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Formulate RCA as a causal inference task
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P(V)
P(V ∣ do(m))

P(Vm ∣ v′￼)

The Ladder of CausationConcepts in RCA

Fault / Root cause
Faulty data

Fault-free data

Definition (Intervention Recognition, IR). 
IR is to recognize  from  based on .m P(V ∣ do(m)) P(V)RCA

ℒ1 Associational
ℒ2 Interventional
ℒ3 Counterfactual

 (Manipulation): the intervened variables

: the value of 

M
m M
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Call Graph-based

ASPLOS’21,ICSE’21
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IR ≡ ℒ2

Causal Hierarchy 
Theorem [1]

IR needs the knowledge of  (like the CBN [1])ℒ2

Counterfactual knowledge of  is unnecessaryℒ3

[1] Elias Bareinboim, Juan D. Correa, Duligur Ibeling, Thomas Icard. On Pearl’s Hierarchy and 
the Foundations of Causal Inference. Last Revision: Mar, 2021
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Change in the distribution conditioned on 
the parents in the CBN


P(Vi ∣ pa(Vi), do(m)) ≠ P(Vi ∣ pa(Vi))

Faithfulness

Parents do/see [1]

a property of the CBN

Vi ∈ M ⇔ P(Vi ∣ pa(Vi), do(m)) ≠ P(Vi ∣ pa(Vi))

[1] Elias Bareinboim, Juan D. Correa, Duligur Ibeling, Thomas Icard. On Pearl’s Hierarchy and 
the Foundations of Causal Inference. Last Revision: Mar, 2021
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Structural Graph Construction
Meta Metrics

17

Traffic (T) Errors (E)

Latency (L)

Saturation (S)

[2] Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Richard Murphy. Site Reliability Engineering 
(first ed.). O’Reilly Media, Inc. 2016.
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Assign directions among meta metrics 
as causal assumptions
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Core Idea: Vi ∈ M ⇔ P(Vi ∣ pa(Vi), do(m)) ≠ P(Vi ∣ pa(Vi))

:H0(Vi ∉ M) V(t)
i P(V(t)

i ∣ pa(t)(Vi))∼

Hypothesis 
Testing Regression

A few faulty data are available Fault-free data may not cover 
the given condition

𝒩(expectation, σresiduals)

≈The need for faulty data is reduced
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error rateexecutions per second

db time

table space
1.8 0.5

201.2

5.7

519.1

370.3

720.3

889.4

524.8

Intuition: A variable may point to an actionable mitigation method 
more likely than its descendants
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Experimental Setup
Evaluation Metrics

• Recall with the top-k results


• 


•

AC@k =
1

|ℱ | ∑
M∈ℱ

|M ∩ {Ri(M) ∣ i = 1,2,⋯, k} |
|M|

k ≤ K = 5

24



Simulation Study
Data Generation

• 


•  encodes the CBN, enforced to be a connected DAG with only the first 
node (service level indicator) having no children.

x(t) = Ax(t) + βx(t−1) + ϵ(t)

A

25

#Node #Edge #Graph #Case/Graph
50 100

10 100100 500
500 5,000

𝒟50
Sim

𝒟100
Sim

𝒟500
Sim



Performance Evaluation 

• RHT-PG: RHT with the perfect graph

• Pa(X(t)
i ) = Pa(t)(Xi) ∪ {X(t−1)

i }
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• RHT-PG: RHT with the perfect graph

• Pa(X(t)
i ) = Pa(t)(Xi) ∪ {X(t−1)

i }
• Takeaways

• RHT has theoretical reliability.

• A broken CBN cannot guarantee a 
correct answer to RCA.

• There may be statistical errors due 
to limited faulty data.

Simulation Study
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Robustness Evaluation 

• Classify faults based on the change 
of the root cause metrics when the 
service level indicator is abnormal


• Weak: dramatically


• Strong: slight


• Mixed: both

• Takeaway


• RHT is more robust.

Simulation Study

27

Scoring 
Method

Weak (916) Mixed (64) Strong (20)
AC@1 AC@5 AC@1 AC@5 AC@1 AC@5

NSigma 0.454 0.753 0.249 0.498 0.000 0.550
SPOT 0.534 0.783 0.293 0.503 0.000 0.550
DFS 0.558 0.707 0.282 0.368 0.550 0.550
DFS-MS 0.531 0.707 0.277 0.368 0.550 0.550
DFS-MH 0.184 0.223 0.069 0.123 0.250 0.250
RW-Par 0.194 0.445 0.142 0.300 0.050 0.300
RW-2 0.194 0.445 0.142 0.300 0.050 0.300
ENMF 0.111 0.269 0.124 0.321 0.300 0.550
CRD 0.071 0.207 0.088 0.353 0.150 0.550
RHT 0.613 0.888 0.325 0.730 0.800 1.000
RHT-PG 0.624 0.954 0.358 0.914 1.000 1.000

Ideal 0.627 1.000 0.358 0.995 1.000 1.000



Empirical Study on Oracle Database Data
Setup

• Dataset


• 99 faults with high Average Active Sessions (AAS) from Oracle databases in 
a large banking system


• Implementation


• Our structural graph contains 197 monitoring metrics with 2,641 edges


• denoted as Structural


• Equip RHT with descendant adjustment


• denoted as CIRCA
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Performance Evaluation 

• Takeaways


• CIRCA outperforms baselines.

Empirical Study on Oracle Database Data
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Scoring 
Method

Graph 
Method AC@1 AC@5 T (s)

NSigma Empty 0.323 0.662 0.472
SPOT Empty 0.152 0.419 5.027
DFS Structural 0.187 0.313 0.483
DFS-MS Structural 0.207 0.308 0.839
DFS-MH Structural 0.268 0.439 0.844
RW-Par PCTS 0.086 0.449 24.695
RW-2 PCTS 0.086 0.449 24.559
ENMF Empty 0.111 0.374 0.771
CRD Empty 0.035 0.313 4.787
CIRCA Structural 0.404 0.763 0.578

Ideal 0.929 1.000



Ablation Study

• Takeaways


• CIRCA outperforms baselines.


• Each of the 3 proposed techniques 
has a positive effect.


• Search-based methods also benefit 
from the proposed structural graph.

Empirical Study on Oracle Database Data

30

Scoring 
Method

Graph 
Method AC@1 AC@5 T (s)

NSigma Empty 0.323 0.662 0.472
RHT Structural 0.328 0.677 0.576
CIRCA Structural 0.404 0.763 0.578

Ideal 0.929 1.000
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Service Level Indicator

RHT confronts incomplete 
observational knowledge 

Descendant adjustment helps 
CIRCA rank LFS ahead

• Further advancement should handle this challenge

• CIRCA outperforms pure RHT in this case

• Descendant adjustment needs more verification

s′￼= s + 5389.8 = 7028.6
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Contributions
Formulate RCA as a causal inference task

33

P(V) ℒ1 Associational
ℒ2 Interventional
ℒ3 Counterfactual

P(V ∣ do(m))
P(Vm ∣ v′￼)

The Ladder of CausationConcepts in RCA

Fault / Root cause
Faulty data

Fault-free data

Definition (Intervention Recognition, IR). 
IR is to recognize  from  based on .m P(V ∣ do(m)) P(V)RCA
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Explainability

Causal Inference

Causal Bayesian 
Networks (CBN)

Incomplete 
observational 

knowledge

Need

Intervention Recognition 
Criterion

Structural Graph 
Construction

Regression-based 
Hypothesis Testing

Descendant 
AdjustmentCIRCA
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Evaluation with both simulation and real-world datasets
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Simulation Study

Empirical Study

Theoretical Reliability

Practical Value
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Causal Inference-based Root Cause Analysis

Thanks for listening
https://github.com/NetManAIOps/CIRCA

https://github.com/NetManAIOps/CIRCA
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