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Abstract. Faults are inevitable in a complex online service system.
Compared with the textual incident records, the knowledge graph pro-
vides an abstract and formal representation for the empirical knowl-
edge of how fluctuations, especially faults, propagate. Recent works uti-
lize causality discovery tools to construct the graph for automatic trou-
bleshooting but neglect its correctness.
In this work, we focus on structure discovery of the fluctuation propaga-
tion graph among time series. We conduct an empirical study and find
that the existing methods either miss a large proportion of relations or
discover almost a complete graph. Thus, we propose a relation recom-
mendation framework named FPG-Miner based on active learning. The
experiment shows that operators’ feedback can make a mining method to
recommend the correct relations earlier, accelerating the trustworthy ap-
plication of intelligent algorithms like automatic troubleshooting. More-
over, we propose a novel classification-based approach named CAR to
speed up relation discovery. For example, when discovering 20% correct
relations, our approach shortens 2.3 ∼ 42.2% of the verification quota
compared with the baseline approaches.

Keywords: Fluctuation propagation graph · Causal discovery · Active
learning · Online service systems

1 Introduction

Faults are inevitable in complex online service systems. Currently, operators
summarize how they locate the root cause in the form of text for each con-
crete fault, e.g., the troubleshooting guide [12]. However, it can be hard to utilize
the text for automated troubleshooting. In contrast, a fluctuation propagation
graph (FPG) is an abstract and formal representation of the empirical knowl-
edge towards automatic troubleshooting. An FPG describes how fluctuations,
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Fig. 1. Part of the FPG with four monitoring metrics for an Oracle database. Above
each metric name presents the time series at the same period. Time (horizontal axis)
is shown in minutes.

including faults, propagate among monitoring variables. In literature, the con-
cept of FPG has already been used in many works, e.g., locating root causes
automatically [1, 17, 19, 30, 32], discovering alert correlation [29], and handling
alert storms [37].

A time series is a chronological sequence of values for the same metric. Time
series can be easily understood for operators and is the most widely available
data for operation work. Meanwhile, many previous works convert logs and alerts
into time series for analysis and visualization [9,18]. Thus, this work focuses on
structure discovery of the FPG among time series.

Fig. 1 shows a real scenario of the FPG for the Oracle database, collected
from our collaboration with the database administrators (DBAs). The Oracle
database exposes plenty of metrics, measuring resource usage, counting events,
timing duration of each task, and recording any other status of a database in-
stance [23]. The performance of a database degrades significantly when the Av-
erage Active Session (AAS) is too high. Some events may contribute to the high
AAS, such as 1) “log file sync”, i.e., the database writer process waits for the
log file to synchronize with the database, and 2) “enq: TX - index contention”,
i.e., a transaction waits for an index used by another transaction. “enq: TX -
index contention” can be the consequence of high workload, indicated by the
number of executes per second (EPS) of SQL commands. Thus, certain perfor-
mance degradation may result from propagation from high EPS to high AAS,
shown as the dashed path in Fig. 1.

There are mainly two ways to construct an FPG in the literature. Some works
construct the graph manually [30, 33]. Expert operators reach a consensus on
the graph based on their domain knowledge. Many recent works have attempted
to learn the graph from monitoring data [1, 4, 6, 17, 19, 31, 32], neglecting its
correctness. For example, the PC algorithm [13] is widely used [1, 4, 17,31].

FPG construction faces two main challenges. The first challenge comes
from the lack of effective tools for unsupervised mining. Our empirical
study (Section 3) shows that using existing mining methods for FPG is un-
satisfactory. Meanwhile, a graph-based algorithm may fail to achieve its goal,
e.g., it fails to locate the root cause. In such an out-of-the-loop situation [8], a
trustworthy FPG can still provide basic situation awareness for operators. The
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second challenge is that relation verification requires extensive domain
knowledge and significant efforts from the operators. Thus, we need a
relation recommendation system to help operators build the domain knowledge
of fluctuation propagation.

We propose a framework named FPG-Miner based on active learning, com-
bining data mining with domain knowledge. FPG-Miner recommends relations
to operators and learns from the feedback for better recommendations, accumu-
lating the verified relations.

Moreover, we propose a novel approach, CAR, to implement FPG-Miner .
CAR partitions the time series into small windows and capture the correlation
between every two metrics in each window. The temporary correlation provides
the basis for statistical features. Further, CAR takes XGBoost [5] as a supervised
classifier to recommend unverified relations, utilizing accumulated feedback.

We alter several methods in our empirical study for FPG-Miner as base-
line approaches. In the experiment, we simulate operators’ feedback to com-
pare different approaches based on two real-world datasets. The result validates
that FPG-Miner can enhance mining performance. Moreover, CAR outperforms
baseline approaches.

We conclude our contributions as follows.

1. We conduct an empirical study to evaluate the gap, neglected in the liter-
ature, between a mined FPG and the ground truth. The existing methods
either miss a large proportion of relations or discover almost a complete
graph on two real-world datasets.

2. Due to the gap mentioned above, we design an FPG construction framework
named FPG-Miner to accelerate relation discovery by active learning.

3. We propose CAR, a novel implementation for FPG-Miner based on XG-
Boost. The experiment shows that CAR speeds up relation discovery.

2 Related Work

Causal Discovery We consider FPG construction as a causal discovery prob-
lem. Many causal discovery methods have been proposed [7, 13, 14, 20, 35, 38].
Besides synthetic datasets, some works also use real-world datasets from other
fields for evaluation, such as biology [38] and geography [25]. Readers can find
thorough discussion in the recent survey [10]. To obtain a more rational causal
graph for online service system operations, CauseInfer [4] enforces TCP latency
as the common descendant of other metrics in the same service.
Active Learning The intuition behind active learning is that the learner can
perform better with less labeled data if it can choose what to learn [27]. We
borrow the idea from active learning to discover correct relations as early as
possible. A basic active learning strategy is to learn from the most relevant data
points [26]. However, this strategy suffers from learning those that an active
learning model already knows. A natural solution is to learn from the most
uncertain data points, named uncertainty sampling [15]. Readers can find more
information on active learning from the survey [27] and the recent tutorial [3].
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Graph for Troubleshooting There are similar concepts to the FPG in litera-
ture. The diagnosis graph [33] is named by its functionality for troubleshooting.
In contrast, the attributed graph [32] emphasizes the origin of service dependency
and deployment location. Some works use the causal(ity) graph [1, 4, 19, 21] or
the impact graph [31] according to the property of fluctuation propagation. The
service dependency graph is also an FPG [16] but more coarse than the graph
among metrics discussed in this work.

3 Empirical Study of Mining Methods

In this section, we compare different mining methods empirically. Following is
the research question.

RQ1 How do existing mining methods perform among monitoring metrics?

3.1 Experimental Setup

Dataset We adopt two datasets in this work. The metrics in each dataset make
up a directed graph with relations as the edges. A positive sample refers to a
relation in the ground truth graph. In both datasets, the reverse relation of a
positive sample is not in the graph, i.e., it is a negative sample.

The Oracle database dataset (DOD) comes from a top global commercial
banking system with many services. Each service utilizes two exclusive Oracle
database instances for data management. We choose one database instance with
a real workload for the empirical study before digging into the data.
DOD includes 51 kinds of metrics. Each time series contains 1040 data points

with an interval of 6 minutes. We invited DBAs of the target system to label the
relations according to their expert knowledge. They labeled 490 relations that
are part of the ground truth. Among those labeled relations, 210 are positive,
such as the relation between “log file sync” and “AAS” in Fig. 1. On the other
hand, both directions of the rest 280 labeled relations are negative.

The telecommunication network dataset (DTN ) is publicly available,
collected from real telecommunication networks [11]. DTN contains the time
series for 55 kinds of anonymous variables, which count the numbers of different
alarms in 10 minutes. The underlying causal relations are provided according
to expert experience, among which 563 are positive. The original dataset covers
more than five months. We filter in four weeks in our experiment as the whole
dataset takes too long for some mining methods to finish. Each time series in
the final dataset contains 4032 data points.

Mining Methods We adopt four representative groups of methods to explore
the mining performance to obtain the FPG, as shown in Table 1. An intuitive
group of methods for constructing the FPG among metrics is correlation analysis.
Causality considers confounders to rule out spurious relations [22], which suits
the FPG better than correlation. As a result, we compare three groups of causal
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Table 1. Comparison among existing mining methods

Group Methods
Correlation Pearson correlation (Pearson-r and Pearson-p), Cross-Correlation

(CC ) [29], CoFlux [29]
Constraint-based PC (PC-gauss [13] and PC-RCIT [28]), PCTS [19] (PCTS-

PCMCI [25] and PCTS-PCMCI+ [24])
Score-based GES [7]
FCM-based NOTEARS [38], NRI [14], TCDF [20]

discovery methods as suggested by a recent survey [10]: constraint-based, score-
based, and FCM (Functional Causal Model) based.

Evaluation Metrics We adopt the classical Precision, Recall, and F1-score
metrics to evaluate the performance of each method. In terms of efficiency, we
record the execution time, denoted as Time Cost. Denote the ground truth graph
as GG =< V,EG > and the mined graph as GM =< V,EM >, where V is the set
of variables and EG (EM ) is a set of directed edges among V . The output of each
method contains four parts: True Positives (TP = |EG ∩EM |), True Negatives,
False Positives (FP = |EM \ EG|), and False Negatives (FN = |EG \ EM |).
Precision, Recall, and F1-score are further calculated by Eq. (1). As for the
DOD, we cast TP, FP, and FN on the labeled edges EL in evaluation, i.e.,
TP ′ = |EL ∩ EG ∩ EM |, FP ′ = |EL ∩ EM \ EG|, and FN ′ = |EL ∩ EG \ EM |.

Precision = TP/(TP + FP ) (1a)
Recall = TP/(TP + FN) (1b)

F1-score = 2× Precison×Recall/(Precision+Recall) (1c)

3.2 Results

The experiment is conducted on an Ubuntu server with 22 cores, 57 GB memory,
x86-64 architecture. Only the implementation of NRI and TCDF is compatible
with GPU. Thus, we conduct the whole experiment with the CPU only for a fair
comparison of execution time.

Each method in the experiment suffers from either a low precision or low
discovery ability on both datasets, as shown in Table 2. Existing methods fail to
achieve a precision higher than 0.5 on both datasets. Meanwhile, the methods
with the highest precision have intolerably low discovery ability. On the other
hand, a longer execution time cannot guarantee better performance.

One reason for the bad performance is the lack of domain knowledge during
the mining process. For example, the relation between “enq: TX - index con-
tention” and EPS in Fig. 1 is not linear, i.e., there are no wait events until the
workload achieves a certain high volume. As a result, methods with linear mod-
els such as NOTEARS [38] cannot handle the relations well. As for the deep
learning models like NRI [14], it is hard to localize their “bugs” [34,36].
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Table 2. Comparison among existing mining methods

Method DOD DTN

Precision Recall F1-score Time Cost Precision Recall F1-score Time Cost
Pearson-r 0.206 0.348 0.259 < 1 s 0.500 0.007 0.014 < 1 s
Pearson-p 0.214 0.890 0.345 < 1 s 0.236 0.416 0.301 < 1 s
CC [29] 0.225 0.638 0.333 < 1 s 0.417 0.009 0.017 5 s
CoFlux [29] 0.142 0.095 0.114 0:01:35 0.184 0.535 0.274 0:05:30
PC-gauss [13] 0.203 0.062 0.095 ∼ 1 s 0.262 0.066 0.105 15 s
PC-RCIT [13,28] 0.133 0.019 0.033 0:32:41 0.300 0.027 0.049 1:12:43
PCTS-PCMCI [19,25] 0.217 0.952 0.353 0:03:18 0.228 0.496 0.312 0:12:32
PCTS-PCMCI+ [19,24] 0.235 0.243 0.239 0:23:40 0.229 0.410 0.294 3:16:24
GES [7] 0.248 0.257 0.252 ∼ 1 s 0.213 0.105 0.140 ∼ 1 s
NOTEARS [38] 0.127 0.090 0.106 1:39:22 0.309 0.030 0.055 0:06:25
NRI [14] 0.213 0.252 0.231 > 1 day 0.277 0.346 0.308 > 4 days
TCDF [20] 0.333 0.010 0.019 0:03:14 0.357 0.027 0.050 0:04:41

Algorithm 1 Mine the FPG with active learning
1: procedure Mine(data, n) . n is the number of recommendations per iteration
2: relations← ∅
3: miner ← train(data)
4: repeat
5: candidates← miner.recommend(n)
6: for all relation ∈ candidates do
7: if Operators confirm relation then
8: relations← relations ∪ {relation}
9: miner.learn(data, relations)
10: until Stopping criteria is satisfied
11: return relations

In contrast, experienced operators can tell a relation from a spurious one
based on their rich domain knowledge. In the discussion on the labels of DOD,
DBAs refer to historical troubleshooting cases, advice from Oracle customer
support, and other information in memory as proof. Thus, we propose to bring
operators’ feedback (missing knowledge in the data) into the mining procedure.

4 FPG-Miner : Mine with Active Learning

We propose a framework named FPG-Miner to mine the FPG among time series
with domain knowledge, as described in Algorithm 1. The framework integrates
three core steps—training, recommendation, and learning—into a whole process
called a miner. For each recommendation A→ B (A and B stand for metrics), a
miner expects one of the following three feedback from the operators: 1) A→ B
is correct (and B → A is a negative sample), 2) A→ B is reversed, i.e., B → A is
positive, and 3) both A→ B and B → A are negative. The miner will learn from
the feedback and recommend new relations. Verification can cost a lot of time.
Hence, the recommendation procedure contains multiple iterations to achieve an
incremental application of verified relations.
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In the rest of this section, we will first explain the rationale behind this
general active learning framework (Section 4.1). After that, we provide a novel
implementation for the training step (Section 4.2).

4.1 Recommendation Framework

Ideally, a miner should recommend correct relations (including reversed ones) in
preference to incorrect ones. The process can stop after operators confront the
first incorrect recommendation. It is hard to achieve such an ideal recommen-
dation process. Each practical miner may mix correct and incorrect relations.
As a result, an incorrect recommendation is insufficient to tell whether we have
discovered all the positive relations. Thus, the process has to continue after the
first incorrect recommendation arises (Line 10 in Algorithm 1).

The natural criterion is that operators have verified all of the relations. Given
the number of metrics N , the number of relations is bounded by N(N − 1)/2.
Thus, the process will terminate after dN(N − 1)/(2n)e iterations, where n is
the number of relations to recommend per iteration.

A miner shall learn from mistakes to avoid new incorrect recommendations,
shortening the overall verification times to discover each positive relation (Line 9
in Algorithm 1). Inspired by the uncertainty sampling in active learning re-
search [15, 27], recommending uncertain relations may bring more information
to the miner for long-term benefit. A miner is supposed to provide confidence
between 0 and 100% for each relation, encoding the labels of verified ones. Based
on the confidence, we consider the following strategies.
Confidence-first A miner first recommends the relation with the highest con-
fidence, aiming at filtering out the unimportant or spurious relations.
Uncertainty-first A miner first recommends the most uncertain relation to im-
prove itself. A straightforward uncertainty measurement is the distance between
confidence and 50%.
Mixed The mixed strategy combines the two strategies above. Specifically, every
n = 3 relations that a miner recommends for verification contain two with the
highest confidence and one with the highest uncertainty.
Random The random strategy is the baseline strategy. It is also applied when
more than one relations share the same highest confidence or uncertainty.

4.2 Continuous Association Rule Classifier

Mining methods used in Section 3 are designed for the unsupervised task. We
can alter those methods as miners for FPG-Miner . Moreover, we propose the
Continuous Association Rule (CAR) classifier, as shown in Fig. 2.

Inspired by association rule mining [2], CAR calculates statistical features,
such as supports, for each ordered pair of metrics, i.e., directed relations. As CAR
does not filter out any relations, e.g., based on some thresholds like the minimum
support, all positive relations remain in our consideration. Meanwhile, we design
a novel approach to calculate features from time series directly, different from
counting transactions in the original association rule mining.
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Fig. 2. The overview of CAR under the framework of FPG-Miner

Table 3. Features of a directed relation

Feature(A→ B) Definition Feature(A→ B) Definition
Coverage P (A) Support P (AB)
Consequence Coverage P (B) Lift P (AB)/ [P (A)P (B)]
Confidence P (B|A) IR P (A)/P (B)
Reversed Confidence P (A|B) KULC [P (B|A) + P (A|B)] /2

Feature Extraction The natural fluctuation of time series can be so large that
it conceals causal relations. For example, there are spikes in both the index-
contention event number and the EPS at the 30th minute in Fig. 1. Meanwhile,
the EPS alone has another one at the 42nd minute. The second spike increases
the outlier number of the EPS, having no contribution to the correlation of the
two metrics, but is misleading. The intuition behind CAR is to capture the co-
fluctuation of the causal metric and its effect when the causal one changes large
enough, e.g., the spikes at the 30th minute.

We partition each time series into sliding windows with the size of LE , e.g.,
LE = 10. LE implies how long we assume that the pattern of any time series
is static. In each sliding window, we calculate the Pearson p-value pair-wisely.
Two metrics are taken as correlated in this window if the p-value is less than α,
e.g., α = 0.05. The Support value of every two metrics is the ratio of correlated
windows. We count the ratio of windows correlated with any other metrics as
the Coverage of a given metric. The features in Table 3 are calculated based on
the Support and Coverage. For example, Confidence is defined as the Support
divided by the Coverage, i.e., P (B|A) = P (AB)/P (A).

Supervised Classification CAR will recommend relations randomly until
operators have reported both positive and negative labels. Then, we use XG-
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Boost [5] to classify the unlabeled relations. We take the probabilities (weighted
voting of decision trees) as the final confidence for CAR in the recommendation.

5 Experiment

We compare different miners with the same datasets described in Section 3 to
validate our proposed methodology. Following are the research questions.

RQ2 Will a mining method perform better based on active learning than in an
unsupervised manner?

RQ3 How does CAR perform compared with other miners under the framework
of FPG-Miner?

RQ4 Are there some relations more important than other ones?

5.1 Experimental Setup

Miners We alter PC-gauss, GES, and NRI as miners for comparison, which
represent three kinds of causal discovery methods [10], respectively. We classify
these miners and their variants into three groups.

Static miners recommend relations in the predefined order without learning.
In Algorithm 1, operators may confirm each relation once. Thus, mining with
active learning will find more relations than in an unsupervised manner. We
wrap PC-gauss, GES, and NRI as static miners to compare the two manners
fairly. Moreover, we adopt a random miner with equal probability for related or
not, denoted as Random.

PC and GES provide only binary output, i.e., the existence of a relation.
A binary miner utilizing such a mining method provides confidence of one or
zero. Hence, a binary miner recommends randomly from relations it considers
positive, i.e., the confidence-first strategy.

Probabilistic miners calculate probabilities as confidence, supporting vari-
ous recommendation strategies. NRI can provide voting from time windows as
confidence for each relation. Meanwhile, the XGBoost model of CAR provides
weighted voting from decision trees. The NRI miner tunes its neural network
for two epochs based on existing parameters in each learning step. In contrast,
CAR trains a new classifier with all the available labels. We choose the recom-
mendation strategy for the best performance.

Evaluation Metrics We simulate Algorithm 1, and miners interact directly
with the ground truth. In each iteration, n = 3 relations are presented to the
mock operators for labeling. The simulation stops when a miner has recom-
mended all the labeled positive relations.

Let C(i) be the number of correct undirected relations among the first i
recommendations. Denote the total number of correct undirected relations with
labels as NC . The ideal series of C(i) is C∗(i), as shown in Eq. (2). Area Under
Curve (AUC) compares C(i) against C∗(i), as shown in Eq. (3). A high AUC



10 M. Li et al.

Table 4. Comparison among miners without / with active learning

Miner Learning
DOD DTN

AUC T@k AUC T@k
10% 20% 30% 50% 100% 10% 20% 30% 50% 100%

PC-gauss Without 0.589 47 99 161 291 490 0.639 106 248 407 703 1483
With 0.648 41 102 145 237 489 0.619 112 259 428 746 1485

GES Without 0.690 28 76 125 214 490 0.651 90 223 370 684 1479
With 0.639 46 87 142 244 488 0.636 128 227 401 720 1483

NRI Without 0.589 74 118 175 273 488 0.658 138 291 407 633 1485
With 0.741 53 83 113 192 478 0.731 85 177 285 575 1482

indicates that a miner can learn FPG quickly. T@k is the number of times it takes
a miner to recommend k correct relations, i.e., C(T@k) = k. The lower T@k
indicates that the miner can discover correct relations faster at the beginning.

C∗(i) =

{
i if 1 ≤ i ≤ NC

NC if i > NC

(2)

AUC =

∑NC

i=1 C(i)∑NC

i=1 C
∗(i)

(3)

The evaluation metrics in this section are different from those in Section 3.
We argue that the operators have to verify each relation in the FPG. As a
result, the verified ones will have a precision of 100%, which becomes trivial
in comparison. Meanwhile, operators have limited time to verify relations. The
recall metric measures the number of relations a miner discovers (k) given a
certain verification quota (q) during the journey to obtain the whole ground
truth, i.e., Recall@q = k/NC . Slightly different from the recall, we measure
the number of verification that a miner uses to discover certain relations, i.e.,
T@k = q, to address the restriction on the verification quota. T@k also implies
the precision of recommendations, i.e., Precision@q = k/T@k.

5.2 Results

Improvement with Active Learning Table 4 compares active learning and
the corresponding unsupervised manner to answer RQ2. We find that active
learning can enhance some but not all relation mining methods. The NRI miner
is improved by operators’ feedback significantly. In contrast, the GES miner
performs better without operators’ feedback. GES utilizes a score function to
estimate data likelihood given a causal graph. The score function performs dif-
ferently from operators. For example, adding an extra relation (A1 → A32) into
the ground truth graph of DTN can also increase the score. Thus, feedback may
break the intrinsic mechanism of GES. In this way, we will discuss GES as a
static miner in the rest of this section. The performance of the PC-gauss miner
depends on the dataset. We will discuss PC-gauss with operators’ feedback in
DOD while taking PC-gauss as a static miner in DTN .
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Table 5. Comparison among miners under the framework of FPG-Miner

Miner
DOD DTN

AUC T@k Time Cost AUC T@k Time Cost
10% 20% 30% 50% 100% / iteration 10% 20% 30% 50% 100% / iteration

Random 0.617 45 89 148 269 490 < 1 s 0.617 148 276 443 756 1480 < 1 s
PC-gauss 0.648 41 102 145 237 489 3 s 0.639 106 248 407 703 1483 < 1 s
GES 0.690 28 76 125 214 490 < 1 s 0.651 90 223 370 684 1479 < 1 s
NRI 0.741 53 83 113 192 478 0:05:02 0.731 85 177 285 575 1482 0:24:11
CAR 0.774 26 59 104 187 477 < 1 s 0.792 86 173 269 455 1464 < 1 s

Method Random PC−gauss GES NRI CAR
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Fig. 3. Relative T@k and Precision@q for each miner on both datasets. For the relative
T@k, we hold CAR’s T@k as one

Overall Results Table 5 summarizes the miners’ performance to answer RQ3.
Fig. 3(a) and Fig. 3(b) show the relative T@k for each miner with CAR’s T@k as
one. For the sake of clarity, we also present Precision@q = k/T@k in Fig. 3(c)
and Fig. 3(d), where q is the verification quota. CAR discovers positive relations
faster than baseline miners on both datasets, enhanced by the feedback from
operators. GES has a low T@10%. However, it falls behind as CAR and NRI
receives much feedback.
Contribution of Feature Extraction We replace the feature extraction of
CAR to demonstrate its effect, denoting the degraded miner as Association Rule
(AR). Specifically, AR takes data points that are 1.5× of interquartile range
far from the median in the sliding window as outliers. It further calculates the
features in Table 3 based on those outliers. Table 6 shows the comparison between
CAR and AR. The proposed feature extraction shortens T@20% by 26% and
25% on DOD and DTN , respectively.

5.3 Case Study: Root Cause Analysis

We utilize the root cause analysis (RCA) task as a downstream application of
the mined graph to explore RQ4. We adopt MicroCause [19] to localize root

Table 6. Comparison between CAR and its variant AR

Miner
DOD DTN

AUC T@k AUC T@k
10% 20% 30% 50% 100% 10% 20% 30% 50% 100%

CAR 0.774 26 59 104 187 477 0.792 86 173 269 455 1464
AR 0.738 39 80 103 198 489 0.678 123 232 356 573 1484
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Fig. 4. As the number of correct relations (k) recommended by CAR increases, the
graph quality changes, indicated by RCA performance (AC@5).

cause metrics. AC@5 refers to the probability that the top 5 results given by
MicroCause include the root cause metrics [19]. We take AC@5 as the quality
indicator of the mined graph. AC@5 is further measured on 99 high AAS faults.

Fig. 4 shows that at least 33.8% of the relations seem neither helpful nor
harmful to the RCA task in this case study. After CAR finds 66.2% of the rela-
tions (the dashed line in Fig. 4), the increasing trend of AC@5 stops. We would
conclude that the answer to RQ4 is positive. However, an advanced algorithm
in the future may still need the whole graph to take effect.

6 Conclusion

A fluctuation propagation graph (FPG) is a formal representation of the empir-
ical knowledge towards automatic troubleshooting. This work focuses on struc-
ture discovery of the verified FPG among monitoring metrics. Our first empirical
study shows that the existing methods have poor precision and recall on two real-
world datasets. Thus, we propose a framework named FPG-Miner , combining
operators’ feedback to enhance the discovery ability. As shown in the case study,
some relations are more important than others, strengthening our motivation.
Under the framework of FPG-Miner , we propose a novel classification-based ap-
proach named CAR to speed up relation discovery. The experiment result con-
firms that active learning can enhance mining performance. Meanwhile, CAR
recommends correct relations earlier compared with the baseline approaches.
We believe that our methodology can be applied to other domains. However, the
generalizability of our findings shall be examined in future work.
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