

The 33rd DEXA Conferences and Workshops 22-24 August 2022 Vienna, Austria

Mining Fluctuation Propagation Graph among Time Series with Active Learning

Mingjie Li, Minghua Ma, Xiaohui Nie, Kanglin Yin, Li Cao, Xidao Wen, Zhiyun Yuan, Duogang Wu, Guoying Li, Wei Liu, Xin Yang, Dan Pei

Background

Background Empirical Study Methodology Experiment Conclusion

Background Online Service Systems

Background **Online Service Systems**

.

Database

average active session log file sync logic read per second

Storage

disk utilization IO per second IO wait time

.

Background **Online Service Systems**

Time	09:23	09:24	09:25	09:26	09:27
Value	302	4095	22142	44936	34745

Background

Troubleshooting

.

Database

average active session log file sync logic read per second

Storage

disk utilization IO per second IO wait time

.

Background

Troubleshooting

Database

.....

average active session log file sync logic read per second

Storage

disk utilization **IO per second IO** wait time

.....

A fault may propagate in the system

 Recent automatic troubleshooting works model the propagation with a graph

 Recent automatic troubleshooting works model the propagation with a graph

- Recent automatic troubleshooting works model the propagation with a graph
- response time = processing time + DB time
 - This equation still holds after failure
 - response time is affected by DB time

- Recent automatic troubleshooting works model the propagation with a graph
- response time = processing time + DB time
 - This equation still holds after failure
 - response time is affected by DB time
- A search-based method will traverse the abnormal metrics in the graph

5

Background

Fluctuation Propagation Graph (FPG)

- In this work, we focus on the structure discovery of such a graph, named a *fluctuation propagation graph* (FPG)
 - An FPG describes how fluctuations, especially faults, propagate among metrics

Background Related Works

	Manual Construction	Mining from Data
Reference	TON'12, ASE'21	INFOCOM'14, KDD'16, CCGRID'18, ICSOC'20, IWQoS'20, NOMS'20, WWW'20
Limitation	Require extensive domain knowledge and significant efforts without a guideline	Neglect the correctness of the mined graph

FPG

FPG Construction

Graph-base Algorithms

S

FPG

FPG Construction

Lack of effective tools for unsupervised mining

Existing mining methods fail to discover the ground truth graph, evaluated on two real-world datasets.

Graph-base Algorithms

S

FPG

FPG Construction

Lack of effective tools for unsupervised mining

Existing mining methods fail to discover the ground truth graph, evaluated on two real-world datasets.

Once a graph-based algorithm fails to achieve its goal, a trustworthy FPG can still provide basic situation awareness for operators, which requires operators' verification.

FPG

FPG Construction

Lack of effective tools for unsupervised mining

Existing mining methods fail to discover the ground truth graph, evaluated on two real-world datasets.

Graph-base Algorithms

Operators' verification is labor-intensive

Once a graph-based algorithm fails to achieve its goal, a trustworthy FPG can still provide basic situation awareness for operators, which requires operators' verification.

Empirical Study

• RQ1: How do existing mining methods perform among monitoring metrics?

Empirical Study Formulation

• An FPG is a directed acyclic graph

Empirical Study Formulation

- An FPG is a directed acyclic graph
- Positive relations
 - Edges in the ground truth graph
 - e.g., "DB time" → "response time"

Empirical Study Formulation

- An FPG is a directed acyclic graph
- Positive relations
 - Edges in the ground truth graph
 - e.g., "DB time" → "response time"
- Negative relations
 - Edges not in the ground truth graph
 - e.g., "response time" \rightarrow "DB time"

Empirical Study Datasets

- \mathcal{D}_{OD} is collected from an Oracle database with a real workload
- \mathscr{D}_{TN} is a publicly available dataset from real telecommunication networks

Dataset	\mathcal{D}_{OD}	\mathcal{D}_{TN}
Scenario	Oracle Database	Telecommunication Network
#Metric	51	55
#Length	1040	4032
Interval	6min	10min
#Label	490	1485
#Positive	210	563

Empirical Study Mining Methods

	Group	
С	orrelation	
	Constriant-based	PC-ga
Causality	Score-based	
	FCM-based	

Mining Methods

Pearson-r, Pearson-p, CC, CoFlux

auss, PC-RCIT, PCTS-PCMCI, PCTS-PCMCI+

GES

NOTEARS, NRI, TCDF

Empirical Study Results

discovery ability on both datasets

 \mathcal{D}_{OD}

Each method in the experiment suffers from either a low precision or low

 \mathcal{D}_{TN}

Empirical Study Results

- discovery ability on both datasets
- Existing mining methods lack domain knowledge
 - e.g., NOTEARS deals with linear relations, which generally does not suit the used datasets

Each method in the experiment suffers from either a low precision or low

Empirical Study Results

- discovery ability on both datasets
- Existing mining methods lack domain knowledge
 - e.g., NOTEARS deals with linear relations, which generally does not suit the used datasets

Bring operators' feedback (missing knowledge in the data) into the mining procedure

Each method in the experiment suffers from either a low precision or low

Background Empirical Study Methodology Experiment Conclusion

- Ideally, the recommendation flow contains correct relations (including reversed ones) in preference to incorrect ones
 - The process can stop after operators confront the first incorrect recommendation

		Reco	mmen	dation	Flow
An ideal flow	B->A	C->A	D->C	D->A	Stop

- Each practical recommendation flow may mix correct and incorrect relations.
 - The process has to continue after the first incorrect recommendation arises

		Reco	mmen	dation	Flow	
An ideal flow	B->A	C->A	D->C	D->A	St	ор
A practical flow	B->A	C->A	D->A	С->В	D->B	D-

- Learn from mistakes to lessen incorrect recommendations
 - Make use of the feedback during the journey to obtain the whole graph

		Reco	mmen	dation	Flow	
An ideal flow	B->A	C->A	D->C	D->A	St	ор
A practical flow	B->A	C->A	D->A	C->B	D->B	D-
Learn from mistakes	B->A	C->A	D->A	D->B	D->C	C-
			↑			

Similar

 Inspired by active learning research, recommending uncertain relations may bring more information for long-term benefit

		Reco	mmen	dation	Flow	
An ideal flow	B->A	C->A	D->C	D->A	St	ор
A practical flow	B->A	C->A	D->A	C->B	D->B	D-
Learn from mistakes	B->A	C->A	D->A	D->B	D->C	C-
Make mistakes to learn	B->A	C->A	C->B	D->C	D->A	D-
				Similar	Not S	f Sim

Similar

- Inspired by active learning research, recommending uncertain relations may bring more information for long-term benefit
- Recommendation strategies
 - Confidence-first
 - Uncertainty-first
 - Mixed
 - Random

		Reco	mmen	dation	Flow	
An ideal flow	B->A	C->A	D->C	D->A	St	ор
A practical flow	B->A	C->A	D->A	C->B	D->B	D-
Learn from mistakes	B->A	C->A	D->A	D->B	D->C	C-
Make mistakes to learn	B->A	C->A	C->B	D->C	D->A	D-
				Similar	Not S	f Sim

Similar

Continuous Association Rule (CAR)

- Capture the co-fluctuations of two metrics when one changes large enough
 - 1. Partition each time series into sliding windows
 - 2. Focus on outliers and ignore natural fluctuations
 - 3. Count Support and Coverage based on co-fluctuations

Continuous Association Rule (CAR)

- Capture the co-fluctuations of two metrics when one changes large enough
- Calculate features based on Support and Coverage

Feature (A->B) Coverage Support **Consequence** cove Confidence **Reversed confiden** Lift KULC

Definition
P(A)
P(AB)
P(B)
P(B A)
P(A B)
P (AB)/ [P (A)P (B)]
[P (B A) + P (A B)] /2

Continuous Association Rule (CAR)

Experiment

- unsupervised manner?
- RQ3: How does CAR perform compared with other miners under the framework of FPG-Miner?
- RQ4: Are there some relations more important than other ones?

RQ2: Will a mining method perform better based on active learning than in an

Experiment **Evaluation Metrics**

- T@k

 - Precision@q = k / T@k, where q = T@k
- AUC (Area Under Curve)

the number of times it takes a miner to recommend k correct relations

• calculate the $k \sim T@k$ curve's area, compared with the ideal process

Experiment RQ2: Improvement with Active Learning

		\mathcal{D}_{OD}								D	TN							
Miner PC-gauss	Learning				T@k						T@k							
		AUC	10%	20%	30%	50%	100%	AUC	10%	20%	30%	50%	100%					
PC-gauss	Without	0.589	47	99	161	291	490	0.639	106	248	407	703	1483					
	With	0.648	41	102	145	237	489	0.619	112	259	428	746	1485					
CEC	Without	0.690	28	76	125	214	490	0.651	90	223	370	684	1479					
GES	With	0.639	46	87	142	244	488	0.636	128	227	401	720	1483					
	Without	0.589	74	118	175	273	488	0.658	138	291	407	633	1485					
	With	0.741	53	83	113	192	478	0.731	85	177	285	575	1482					

Experiment RQ2: Improvement with Active Learning

- Active learning can enhance some but not all relation mining methods
 - e.g., feedback may break the intrinsic mechanism of GES, as adding an extra relation ($A_1 \rightarrow A_{32}$) in \mathcal{D}_{TN} will increase the score of GES

		\mathcal{D}_{OD}								D	TN		100% 1483				
Miner	Learning				T@k						T@k						
		AUC	10%	20%	30%	50%	100%	AUC	10%	20%	30%	50%	100%				
	Without	0.589	47	99	161	291	490	0.639	106	248	407	703	1483				
PC-gauss	With	0.648	41	102	145	237	489	0.619	112	259	428	746	1485				
CES	Without	0.690	28	76	125	214	490	0.651	90	223	370	684	1479				
GES	With	0.639	46	87	142	244	488	0.636	128	227	401	720	1483				
	Without	0.589	74	118	175	273	488	0.658	138	291	407	633	1485				
	With	0.741	53	83	113	192	478	0.731	85	177	285	575	1482				

Experiment **RQ3: Performance of CAR**

CAR recommends correct relations faster than baselines

Miner	\mathcal{D}_{OD}						
	AUC	T@k					
		10%	20%	30%	50		
Random	0.617	45	89	148			
PC-gauss	0.648	41	102	145			
GES	0.690	28	76	125			
NRI	0.741	53	83	113	-		
CAR	0.774	26	59	104			

Experiment RQ3: Performance of CAR

- AR, a variant of CAR
 - 1. Convert time series as events by outlier detection
 - 2. Count classic Support, Coverage, and the other features
- The proposed feature extraction shortens T@20% by 26% and 25% on \mathcal{D}_{OD} and \mathcal{D}_{TN} , respectively

	\mathcal{D}_{OD}					\mathcal{D}_{TN}						
Miner		T@k				T@k						
	AUC	10%	20%	30%	50%	100%	AUC	10%	20%	30%	50%	100%
CAR	0.774	26	59	104	187	477	0.792	86	173	269	455	1464
AR	0.738	39	80	103	198	489	0.678	123	232	356	573	1484

Experiment RQ4: Importance of Different Relations

- Take AC@5 as the quality indicator of the mined graph
 - AC@5 refers to the probability that the top 5 results given by MicroCause (IWQoS'20) include the root cause metrics
 - measured on 99 high AAS faults

Experiment RQ4: Importance of Different Relations

- Take AC@5 as the quality indicator of the mined graph
 - AC@5 refers to the probability that the top 5 results given by MicroCause (IWQoS'20) include the root cause metrics
 - measured on 99 high AAS faults

 At least 33.8% of the relations seem neither helpful nor harmful to MicroCause in this case study

Experiment RQ4: Importance of Different Relations

- Take AC@5 as the quality indicator of the mined graph
 - AC@5 refers to the probability that the top 5 results given by MicroCause (IWQoS'20) include the root cause metrics
 - measured on 99 high AAS faults
- At least 33.8% of the relations seem neither helpful nor harmful to MicroCause in this case study
- It can be helpful to recommend correct and important relations faster

Conclusion

Background Empirical Study Methodology Experiment Conclusion

Conclusion Mining Fluctuation Propagation Graph (FPG) with Active Learning

Empirical study with two real-world datasets • (RQ1) Each existing mining method in the experiment suffers from either a low precision or low discovery ability on both datasets

Conclusion Mining Fluctuation Propagation Graph (FPG) with Active Learning

Empirical study with two real-world datasets

FPG-Miner: an FPG construction framework with active learning (RQ1) Each existing mining method in the experiment suffers from either a low precision or low discovery ability on both datasets

(RQ2) Active learning can enhance some but not all relation mining methods
(RQ4) It can be helpful to recommend correct and important relations faster

Conclusion Mining Fluctuation Propagation Graph (FPG) with Active Learning

Empirical study with two real-world datasets

FPG-Miner: an FPG construction framework with active learning

CAR: an implementation for FPG-Miner

 (RQ1) Each existing mining method in the experiment suffers from either a low precision or low discovery ability on both datasets

(RQ2) Active learning can enhance some but not all relation mining methods
(RQ4) It can be helpful to recommend correct and important relations faster

(RQ3) CAR recommends correct relations faster than baselines

FPG-Miner

Thanks for Listening

Imj18@mails.tsinghua.edu.cn