking both

Candidate
metrics

Incident Pattern
classification

Training

EngineersCoarse-grained
anomaly
detection

Abnormal
metrics

Labeled
data

Root-cause
metrics

EngineersTopology
Label

Ranking

Fig. 3: Overview of PatternMatcher

the above two steps into consideration, so that engineers could
check suspicious metrics according to the ranking list. In the
following, we will present three main modules in detail.

A. Coarse-grained Anomaly Detection

As introduced in §II-C, one requirement of root-cause met-
rics is that they should behave abnormally when an incident
occurs. In the literature, several approaches have been pro-
posed to identifying root-cause metrics via anomaly detection.
For example, FluxRank [4] adopts Kernel Density Estimation
(KDE) to detect the change of metric distribution using the
local data before the incident occurs. However, KDE suffers
from several limitations in practice. First, the selection of
kernel functions (e.g., RBF and Gaussian) and the bandwidth
strongly affect the accuracy [11]. Besides, it is difficult for

KDE to accurately estimate the distribution given limited data
points. Second, it is difficult to select an appropriate threshold
to determine whether the metric behaves abnormally because
the anomaly scores provided by KDE have no range limit.

To overcome the drawbacks of KDE, inspired by existing
works [5], [6], we leverage two-sample hypothesis test as our
coarse-grained anomaly detection algorithm, mainly due to its
efficiency and effectiveness given numerous candidate metrics
and short-term historical data. Besides, it is relatively simple
to choose an appropriate threshold based on the output of
p-value. In detail, given the occurrence time of an incident
t and a metric m, we mainly focus on whether the metric
is abnormal before time t. We compare the data between
m[t − l1 : t] (testing window SA) and m[t − l1 − l2 : t − l1]
(normal window SN) using KS-test (Kolmogorov-Smirnov
test [12]). Considering the fact that using too many data points
for anomaly detection could result in system overhead in real
deployment and few data points may undermine the accuracy,
we set l1 and l2 to 10 and 30 data points based on the
interactions with engineers. The hypothesis of the two-sample
test can be formulated as follows:{

H0 : SA = SN

H1 : SA 6= SN

(1)

The two-sample test would output a p-value (P), indicating
the confidence level. Given a threshold α (set to 0.05 in our
experiments), if P < α, we would reject H0 and conclude
SA and SN from different distributions. That is, this metric is
abnormal and may be related to the incident. Otherwise, we
will accept H0, indicating the metric is normal and we can
remove it from our candidate in the next steps.

B. Anomaly Pattern Classification

As presented in §II, anomaly patterns should be well
considered to enhance accuracy and interpretability. Therefore,
after identifying abnormal metrics, we need to further figure
out the specific anomaly patterns of this metric, aiming to filter
out the patterns that engineers do not care about. As shown
in Fig. 2, we summarized 13 typical anomaly patterns via
carefully analyzing large-scale real-world metrics. The goal
of this step is to classify the anomalies into correct patterns.

1) Data Collection: The first step to solve the multi-class
classification problem is to collect data with high-quality labels
to train the model. As stated in §III-A, if the testing window
SA performs abnormally, we will focus on the anomaly pattern
of m[t−w : t] (SP) and w is set to 30 data points. The length
of the window is larger than SA with length l1 because we
need to combine contextual information to identify anomaly
patterns more precisely. Based on historical incidents and
related metrics, we collected 1921 abnormal segments as our
datasets. We split the training set (used to train the model),
validation set (used to tune the hyperparameters), and testing
set (used for evaluation) with the ratio of 6:2:2.

2) Labeling with Active Learning: Manually labeling thou-
sands of segments is a labor-intensive and tedious task. To
address the challenge, we draw support from active learning

(a) Single data annotation (b) Batch data confirmation

Fig. 4: Interface of labeling tool

Single spike Single dip Single dip Single dip

Reverse Shift Add noise

Fig. 5: Illustration of data augmentation

to reduce labeling efforts. Specifically, we first label 100 seg-
ments manually using our developed labeling tool (Fig. 4(a))
and then construct a simple model M for a rough pre-
classification based on KNN [13] with DTW (Dynamic Time
Warping) distance [14]. Next, we use model M to classify
the remaining samples. If the results of top-k (k equals 3) are
consistent, we tend to believe that the classification results are
reliable. Otherwise, this segment is hard to be distinguished by
the algorithm and should be labeled manually with the labeling
tool. For the segments which have been well classified byM,
we develop a user interface (UI) for engineers to conveniently
confirm the labels, as shown in Fig. 4(b). Finally, we need to
label only less than 10% of the overall datasets (costing about
15 minutes), markedly reducing manual efforts.

3) Data Augmentation: Although we have obtained suf-
ficient training data through the above step, the number of
different patterns is imbalanced in our dataset. For example,
the percentage of single spike is 11.35% (218 samples), while
the percentage of steady increase is only 3.70% (71 samples),
which could degrade the performance and robustness of the
classifier. To address this problem, we leverage the technique
of data augmentation [15] in PatternMatcher, which has been
widely applied in the field of computer vision.

As shown in Fig. 5, we adopt three strategies to enrich our
datasets. 1) Reverse. Two types of reverse can be applied in
PatternMatcher, up to down (e.g., single spike to single dip)
and left to right (e.g., level shift up to level shift down). 2)
Shift. We can shift the segment by using a small step, which
does not change its anomaly pattern. For example, a single
spike pattern can be shifted to a new single spike where the
positions of spikes are different. 3) Adding Gaussian noises.
We randomly add Gaussian noises following the distribution
of N ∼ (0, 0.05) to the raw data. Through the above three
methods, we obtain a high-quality training set, and then use
it to train the classification model. The necessity of data
augmentation will be demonstrated in §IV-E.

4) Classifier: Time series classification has been exten-
sively investigated in the literature [16]. Existing works can

Output:
pattern type

Input: abnormal
segment

1-D convolution Fully connected

Normali-
zation Single

spike

Fig. 6: Detailed network structure of our classifier

be divided into two categories: traditional machine learning
based methods (e.g., KNN [17], Random Forest [18]) and
deep learning based methods (e.g., CNN [19]). Based on our
observation, feature-based traditional methods suffer from a
significant challenge, i.e., requiring powerful features to train
the classification model. The features of time series, however,
are diverse (e.g., mean, standard deviation and trend), and
it is a daunting task to extract and select useful features.
KNN (distance-based method) is a lazy-learning method and
suffers from extremely high time complexity. In comparison,
deep learning based methods have the ability to learn features
automatically. Specifically, we leverage the popular model 1-
D CNN to extract features from time series and MLP (Multi-
Layer Perceptron) as classifier [20]. The major strength of
1-D CNN is it performs well on time series data without
any pre-determined transformation such as fast Fourier trans-
form (FFT) and discrete wavelet transform (DWT), hand-
crafted feature extraction and selection [21]. Besides, the
architecture of 1-D CNN is compact compared with complex
deep networks (e.g., VGGNet [22]), making it efficient under
massive data. The detailed network structure of our classifier
is displayed in Fig. 6. For the input of abnormal segment, we
first adopt Min-max normalization to normalize its value to
the range of [0,1], to eliminate the effect of amplitude and
focus on the segment shape. The network is composed of
three 1-D convolution layers (kernel size of all three layers
is 5, output channel sizes are set to 64, 128, and 256) and two
fully connected layers (output sizes are set to 64 and 13). The
final output is computed by LogSoftmax. The loss function
and optimizer are cross-entropy and Adam, respectively. The
effectiveness of our classification model will be illustrated in
§IV-E by compared with traditional approaches.

During incident diagnosis, if anomalies are detected in the
testing window SA (m[t− l1 : t]) of a metric, PatternMatcher
would classify the segment SP (m[t − w : t]) to identify
its pattern. If engineers are not concerned about its pattern,
this metric would be excluded. Otherwise, this metric would
be included in the final ranking. Engineers’ preferences for
patterns can be configured in advance. In our experiments
(§IV-B), we only configure some basic settings based on prior
knowledge (e.g., filtering out all increase patterns of CPU
usage and all decrease patterns of free memory space). In
practical usage, engineers could add new settings based on
their real demand to further improve the performance.

C. Root-cause Metric Ranking

Through the above two steps, we have filtered out the nor-
mal metrics and abnormal metrics with unconcerned anomaly
patterns. Then, we provide a root-cause metric ranking list

so that engineers could investigate suspicious components
according to our recommended results.

As for the coarse-grained anomaly detection, it is intuitive
that we should pay more attention to more abnormal metrics
with larger anomaly scores (p-value). For the second step of
pattern classification, as presented in §II-B3, different patterns
exhibit different physical meanings with different severity
levels. For example, the level shift up is much more severe than
a single spike since the former is still in an abnormal state,
and the latter has already recovered to normal. Therefore, the
ranking strategy should take both the anomaly scores in the
first step and severity levels of different patterns in the second
step into consideration.

Specifically, we first acquire a basic anomaly score based
on the p-value (P) for each metric, which is computed by
− logmax(P, 0.0001). The goal of using max function is to
constrain the scale of anomaly score. The threshold 0.0001
means we have 99.99% confidence being right. Then, we set
weights for different anomaly patterns according to domain
knowledge or engineers’ demand. For example, we could
assign Type-1 patterns in Table I with larger weights than those
of Type-2 ones. In our experiements (§IV), we set the weights
of Type-1 and Type-2 patterns to 0.8 and 0.2, respectively. We
could obtain a promising result even though using such simple
weights, and engineers can set weights more carefully based
on real demand in practice. Finally, the root-cause score of
each metric is computed as the following:

rank score = (− logmax(P, 0.0001)) ∗ pw (2)

where pw is the weight of the corresponding anomaly pattern
of this metric. Based on the output ranking list, the incident
could be assigned to corresponding teams for further diagnosis.

IV. EVALUATION

We conducted an extensive experimental study based
on real-world data to demonstrate the effectiveness of
PatternMatcher, aiming to answer the following research
questions (RQs):
• RQ1: How does PatternMatcher perform in identifying root-

cause metrics?
• RQ2: Do main components in PatternMatcher contribute to

the overall performance?
• RQ3: How efficient is PatternMatcher?
• RQ4: How effective is our anomaly pattern classifier?

A. Dataset and Measurement

1) Dataset: To evaluate the performance of identifying
root-cause metrics (RQ1, RQ2 and RQ3), we collected four
datasets (113 incident cases in total) from different systems in
a large commercial bank which supports hundreds of millions
of users and contains hundreds of service systems. Table II
presents the details of the datasets used in our experimental
study. All metrics are sampled every minute. Dataset A and
B are collected from two business systems, and the incidents
are closely related to key business metrics (e.g., response time
and success rate). Dataset C and D come from the database

TABLE II: Details of our experimental datasets

Dataset Incident Example candidate metrics #Metrics #Cases

A
Application incident
(low success rate,
high response time,
low transaction volume)

Database-related (oracle.session.active.total, oracle.lock.wait);
middleware-related (weblogic.thread.pending, weblogic.webapp.sessions);
network-related (system.net.bytes sent, system.net.packets in.count);
server-related (system.cpu.pct usage, system.io.await, system.mem.used);
storage-related (san.read.time)

5213 16

B Application incident
(high response time,
high #user failures)

Network-related (system.net.bytes sent, system.net.packets in.count);
resource-related (system.cpu.pct usage, system.mem.used);
middleware-related (weblogic.thread.pending, weblogic.webapp.sessions)

3229 19

C Database incident
(high #active sessions,
high CPU usage)

CPU-related (system.cpu.pct usage, system.cpu.iowait);
read/write-related (oracle.read.sequential, oracle.log.write.parallel);
lock-related (oracle.lock.wait)

265 45

D Storage incident
(high response time,
disk failure)

I/O-related (san.write.pending, san.io.size;
database-related (oracle.read.sequential, oracle.log.write.parallel);
disk-related (san.disk.used, san.disk.free)

1060 33

and storage teams, which are responsible for all database and
storage systems in the bank, respectively. The incidents of C
and D may not directly destroy service quality, but engineers
are very concerned about the anomalies of the key metrics
(e.g., #active sessions in database and IOPS in storage). All
of these incidents are collected from historical incident tickets
and critical alerts. The root-cause metrics of each incident are
obtained from historical troubleshooting records, which have
been confirmed by experienced engineers.

2) Measurement: Following existing work [7], [23], we
adopt AC@k (top-k accuracy) and Avg@k (top-k average
accuracy) as measurements. AC@k means the percentage of
true root-cause metrics in the top-k result (k = {1, 3}). A
higher value of AC@k, especially when the value of k is
small, indicates that the approach could identify root-cause
metrics more accurately. Avg@k is the average performance
of AC@k, computing by 1

k

∑k
i=1AC@i. As for the evaluation

of anomaly pattern classification (RQ4), we adopt the widely-
used classification metrics, i.e., precision, recall, and F1-
score [24]. Considering multi-classification in our problem, we
use the macro average to calculate these measurements [25].

B. RQ1: Overall Performance of PatternMatcher

To answer this RQ, we compare PatternMatcher with sev-
eral existing approaches to demonstrate its effectiveness of
root-cause metric identification.

• FluxRank [4] uses KDE to detect abnormal metrics and
ranks root-cause metrics by their anomaly scores. The kernel
function used in experiments is Gaussian.

• ε-diagnosis [5] adopts ε-statistical test based on energy
distance to identify abnormal metrics. Due to the lack of
ranking component in [5], we rank all abnormal metrics
using p-value in our experiments.

• Correlating Events with Time Series (CETS) [6] utilizes
nearest neighbor statistic to calculate the correlation between
an incident and candidate metrics. The root-cause metrics
are sorted based on the correlation scores.

• MicroCause [7] uses PC algorithm [7] to construct a causal
graph on metrics, and conducts random walk to identify the

root-cause metrics. It ranks root-cause metrics combining
random walk visit times and anomaly scores.
Table III shows the results of PatternMatcher and com-

pared approaches. From this table, we find PatternMatcher
outperforms all four baselines in terms of all measurements.
The Avg@3 of PatternMatcher achieves 0.96, 0.98, 0.88
and 0.80 on four datasets. The promising performance of
PatternMatcher means that engineers could identify root-cause
metrics more accurately and assist incident diagnosis rapidly
under the help of PatternMatcher. In particular, an interesting
observation is that PatternMatcher performs better on appli-
cation incidents (A and B). This is because candidate metrics
of application incidents come from different infrastructure
components and the root-cause metrics are relatively easy
to identify. In contrast, candidate metrics in C and D are
closely related to database and storage, and there are many
abnormal metrics, incurring challenges for identifying root-
cause metrics. Thus, the results demonstrate PatternMatcher
could be well applied to application incidents triage.

We further analyzed the reasons why these baselines per-
form poorly. About FluxRank and ε-diagnosis, one common
reason is the natural limitation of their anomaly detection
algorithms. Specifically, the selection of kernel functions and
bandwidths has a significant effect on the performance of
KDE used in FluxRank [11], and it is time-consuming and
challenging for engineers to choose optimal parameters manu-
ally. ε-statistics adopted in ε-diagnosis is designed specifically
for long-tail latency problem, which is inappropriate in our
scenario. Besides, ε-statistics relies on relative long-term data,
which is impractical in the real world due to high I/O overhead
under numerous. In terms of CETS, it relies on sufficient
historical incident cases to analyze the correlation between an
incident and all metrics. Besides, it is more accurate to identify
root-cause metrics based on the current system behavior rather
than static correlation score obtained from historical data.
About MicroCause, it localizes root-cause metrics based on
causality analysis with PC algorithm using long-term historical
data. Besides, PC works as a black-box, and the output causal
graph is hard to understand and evaluate [26]. More impor-
tantly, a major drawback in these baselines is that they ignore

TABLE III: Comparison between PatternMatcher and baseline approaches

Dataset A B C D Average
Approach AC@1 AC@3 Avg@3 AC@1 AC@3 Avg@3 AC@1 AC@3 Avg@3 AC@1 AC@3 Avg@3 Avg@3

PatternMatcher 0.88 1.00 0.96 0.95 1.00 0.98 0.82 0.93 0.88 0.76 0.82 0.80 0.91
FluxRank 0.69 0.81 0.75 0.63 0.74 0.68 0.64 0.76 0.69 0.64 0.73 0.69 0.70
ε-diagnosis 0.44 0.62 0.52 0.37 0.47 0.44 0.37 0.47 0.41 0.33 0.45 0.40 0.44

CETS 0.62 0.75 0.67 0.58 0.79 0.67 0.62 0.71 0.66 0.58 0.70 0.64 0.66
MicroCause 0.44 0.62 0.54 0.26 0.37 0.32 0.27 0.42 0.37 0.30 0.39 0.35 0.40
W/o APC 0.69 0.75 0.73 0.68 0.74 0.72 0.60 0.73 0.67 0.61 0.70 0.66 0.70

Raw ranking 0.81 0.94 0.88 0.90 0.95 0.93 0.76 0.91 0.84 0.70 0.79 0.75 0.85

the physical meanings of metrics and anomaly behaviors,
leading to some false positives. As demonstrated in §II-B,
despite the fact that some metrics perform abnormally before
the incident occurs, the anomaly patterns are unimportant
and could be neglected (for example, the decrease in CPU
usage), and different anomaly patterns tend to show different
explanatory power to root causes. Therefore, anomaly patterns
should be incorporated in identifying root causes, which is
the core reason why PatternMatcher outperforms baseline
approaches.

Overall, PatternMatcher is able to identify root-cause met-
rics more accurately compared with four baseline approaches,
providing clues for engineers in incident diagnosis.

C. RQ2: Contributions of Main Components

To investigate the contributions of two main components
(i.e., anomaly pattern classification and root-cause metric
ranking) to the overall performance of PatternMatcher, we
construct two variants of PatternMatcher accordingly:
• W/o APC. We directly use two-sample test in §III-A to

detect abnormal metrics and provide a ranking list based
on p-value, without anomaly patterns classification (APC).

• Raw ranking. We replace our designed ranking strategy
(§III-C) with raw ranking method using p-value, and other
components remain unchanged, to illustrate the severity
levels of different patterns.
The comparison results are presented in Table III. We find

that the two variants of PatternMatcher indeed perform worse
than PatternMatcher in terms of all the measurements in
general. In particular, the average Avg@3 drops from 0.91
to 0.70 and 0.85 after removing anomaly pattern classifica-
tion and adopting a raw ranking method without considering
anomaly patterns. The results demonstrate the contributions of
two main components to the overall performance. Specifically,
incorporating anomaly pattern classification and considering
physical meaning could filter out some abnormal but uncon-
cerned patterns (e.g., the decrease of CPU usage) to enhance
the accuracy and interpretability. Besides, different anomaly
patterns may indicate different severity levels and show dif-
ferent explanatory power to root causes (§II-B), which should
be paid extra attention in the ranking component.

D. RQ3: Time Efficiency

Intuitively, the task of identifying root-cause metrics re-
quires high time efficiency to ensure short TTM (Time to

TABLE IV: Time cost (seconds) comparison between
PatternMatcher and baseline approaches

Dataset A B C D
#Candidate metrics 5213 3229 265 1060

PatternMatcher 21.58 13.12 1.45 4.18
FluxRank 15.63 9.31 1.21 2.95
ε-diagnosis 14.38 9.08 1.09 2.65

CETS 124.85 87.86 6.93 19.89
MicroCause 18.94 11.78 1.38 3.77

Mitigate). If engineers need to wait for a long time to
obtain the results, the service quality would be damaged. The
time cost comparison on each dataset of PatternMatcher and
baseline approaches are presented in Table IV. Clearly, given
thousands of candidate metrics, PatternMatcher could identify
root-cause metrics rapidly, less than 22 seconds on all datasets.
Considering that PatternMatcher contains an anomaly pattern
classifier, the overall running time is a little slower than
FluxRank, ε-diagnosis and MicorCause. CETS suffers high
time complexity since it relies on massive historical data and
adopts time-intensive algorithms (KNN and DTW). Overall,
PatternMatcher has satisfactory running time when dealing
with thousands of metrics, indicating that PatternMatcher is
indeed practical in the real world.

E. RQ4: Performance of Our Anomaly Pattern Classification

As demonstrated in §II-B and §IV-C, anomaly pattern
classification is a crucial module and contributes much to
PatternMatcher. To show the superiority of our algorithm
based on 1-D CNN, we compare it with the following four
baseline approaches, and the evaluation datasets have been
introduced in §III-B1.
• KNN [13]. We apply both Euclidean distance (ED) and Dy-

namic Time Warping (DTW) [14] as distance measurement
to the KNN model, and the value of k is set to 5. The final
results are given by majority voting of top-k.

• Random Forest (RF) [18]. We design some hand-crafted
features inspired by tsfresh [27], which is an open-source
for time series feature extraction. Equipping with feature se-
lection, we finally adopt 32 features in total. These features
are fed into RF model to construct a classification model.

• Multi-Layer Perceptron (MLP) [20]. Similar to RF, we
replace the classification model with MLP.
Table V shows the comparison results. Obviously, 1-D CNN

model outperforms the four compared models in terms of all

TABLE V: Precision (P), recall (R) and F1-score (F1) com-
parison of anomaly pattern classification between 1-D CNN
and baseline approaches

Approach With DA Without DA
P R F1 P R F1

1-D CNN 0.98 0.98 0.98 0.94 0.93 0.93
KNN (ED) 0.83 0.84 0.83 0.79 0.81 0.78

KNN (DTW) 0.94 0.90 0.91 0.91 0.88 0.89
RF 0.94 0.92 0.93 0.92 0.91 0.91

MLP 0.92 0.91 0.92 0.90 0.89 0.89

A B C D
Dataset

0.0
0.2
0.4
0.6
0.8
1.0

Av
g@

3

1-D CNN
KNN(ED)

KNN(DTW)
RF

MLP

Fig. 7: Performance of PatternMatcher with different anomaly
pattern classifers

the measurements, achieving the F1-score of 0.98. The F1-
score of KNN with DTW distance without manual feature
extraction is acceptable. However, KNN as a lazy learning
method, suffers from high time cost for online deployment.
About feature-based approaches (RF and MLP), it is labor-
intensive to extract and select powerful features to characterize
anomaly patterns manually. In contrast, 1-D CNN has the
ability to automatically learn useful features without manual
efforts. In summary, taking both classification performance and
practical usage into consideration, our approach based on 1-D
CNN is indeed effective. As stated in §III-B3, we leverage data
augmentation (DA) to overcome the data imbalance problem
and enhance model robustness. To prove its contribution, we
compare the performance of classification models with DA and
without DA. As shown in Table V, data augmentation indeed
brings an improvement on performance. The F1-score of 1-D
CNN would drop from 0.98 to 0.93 without DA, and so are
other classification methods.

Besides, we further analyze the impact of different classifi-
cation methods on the overall performance of PatternMatcher.
Fig. 7 presents the Avg@3 on four datasets under different
classifiers. Obviously, PatternMatcher using 1-D CNN method
could identify root-cause metrics more accurately than com-
pared approaches. Thus, the superiority of the classification
model could directly affect the performance of identifying
root-cause metrics.

V. DISCUSSION

A. Deployment

We have successfully deployed PatternMatcher in a top
commercial bank in the country. Fig. 8 shows the deploy-
ment architecture of PatternMatcher, including data collec-
tor, computation and front-end web service. Data collector
aims to collect and store all metrics in the online service
system. The monitors produce data to Kafka (an open-source

EngineersIncident

Front-end web service

Monitor

CMDB
(neo4j)

InfluxDB

Root-cause
metric ranking

PatternMatcher

Query
Related metric names

Data

Query

Data Metrics

Trigger

Data
collector

Computation

Results
Call

Fig. 8: Deployment architecture of PatternMatcher

distributed event streaming platform) [28], and a script con-
sumes data from Kafka and writes to InfluxDB (a time-series
database) [29] periodically. The computation component is
supported by Apache Flink [30], which can process data with
high performance and low latency in a distributed way. In prac-
tical usage, when an incident occurs, engineers would start to
run PatternMatcher from the interface. PatternMatcher queries
related metric names from CMDB (Configuration Manage-
ment Database), which stores complex system dependencies
using Neo4j [31]. Then, PatternMatcher reads corresponding
metric data from InfluxDB and conducts the computation
task. Finally, engineers could obtain a report generated by
PatternMatcher from the front-end interface.

B. Success Story

Based on the real feedback, PatternMatcher has success-
fully assisted engineers in incident diagnosis. Engineers could
investigate suspicious components based on the results given
by PatternMatcher, so that the incident could be assigned to
responsible teams correctly for further troubleshooting. In the
following, we present two successful cases in practice.

1) Case I (Diagnose Database Incident): The database
incident was identified by the increase in #active sessions,
a key metric of Oracle database. The root cause is a burst
of write operations. With traditional manual troubleshoot-
ing, engineers need to manually inspect 265 metrics related
to database, which is extremely time-consuming. However,
PatternMatcher could automatically check these metrics and
three write-related metrics (log file parallel write, log file
sync, db file parallel write) are ranked in the top-5 results
accurately. We also analyzed the results of FluxRank, which
incorrectly ranks CPU usage and read-related metrics (e.g., db
file sequential read) in the top. In comparison, PatternMatcher
could filter out such false positives via a more effective coarse-
grained anomaly detection and anomaly pattern classification,
because the decrease in CPU usage and read-related metrics
are positive phenomenons and cannot be the root causes. As a
result, PatternMatcher could provide accurate clues for further
diagnosis and avoid wrong mitigation actions.

2) Case II (Diagnose Application Incident): Engineers
detected the incident via the sharp increase in the number
of failed transactions of a service. PatternMatcher rapidly
checked thousands of infrastructure metrics supporting the

service and generated a report within 1 minute. CPU usage,
memory usage, and heap space are top-3 root-cause metrics.
CPU usage shows the pattern of multiple spikes, and memory
usage and heap space are steadily increasing. Through this
report, engineers infer that this incident may be induced by
frequent fullGC operations, which is a CPU-intensive task and
occupies too much heap space. Inspired by the clue, engineers
further investigated the dump files and related logs, and finally
confirmed this incident was caused by a piece of buggy code.

C. Lessons Learned

Root-cause metric is not equal to the final root cause. The
goal of identifying root-cause metrics is to provide some clues
and directions for further diagnosis. However, localizing the
final root causes (e.g., buggy code, error configurations, and
hardware fault) needs to integrate multiple data sources (e.g.,
logs and traces), which can be our future work.

PatternMatcher could also be applied in other tasks. In ad-
dition to identifying root-cause metrics, PatternMatcher could
be triggered at any time based on engineers’ demand to inspect
the behaviors of numerous metrics rapidly and accurately. For
example, engineers could leverage PatternMatcher for regular
system inspection to identify some risky anomaly patterns
(e.g., steady increase in memory usage), so that engineers
could take some proactive actions to prevent service outages.

D. Limitation

One limitation of our work is the lack of detailed analysis
of parameters (l1, l2 and w in §III) and anomaly pattern
configurations (pw in §III-C) due to the space limit. In our
experiments, we select the parameters based on the domain
experience from engineers considering both accuracy and
efficiency, and config pattern weights are based on some prior
knowledge. In practical usage, engineers could tune these
parameters and config weights according to their preferences.
In the future, we will further analyze the impact of different
parameters and configurations on the performance.

VI. RELATED WORK

A. Root Cause Analysis

In the literature, some approaches have been proposed for
identifying root-cause metrics. FluxRank [4] utilizes KDE to
detect abnormal metrics and ranks root-cause metrics based
on anomaly scores. ε-diagnosis [5] adopts ε-statistical test to
identify suspicious metrics to reduce search space. Luo et
al. [6] proposed to analyze the correlation between incidents
and metrics using KNN-based statistical test. However, these
works perform poorly in the real world due to the natu-
ral limitation of their algorithms and ignoring the physical
meanings of metrics and corresponding anomaly patterns. The
effectiveness of PatternMatcher compared with existing works
has been demonstrated in §IV-B.

Besides, tremendous efforts have been devoted to root cause
analysis using other technical routes, including graph-based
approaches, log-based approaches and so on. Graph-based
approaches [7], [32], [33], [34], [35] mainly aim to localize

the root cause based on the graph and random walk. The graph
characterizing the causality and call relationship between
different data sources or components could be constructed by
automated algorithms (e.g., PC [36]) or manual configuration
(e.g., G-RCA [37]). Log-based localization aims to draw key
clues from a large number of logs for incident diagnosis [38],
[39], [40], [41], [42], but these approaches are not suitable for
our scenarios and numerous logs incur high time complexity.
The goal of our work is to utilize metric data to identify clues
for incident diagnosis. Incorporating various data sources (e.g.,
topology and logs) to localize root causes more accurately can
be our future work.

B. Time Series Anomaly Detection

Time series anomaly detection has been extensively studied
in the literature [43], [44], [45], [46], [47]. For example,
Donut [48] applies Variational Auto-Encoder (VAE) to detect
anomalies on seasonal metrics. Ren et al. [49] proposed an
anomaly detection approach based on Spectral Residual and
CNN. However, the existing streaming algorithms require
long-term training data and high training cost, which cannot
be applied to our scenario under numerous candidate met-
rics. Besides, all existing works aiming to detect statistical
anomalies fail to consider the anomaly patterns and hidden
physical meanings, leading to poor interpretability and some
false positives. To our best knowledge, we are the first to focus
on anomaly patterns in the problem of root-cause metric identi-
fication and propose an effective anomaly pattern classification
approach, to enhance the performance and interpretability.

VII. CONCLUSION

Identifying root-cause metrics accurately could provide
clues for engineers to diagnose incidents. To better under-
stand the problem, we conduct the first preliminary study to
investigate the performance of current practice and character-
istics of root-cause metrics. Inspired by the findings obtained
from the study, we propose an effective approach named
PatternMatcher, which contains three components, coarse-
grained anomaly detection, anomaly pattern classification,
and root-cause metric ranking. An extensive experimental
study based on real-world data containing diverse incidents
demonstrates the effectiveness of PatternMatcher and the
Avg@3 accuracy on four datasets could achieve 0.91 on
average, outperforming all baseline approaches. Furthermore,
PatternMatcher has been deployed in a large commercial bank
and we share two successful cases to show the practical usage.

ACKNOWLEDGMENT

We thank Xuanrun Wang and Bo Cheng for developing
the labeling tool. This work is supported by the National
Key Research and Development Program of China (Grant
No.2019YFE0105500), the State Key Program of National
Natural Science of China under Grant 62072264, and the
Beijing National Research Center for Information Science and
Technology (BNRist) key projects.

REFERENCES

[1] J. Jiang, W. Lu, J. Chen, Q. Lin, P. Zhao, Y. Kang, H. Zhang, Y. Xiong,
F. Gao, Z. Xu, Y. Dang, and D. Zhang, “How to mitigate the incident?
an effective troubleshooting guide recommendation technique for online
service systems,” in Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. Virtual Event USA: ACM, Nov.
2020, pp. 1410–1420.

[2] Z. Chen, Y. Kang, L. Li, X. Zhang, H. Zhang, H. Xu, Y. Zhou, L. Yang,
J. Sun, Z. Xu et al., “Towards intelligent incident management: why
we need it and how we make it,” in Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2020, pp. 1487–1497.

[3] https://www.statista.com/statistics/753938/
worldwide-enterprise-server-hourly-downtime-cost/, Average cost
per hour of enterprise server downtime worldwide in 2019, [Online;
accessed 04-May-2021].

[4] P. Liu, Y. Chen, X. Nie, J. Zhu, S. Zhang, K. Sui, M. Zhang, and D. Pei,
“Fluxrank: A widely-deployable framework to automatically localizing
root cause machines for software service failure mitigation,” in 2019
IEEE 30th International Symposium on Software Reliability Engineering
(ISSRE). IEEE, 2019, pp. 35–46.

[5] H. Shan, Y. Chen, H. Liu, Y. Zhang, X. Xiao, X. He, M. Li, and W. Ding,
“?-diagnosis: Unsupervised and real-time diagnosis of small-window
long-tail latency in large-scale microservice platforms,” in The World
Wide Web Conference, 2019, pp. 3215–3222.

[6] C. Luo, J.-G. Lou, Q. Lin, Q. Fu, R. Ding, D. Zhang, and Z. Wang,
“Correlating events with time series for incident diagnosis,” in Proceed-
ings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2014, pp. 1583–1592.

[7] Y. Meng, S. Zhang, Y. Sun, R. Zhang, Z. Hu, Y. Zhang, C. Jia, Z. Wang,
and D. Pei, “Localizing failure root causes in a microservice through
causality inference,” in 2020 IEEE/ACM 28th International Symposium
on Quality of Service (IWQoS). IEEE, 2020, pp. 1–10.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems, vol. 25, pp. 1097–1105, 2012.

[9] https://grafana.com/, Grafana, [Online; accessed 04-May-2021].
[10] https://www.elastic.co/kibana, Kibana, [Online; accessed 04-May-2021].
[11] A. Qahtan, S. Wang, and X. Zhang, “Kde-track: An efficient dynamic

density estimator for data streams,” IEEE Transactions on Knowledge
and Data Engineering, vol. 29, no. 3, pp. 642–655, 2016.

[12] F. J. Massey Jr, “The kolmogorov-smirnov test for goodness of fit,”
Journal of the American statistical Association, vol. 46, no. 253, pp.
68–78, 1951.

[13] S. A. Dudani, “The distance-weighted k-nearest-neighbor rule,” IEEE
Transactions on Systems, Man, and Cybernetics, no. 4, pp. 325–327,
1976.

[14] D. J. Berndt and J. Clifford, “Using dynamic time warping to find
patterns in time series.” in KDD workshop, vol. 10, no. 16. Seattle,
WA, USA:, 1994, pp. 359–370.

[15] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmen-
tation for deep learning,” Journal of Big Data, vol. 6, no. 1, pp. 1–48,
2019.

[16] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller,
“Deep learning for time series classification: a review,” Data Mining
and Knowledge Discovery, vol. 33, no. 4, pp. 917–963, 2019.

[17] Y.-H. Lee, C.-P. Wei, T.-H. Cheng, and C.-T. Yang, “Nearest-neighbor-
based approach to time-series classification,” Decision Support Systems,
vol. 53, no. 1, pp. 207–217, 2012.

[18] M. Belgiu and L. Drăguţ, “Random forest in remote sensing: A review
of applications and future directions,” ISPRS journal of photogrammetry
and remote sensing, vol. 114, pp. 24–31, 2016.

[19] B. Zhao, H. Lu, S. Chen, J. Liu, and D. Wu, “Convolutional neural
networks for time series classification,” Journal of Systems Engineering
and Electronics, vol. 28, no. 1, pp. 162–169, 2017.

[20] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning.
MIT press Cambridge, 2016, vol. 1, no. 2.

[21] L. Eren, T. Ince, and S. Kiranyaz, “A generic intelligent bearing fault
diagnosis system using compact adaptive 1d cnn classifier,” Journal of
Signal Processing Systems, vol. 91, no. 2, pp. 179–189, 2019.

[22] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[23] P. Wang, J. Xu, M. Ma, W. Lin, D. Pan, Y. Wang, and P. Chen,
“Cloudranger: Root cause identification for cloud native systems,” in
2018 18th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGRID). IEEE, 2018, pp. 492–502.

[24] K. P. Murphy, Machine learning: a probabilistic perspective. MIT
press, 2012.

[25] M. Cissé, M. Al-Shedivat, and S. Bengio, “Adios: Architectures deep
in output space,” in International Conference on Machine Learning.
PMLR, 2016, pp. 2770–2779.

[26] P. Spirtes, C. N. Glymour, R. Scheines, and D. Heckerman, Causation,
prediction, and search. MIT press, 2000.

[27] https://tsfresh.readthedocs.io/en/latest/#, tsfresh, [Online; accessed 21-
Apr-2021].

[28] https://kafka.apache.org/, Kafka, [Online; accessed 21-Apr-2021].
[29] https://www.influxdata.com/, InfluxDB, [Online; accessed 21-Apr-2021].
[30] https://flink.apache.org/, Flink, Scalable Stream and Batch Data Process-

ing, [Online; accessed 04-May-2021].
[31] https://neo4j.com/, neo4j, [Online; accessed 21-Apr-2021].
[32] M. Kim, R. Sumbaly, and S. Shah, “Root cause detection in a service-

oriented architecture,” ACM SIGMETRICS Performance Evaluation Re-
view, vol. 41, no. 1, pp. 93–104, 2013.

[33] J. Weng, J. H. Wang, J. Yang, and Y. Yang, “Root cause analysis of
anomalies of multitier services in public clouds,” IEEE/ACM Transac-
tions on Networking, vol. 26, no. 4, pp. 1646–1659, 2018.

[34] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, and et al., “Latent error prediction
and fault localization for microservice applications by learning from
system trace logs,” in ESEC/FSE. ACM, 2019, pp. 683–694.

[35] D. Liu, C. He, X. Peng, F. Lin, C. Zhang, S. Gong, Z. Li, J. Ou,
and Z. Wu, “Microhecl: High-efficient root cause localization in large-
scale microservice systems,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE, 2021, pp. 338–347.

[36] J. Runge, P. Nowack, M. Kretschmer, S. Flaxman, and D. Sejdinovic,
“Detecting and quantifying causal associations in large nonlinear time
series datasets,” Science Advances, vol. 5, no. 11, p. eaau4996, 2019.

[37] H. Yan, L. Breslau, Z. Ge, D. Massey, D. Pei, and J. Yates, “G-rca:
a generic root cause analysis platform for service quality management
in large ip networks,” IEEE/ACM Transactions on Networking, vol. 20,
no. 6, pp. 1734–1747, 2012.

[38] S. He, Q. Lin, J.-G. Lou, H. Zhang, M. R. Lyu, and D. Zhang,
“Identifying impactful service system problems via log analysis,” in
Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2018, pp. 60–70.

[39] Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang, and X. Chen, “Log cluster-
ing based problem identification for online service systems,” in 2016
IEEE/ACM 38th International Conference on Software Engineering
Companion (ICSE-C). IEEE, 2016, pp. 102–111.

[40] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security, 2017, pp. 1285–1298.

[41] B. C. Tak, S. Tao, L. Yang, C. Zhu, and Y. Ruan, “Logan: Problem
diagnosis in the cloud using log-based reference models,” in 2016 IEEE
International Conference on Cloud Engineering (IC2E). IEEE, 2016,
pp. 62–67.

[42] S. He, P. He, Z. Chen, T. Yang, Y. Su, and M. R. Lyu, “A survey
on automated log analysis for reliability engineering,” arXiv preprint
arXiv:2009.07237, 2020.

[43] N. Laptev, S. Amizadeh, and I. Flint, “Generic and scalable framework
for automated time-series anomaly detection,” in Proceedings of the 21th
ACM SIGKDD international conference on knowledge discovery and
data mining, 2015, pp. 1939–1947.

[44] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, “Long short term
memory networks for anomaly detection in time series,” in Proceedings,
vol. 89. Presses universitaires de Louvain, 2015, pp. 89–94.

[45] M. Munir, S. A. Siddiqui, A. Dengel, and S. Ahmed, “Deepant: A deep
learning approach for unsupervised anomaly detection in time series,”
IEEE Access, vol. 7, pp. 1991–2005, 2018.

[46] X. Zhang, J. Kim, Q. Lin, K. Lim, S. O. Kanaujia, Y. Xu, K. Jamieson,
A. Albarghouthi, S. Qin, M. J. Freedman et al., “Cross-dataset time
series anomaly detection for cloud systems,” in 2019 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 19), 2019, pp. 1063–1076.

[47] M. Braei and S. Wagner, “Anomaly detection in univariate time-series: A
survey on the state-of-the-art,” arXiv preprint arXiv:2004.00433, 2020.

https://www.statista.com/statistics/753938/worldwide-enterprise-server-hourly-downtime-cost/
https://www.statista.com/statistics/753938/worldwide-enterprise-server-hourly-downtime-cost/
https://grafana.com/
https://www.elastic.co/kibana
https://tsfresh.readthedocs.io/en/latest/#
https://kafka.apache.org/
https://www.influxdata.com/
https://flink.apache.org/
https://neo4j.com/

[48] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao, D. Pei,
Y. Feng et al., “Unsupervised anomaly detection via variational auto-
encoder for seasonal kpis in web applications,” in Proceedings of the
2018 World Wide Web Conference, 2018, pp. 187–196.

[49] H. Ren, B. Xu, Y. Wang, C. Yi, C. Huang, X. Kou, T. Xing, M. Yang,

J. Tong, and Q. Zhang, “Time-series anomaly detection service at
microsoft,” in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2019, pp. 3009–
3017.

	Introduction
	Motivation and Problem Formulation
	Motivation Case
	Preliminary Study
	Current Practice
	The Necessity of Anomaly Pattern
	Typical Anomaly Patterns
	Summary

	Problem Formulation

	Approach
	Coarse-grained Anomaly Detection
	Anomaly Pattern Classification
	Data Collection
	Labeling with Active Learning
	Data Augmentation
	Classifier

	Root-cause Metric Ranking

	Evaluation
	Dataset and Measurement
	Dataset
	Measurement

	RQ1: Overall Performance of PatternMatcher
	RQ2: Contributions of Main Components
	RQ3: Time Efficiency
	RQ4: Performance of Our Anomaly Pattern Classification

	Discussion
	Deployment
	Success Story
	Case i (Diagnose Database Incident)
	Case ii (Diagnose Application Incident)

	Lessons Learned
	Limitation

	Related Work
	Root Cause Analysis
	Time Series Anomaly Detection

	Conclusion
	References

