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ABSTRACT
Fault diagnosis is critical in many domains, as faults may lead to
safety threats or economic losses. In the field of online service
systems, operators rely on enormous monitoring data to detect
and mitigate failures. Quickly recognizing a small set of root cause
indicators for the underlying fault can save much time for failure
mitigation. In this paper, we formulate the root cause analysis prob-
lem as a new causal inference task named intervention recognition.
We proposed a novel unsupervised causal inference-based method
named Causal Inference-based Root Cause Analysis (CIRCA). The
core idea is a sufficient condition for a monitoring variable to be
a root cause indicator, i.e., the change of probability distribution
conditioned on the parents in the Causal Bayesian Network (CBN).
Towards the application in online service systems, CIRCA con-
structs a graph among monitoring metrics based on the knowledge
of system architecture and a set of causal assumptions. The sim-
ulation study illustrates the theoretical reliability of CIRCA. The
performance on a real-world dataset further shows that CIRCA can
improve the recall of the top-1 recommendation by 25% over the
best baseline method.

CCS CONCEPTS
• Software and its engineering→ Software reliability; • Com-
puting methodologies→ Causal reasoning and diagnostics.

KEYWORDS
root cause analysis, causal inference, intervention recognition, on-
line service systems
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1 INTRODUCTION
Fault diagnosis is critical in many domains, e.g., machinery mainte-
nance [28], petroleum refining [6], and cloud system operations [21,
30], which is an active research topic in the SIGKDD community. In
this work, we focus on root cause analysis (RCA) in online service
systems (OSS), such as social networks, online shopping, search
engine, etc. We adopt the terminology in [19], denoting a failure as
the undesired deviation in service delivery and a fault as the cause
of the failure.

With the expansion of system scale and the rise of microser-
vice applications, OSS are more and more complex. As a result,
operators rely on monitoring data to understand what happens in
the system [2]. Common monitoring data include metrics, semi-
structural logs, and invocation traces. As the most widely available
data, metrics are usually in the form of time series sampled at a
constant frequency, e.g., once per minute. Several metrics are the
measures of the overall system health status, named the service
level indicators (SLI), e.g., the average response time of an online
service. Once an SLI violates the pre-defined service level objective
(i.e., a failure occurs), operators will mitigate the failure as soon as
possible to prevent further damage. As a single fault may propagate
in the system [9] with multiple metrics being abnormal during a
failure (named anomaly storm [31]), RCA (recognizing a small set
of root cause indicators) of the underlying fault can save much time
for failure mitigation.

With the rising emphasis on explainability in many domains,
causal inference [27] has attracted much attention in the literature.
Though causal inference is promising, causal inference-based RCA
is little studied, except Sage [8] with counterfactual analysis. In
this paper, we novelly map a fault in OSS as an intervention [20] in
causal inference. From this point of view, we name a new causal
inference task as intervention recognition (IR), i.e., finding the un-
derlying intervention based on the observations (Definition 2.1).
Hence, we formulate RCA in OSS as an IR task.

The first challenge of the new IR task is the lack of a solution.
Though Sage [8] conducts RCA via counterfactual analysis, the
design of Sage implies an implicit assumption, i.e., there is no inter-
vention to the system. Hence, Sage is not a solution to the IR task.
Based on the definition of IR, we find that the probability distribu-
tion of an intervened variable changes conditioned on parents in
the Causal Bayesian Network (CBN). This Intervention Recognition
Criterion points out an explainable way to conduct RCA.

The second challenge is to obtain the CBN for causal inference
in OSS. Many works have been done for causal discovery [10] from
observational data. MicroHECL [15] and Sage [8] utilize the call
graph in OSS, which operators are familiar with. However, these
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Figure 1: Joint distribution of the Average Active Session (an
SLI of the Oracle database) and the number of log file sync
waiting events within 2 hours. Each data point represents
the two metrics’ values at the same timestamp.

two works consider a fewmetrics, e.g., the latency between services.
We construct the CBN among metrics with the domain knowledge
of system architecture, combinedwith a set of intuitive assumptions,
handling more kinds of metrics than MicroHECL [15] and Sage [8].

Thirdly, observational knowledge is incomplete, indicating the
difficulty of reaching interventional knowledge even with a perfect
CBN. For example, Figure 1 shows the joint distribution of the Av-
erage Active Session (AAS) and the number of log file sync waiting
events around a high AAS failure of an Oracle database instance.
Observed data before the failure are in the bottom-left corner of
the figure. Hence, how AAS normally distributes is missing when
“#(log file sync)” is larger than 1,000, where the data after the fail-
ure distribute. The lack of overlap between the two distributions
around the failure blocks recognizing intervention, if any, in AAS.
To address this challenge, we transform distribution comparison as
point-wise hypothesis testing via the regression technique. More-
over, a descendant adjustment technique is proposed to alleviate
the bias introduced by a poor understanding of the system’s normal
status in the hypothesis testing.

We implement the proposed Causal Inference-based Root Cause
Analysis (CIRCA). CIRCA outperforms baseline methods in our
simulation study, illustrating its theoretical reliability. We further
evaluate CIRCA with a real-world dataset. CIRCA improves the
recall of the top-1 recommendation by 25% over the best baseline
method, which shows the practical potential of our approach. The
contributions of this work are summarized as follows.
• For the first time in the literature, we formulate the RCA
problem in OSS as a new causal inference task named inter-
vention recognition (Definition 2.1). Utilizing the advance of
causal inference, we find a practical criterion to locate the
root cause (Theorem 3.4).
• We propose Causal Inference-based Root Cause Analysis
(CIRCA) for OSS. We propose a practical guideline to con-
struct the CBN with the knowledge of system architecture.
Two more techniques, namely regression-based hypothesis
testing and descendant adjustment, are proposed to infer
root cause metrics in the graph.
• CIRCA is evaluated with both simulation and real-world
datasets. The simulation study illustrates CIRCA’s theoreti-
cal reliability, while the real-world dataset shows CIRCA’s
practical value over baseline methods.

2 PROBLEM FORMULATION
2.1 Preliminary
Notation. An upper case letter (e.g., 𝑋 ) refers to a variable (metric),
while a lower case letter (e.g., 𝑥) represents an assignment of the
corresponding variable. By assignment, we mean one of the possible
values. To distinguish variables (values) at different times in a time
series, the timestamp will be put on the letter as a superscript. For
example, denote AAS as an upper case letter𝑌 , and𝑦 (𝑡 ) refers to the
value of AAS at time 𝑡 . Denote the value range of 𝑌 as𝑉𝑎𝑙 (𝑌 ), then
we have 𝑦 (𝑡 ) ∈ 𝑉𝑎𝑙 (𝑌 ) = {0} ∪ R+ for the non-negative numeric
AAS. A boldfaced letter means a set of elements (variables or values),
e.g., we denote all the metrics as V while v is an assignment of V.
The Ladder of Causation. We formulate the problem with Judea
Pearl’s “Ladder of Causation” [1]. The first layer of the causal lad-
der encodes the observational knowledge L1 (V) = 𝑃 (V), where
𝑃 (V) is a joint probability distribution. Meanwhile, the second
layer encodes the interventional knowledge L2 (m) = 𝑃m, where
𝑃m (V) = 𝑃 (V | 𝑑𝑜 (m)) andM ⊆ V. The do-operator 𝑑𝑜 (m) means
fixing variables M to the given values m, also called an interven-
tion [20]. So that 𝑃 (V | 𝑑𝑜 (m)) indicates the probability distribution
over V under the intervention toM. Finally, the third layer encodes
the counterfactual knowledge, reasoning about what if another
situation happened in the past. For example, it requires the counter-
factual knowledge to predict the latency with sufficient computing
resources when high latency and full CPU usage are observed. The
hierarchy of the causal ladder almost never collapses (named CHT,
Causal Hierarchy Theorem [1]). If we want to answer the question
at Layer i, we need knowledge at Layer i or higher [1].
Structural Causal Model (SCM). We model the relations among
metrics via the structural causal model [20]. An SCM contains a set
of structural equations shown in Eq. (1), where𝑉𝑖 ∈ V and Pa(𝑉𝑖 ) ⊆
V. Eq. (1) contains two kinds of parameters: 1) assignments of
observed variables Pa(𝑉𝑖 ), named parents (direct causes) of 𝑉𝑖 , and
2) assignments of unobserved variables U𝑖 , where U𝑖 ∩ V = ∅.

𝑣𝑖 = 𝑓𝑖 (pa(𝑉𝑖 ), u𝑖 ) (1)
Denote the graph encoded by the SCM as G = (V, E), where

E = {𝑉𝑗 → 𝑉𝑖 | 𝑉𝑗 ∈ Pa(𝑉𝑖 )} is the set of directed edges. In contrast
to Pa, Ch(𝑉𝑖 ) = {𝑉𝑗 | 𝑉𝑖 ∈ Pa(𝑉𝑗 )} represents the children of 𝑉𝑖 .
This work rests on the following assumptions.

DAG G is a directed acyclic graph (DAG) [20], following related
works in OSS [4, 8, 25].

Markovian “The exogenous parent sets U𝑖 ,U𝑗 are indepen-
dent whenever 𝑖 ≠ 𝑗” [1], i.e., (∀𝑖 ≠ 𝑗)U𝑖 ⊥⊥ U𝑗 , where ⊥⊥
means independent.

Faithfulness [20] Any interventionmakes an observable change,
i.e., 𝑃 (𝑉𝑖 | pa(𝑉𝑖 ), 𝑑𝑜 (𝑣𝑖 )) ≠ 𝑃 (𝑉𝑖 | pa(𝑉𝑖 )).

Under the DAG assumption and the Markovian assumption, G can
be taken as a CBN [1].

2.2 Root Cause Analysis and Causal Inference
We set up a concept mapping between the RCA problem and causal
inference.
• A fault in OSS is mapped to an unexpected intervention;
• Fault-free data come from the observational distribution;
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• Faulty data come from an interventional distribution.
Based on the mapping above, we define a new causal inference
task as intervention recognition (Definition 2.1). We formulate RCA
discussed in this work as an intervention recognition task in OSS.

Definition 2.1 (Intervention Recognition, IR). For a given SCM
M, let L1 be the observational distribution ofM and 𝑃𝑚 = 𝑃 (V |
𝑑𝑜 (m)) be the interventional distribution of a certain intervention
𝑑𝑜 (m). Intervention recognition is to find m based on L1 and 𝑃𝑚 .

Definition 2.2 (Root Cause). The root cause is the intervened vari-
ables (M). Each element of M is named a root cause variable.1

3 INTERVENTION RECOGNITION CRITERION
We argue that IR shall be positioned at the second layer in the ladder
of causation, as shown in Theorem 3.1. The proof of Theorem 3.1
is provided in Appendix A. The key to the proof is that IR is the
inverse mapping of L2 under the adopted assumptions. Combining
Theorem 3.1 with CHT [1], we further obtain Corollary 3.2 and 3.3.

Theorem 3.1. For a given SCMM with a CBN G, the knowledge
of IR forM is equivalent to L2 under the Faithfulness assumption.

Corollary 3.2. We need the knowledge at Layer 2 (interventional)
to conduct IR.

Corollary 3.3. The knowledge at Layer 3 (counterfactual) is not
necessary to conduct IR.

Hence, we propose to take full advantage of the CBN, as the
CBN is a known bridge between observational data and interven-
tional knowledge [1]. We argue that Theorem 3.4 is a necessary and
sufficient condition for a variable to be intervened. The proof of The-
orem 3.4 is provided in Appendix B. Based on our concept mapping
between RCA and causal inference, the Intervention Recognition
Criterion is also a criterion to find root cause indicators.

Theorem 3.4 (Intervention Recognition Criterion). Let G
be a CBN and Pa(𝑉𝑖 ) be the parents of𝑉𝑖 in G. Under the Faithfulness
assumption, 𝑉𝑖 is intervened iff 𝑉𝑖 no longer follows the distribution
defined by pa(𝑉𝑖 ), i.e.,

𝑉𝑖 ∈ M⇔ 𝑃m (𝑉𝑖 | pa(𝑉𝑖 )) ≠ L1 (𝑉𝑖 | pa(𝑉𝑖 ))

4 CAUSAL INFERENCE-BASED ROOT CAUSE
ANALYSIS

In this section, we propose a novel method named CIRCA. We first
present a structural way to determine the parents Pa(𝑉𝑖 ) for each
metric 𝑉𝑖 based on system architecture. CIRCA adopts regression-
based hypothesis testing (RHT) to deal with the incomplete distri-
bution of faulty data. To address the challenge of the incomplete
distribution of fault-free data, CIRCA adjusts the anomaly score for
suspicious metrics based on their descendants in the CBN.

4.1 Structural Graph Construction
We propose the structural graph (SG) as the CBN for OSS. SG com-
bines the system architecture knowledge with a set of assumptions,
which may not suit domains other than OSS. We first classify mon-
itoring metrics into four dimensions, named meta metrics. Several
1We also use root cause indicator and root cause metric according to the context.

causal assumptions among those four kinds of meta metrics provide
the building blocks of an SG. We further extend the system with
the architecture of components to construct a graph at the meta
metric level, named a skeleton. Finally, we plug monitoring metrics
into the corresponding meta metric to obtain the SG. Algorithm 1
summarizes the overall procedure.

4.1.1 Meta Metrics. In general, a service takes input and produces
output. Each request lasts for some time and consumes some re-
sources. We take those dimensions as four meta metrics of a service,
named after the four golden signals in site reliability engineering [2].
Traffic, Errors, and Latency measure the distribution of input, out-
put, and processing time, respectively. We classify other monitoring
metrics as resource consumption, denoted as Saturation.

We assign directions for the relations among these four meta
metrics in Figure 2(a). As the start of a request, Traffic is assumed
to be the cause of all three other meta metrics, while Errors (the
end of a request) are taken as the effect of others. The edge from
Saturation to Latency encodes our preference for the former, as
resource consumption is one of the common considerations for
large latency in OSS [8].

Traffic (T) Saturation (S) Errors (E)

Latency (L)

(a) Causal assumptions within a service

WEB.T DB.T DB.E WEB.E

DB.L

WEB.L

WEB.S

(b) The skeleton of one web service (WEB) with its dependent database
(DB). We plug DB’s meta metrics into the Saturation of WEB.

Figure 2: Causal assumptions among meta metrics

4.1.2 Skeleton with Architecture Extension. A complex OSS sys-
tem will invoke multiple services to process one single request.
Meanwhile, there will be multiple components for monolithic OSS.
Based on the architecture knowledge encoded in the call graph, we
construct the skeleton among meta metrics of the system and all its
dependent services. For a web service (WEB) and its database (DB)
shown in Figure 2(b), we take DB as a resource of WEB. The part
of WEB’s Saturation that measures DB will be extended into DB’s
meta metrics, which inherit the relations between WEB’s Satura-
tion and other meta metrics of WEB. The extension will be applied
to each service in the call graph. In summary, we introduce three
more causal assumptions between a service and its dependent ones.
• The caller’s Traffic influences the callees’ Traffic;
• The callees’ Latency contributes to the caller’s Latency;
• The caller’s output is calculated based on the callees’ output.
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4.1.3 Monitoring Metric Plugging-in. Finally, we plug monitoring
metrics in meta metrics to obtain the SG. A mapping is required to
describe which dimension of which service each monitoring metric
measures. There can be some meta metrics that do not have any
monitoring metrics. For example, the common measurement for
memory is just usage (Traffic), while the speed (Latency) is unavail-
able. Moreover, one monitoring metric can be derived frommultiple
meta metrics. For example, DB access per request is calculated by
the Traffic of both a web service and a database.

Algorithm 1 describes the plugging-in process after skeleton
construction. SG links monitoring metrics from one meta metric
to its children (Line 15). Monitoring metrics that are derived from
multiple meta metrics may introduce self-loop. To avoid such cycles,
the monitoring metric for the last meta metric in topological order
will be taken as the common effect of other meta metrics (from Line
6 to Line 14). Moreover, meta metrics measuring the dimension
of Errors will be accumulated for descendants (Line 17), as broken
data may not be validated in time.

During the process, an empty meta metric will gather the mon-
itoring metrics of its parents for its children (Line 20). Consider
a meta metric (𝑉𝑚

𝑖
), one of its parents without monitoring (𝑉𝑚

𝑗
),

and their structural equations (𝑓𝑚
𝑖

and 𝑓𝑚
𝑗
). We can substitute 𝑓𝑚

𝑗

for unobserved 𝑉𝑚
𝑗

in 𝑓𝑚
𝑖
, as shown in Eq. (2). Both the parents of

𝑉𝑚
𝑗

and those of 𝑉𝑚
𝑖

(except 𝑉𝑚
𝑗
) show as the parameters of 𝑓𝑚′

𝑖
,

which is the reason behind Line 20.

𝑣𝑚𝑖 = 𝑓𝑚𝑖

(
𝑓𝑚𝑗

(
paG𝑠𝑘𝑒𝑙 (𝑉

𝑚
𝑗 ), u

𝑚
𝑗

)
, paG𝑠𝑘𝑒𝑙 (𝑉

𝑚
𝑖 ) \ {𝑣

𝑚
𝑗 }, u

𝑚
𝑖

)
= 𝑓𝑚′𝑖

(
paG𝑠𝑘𝑒𝑙 (𝑉

𝑚
𝑗 ), paG𝑠𝑘𝑒𝑙 (𝑉

𝑚
𝑖 ) \ {𝑣

𝑚
𝑗 }, u

𝑚
𝑖 , u

𝑚
𝑗

) (2)

4.2 Regression-based Hypothesis Testing
The understanding of 𝑃m is restricted by mitigating the failure as
soon as possible. Instead of comparing two distributions directly, we
reformulate the Intervention Recognition Criterion as hypothesis
testing with the following null hypothesis (H0) for each metric 𝑉𝑖 .

H0 𝑉𝑖 is not an indicator of the root cause, i.e.,

𝑉
(𝑡 )
𝑖
∼ L1

(
𝑉
(𝑡 )
𝑖
| pa(𝑡 ) (𝑉𝑖 )

)
We utilize the regression technique to calculate the expected

distribution L1
(
𝑉
(𝑡 )
𝑖
| pa(𝑡 ) (𝑉𝑖 )

)
. A regression model is trained

for each variable with data before the fault is detected, performing
as a proxy of the corresponding structural equation. Let 𝑣 (𝑡 )

𝑖
be

the regression value for 𝑣 (𝑡 )
𝑖

. Assuming that the residuals follow
an i.i.d. normal distribution 𝑁 (𝜇𝜖,𝑖 , 𝜎𝜖,𝑖 ), Eq. (3) measures to what
extent a new datum 𝑣

(𝑡 )
𝑖

deviates from the expected distribution,
denoted as 𝑎 (𝑡 )

𝑉𝑖
. Eq. (4) further aggregates 𝑎 (𝑡 )

𝑉𝑖
for all the available

data during the abnormal period as the anomaly score of 𝑉𝑖 .

𝑎
(𝑡 )
𝑉𝑖

=

�������
(
𝑣
(𝑡 )
𝑖
− 𝑣 (𝑡 )

𝑖

)
− 𝜇𝜖,𝑖

𝜎𝜖,𝑖

������� (3)

𝑠𝑉𝑖 = max
𝑡
𝑎
(𝑡 )
𝑉𝑖

(4)

Algorithm 1 Structural Graph Construction

Require: G𝑐 , the call graph; h : V𝑚 → 2V, the mapping frommeta
metrics V𝑚 to monitoring metrics

1: G𝑠 ← initial the structure graph
2: G𝑠𝑘𝑒𝑙 ← construct the skeleton based on G𝑐
3: for all 𝑉𝑚

𝑖
∈ V𝑚 in a topological order from {𝑉𝑚

𝑗
|

|PaG𝑠𝑘𝑒𝑙 (𝑉𝑚𝑗 ) | = 0} do
4: Q𝑖 ← Collect monitoring metrics of PaG𝑠𝑘𝑒𝑙 (𝑉𝑚𝑖 )
5: C𝑖 ← Collect monitoring metrics of 𝑉𝑚

𝑖
6: for 𝑉𝑗 ∈ h(𝑉𝑚𝑖 ) do
7: if 𝑉𝑗 is mapped to multiple meta metrics then
8: C𝑖 ← C𝑖 \ {𝑉𝑗 } /* Prevent self loop of 𝑉𝑗 */
9: if 𝑉𝑗 is visited for the last time then
10: Add edges from the corresponding meta metrics of

𝑉𝑗 other than 𝑉𝑚𝑖 to 𝑉𝑗 in G𝑠
11: Q𝑖 ← Q𝑖 ∪ {𝑉𝑗 } /* Take it as the proxy of others */
12: end if
13: end if
14: end for /* Deal with monitoring metrics that are derived from

multiple meta metrics */
15: Add edges from Q𝑖 to C𝑖 in G𝑠
16: if 𝑉𝑚

𝑖
represents Errors then

17: Update C𝑖 with monitoring metrics from the Errors-
representing meta metrics in PaG𝑠𝑘𝑒𝑙 (𝑉𝑚𝑖 )

18: end if/* Transfer Errors */
19: if C𝑖 = ∅ then
20: h(𝑉𝑚

𝑖
) ← Q𝑖 /* Gather monitoring metrics for children */

21: else
22: h(𝑉𝑚

𝑖
) ← C𝑖

23: end if
24: end for
25: return G𝑠

4.3 Descendant Adjustment
There will be bias in the regression results due to a poor understand-
ing of L1. We adjust the anomaly score of one metric with those
of its descendants. Our intuition is that when both a metric and
one of its parents in the CBN is abnormal, we prefer the latter. For
example, supplementing extra resources is an actionable mitigation
method to restore the low latency. Hence, we assign a higher score
for resource utilization (the parents of latency in the CBN) than
latency’s score.

We summarize the adjustment in Algorithm 2. The children of
a metric 𝑉𝑖 are first considered (Line 3). We exclude some metrics
({𝑉𝑖 | 𝑠𝑉𝑖 < 3}) from the root cause indicators, so called the three-
sigma rule of thumb. As the failure propagates through them, those
metrics will gather anomaly scores from children for the candidate
root cause in their ancestors (Line 6). Finally, the anomaly score of
𝑉𝑖 (𝑠𝑉𝑖 ) will increase by the maximum of descendants’ scores just
mentioned (Line 12).

5 EXPERIMENTS
In this section, we compare the performance of different methods.
We first conduct a simulation study to verify their theoretical relia-
bility. The effectiveness is further evaluated on a real-world dataset.
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Algorithm 2 Descendant Adjustment
Require: s, anomaly scores by Eq. (4)
1: 𝑆 ← a mapping from 𝑉𝑖 to the anomaly scores 𝑆 (𝑉𝑖 ) that may

be the direct effect of 𝑉𝑖
2: for 𝑉𝑖 ∈ V in a topological order from {𝑉𝑗 | |Ch(𝑉𝑗 ) | = 0} do
3: 𝑆 (𝑉𝑖 ) ← {𝑠𝑉𝑗

| 𝑉𝑗 ∈ Ch(𝑉𝑖 )}
4: for 𝑉𝑗 ∈ Ch(𝑉𝑖 ) do
5: if 𝑠𝑉𝑗

< 3 then
6: 𝑆 (𝑉𝑖 ) ← 𝑆 (𝑉𝑖 ) ∪ 𝑆 (𝑉𝑗 )
7: end if
8: end for
9: end for/* Collect direct effects */
10: for 𝑉𝑖 ∈ V do
11: if 𝑠𝑉𝑗

≥ 3 then
12: 𝑠 ′

𝑉𝑖
← 𝑠𝑉𝑖 +max(𝑆 (𝑉𝑖 )) /* Adjust based on descendants */

13: end if
14: end for
15: return s′, the adjusted anomaly scores

All the execution duration is measured on a server with an Intel
Xeon E5-2620 CPU @ 2.40GHz (22 cores) and 57GB RAM. We re-
lease our code at https://github.com/NetManAIOps/CIRCA. More
experiment details are in Appendix C.

5.1 Experimental Setup
5.1.1 Hyperparameters. The shortest sampling interval in our real-
world dataset is one minute. Due to the performance consideration,
finer monitoring resolution for each metric is uncommon in OSS.
Thus, different time series will be pre-processed for the same set of
timestamps with the same interval of one minute.

For each fault, let 𝑡𝑑 be the time a fault is detected. We assume
that RCA is invoked at 𝑡𝑑 + 𝑡𝑑𝑒𝑙𝑎𝑦 to collect necessary information,
while it takes data in the period [𝑡𝑑 − 𝑡𝑟𝑒 𝑓 , 𝑡𝑑 + 𝑡𝑑𝑒𝑙𝑎𝑦] for reference.
The data in (𝑡𝑑 + 𝑡𝑑𝑒𝑙𝑎𝑦 − 𝑡𝑡𝑒𝑠𝑡 , 𝑡𝑑 + 𝑡𝑑𝑒𝑙𝑎𝑦] are treated as from
𝑃m while [𝑡𝑑 − 𝑡𝑟𝑒 𝑓 , 𝑡𝑑 − 𝑡𝑡𝑒𝑠𝑡 ] are taken as fault-free. By default,
we use 𝑡𝑑𝑒𝑙𝑎𝑦 = 5 min, 𝑡𝑟𝑒 𝑓 = 120 min, and 𝑡𝑡𝑒𝑠𝑡 = 10 min in
the experiments. The effects of different 𝑡𝑑𝑒𝑙𝑎𝑦 and 𝑡𝑟𝑒 𝑓 will be
explored in Section 5.4.1 with the real-world dataset. In the rest
of this section, we name a fault with its corresponding data in
[𝑡𝑑 − 𝑡𝑟𝑒 𝑓 , 𝑡𝑑 + 𝑡𝑑𝑒𝑙𝑎𝑦] as a case.

5.1.2 Evaluation Metrics. Following existing works [17, 25, 29], we
evaluate the performance of a method through the recall with the
top-k results, denoted as 𝐴𝐶@𝑘 . Eq. (5) shows the definition of
𝐴𝐶@𝑘 , where F is a set of faults and 𝑅𝑖 (M) is the 𝑖-th result recom-
mended by the method for each fault M. Eq. (5) is slightly different
from the evaluation metrics in the previous works [17, 25, 29], en-
suring that 𝐴𝐶@𝑘 is monotonically non-decreasing with 𝑘 . 73% of
developers only consider the top-5 results of a fault localization
technique, according to the survey in [13]. As a result, we present
𝐴𝐶@𝑘 for 𝑘 ≤ 𝐾 = 5. Moreover, we show the overall performance
by 𝐴𝑣𝑔@𝐾 = 1

𝐾

∑𝐾
𝑘=1𝐴𝐶@𝑘 . In terms of efficiency, we record

analysis duration per fault, denoted as 𝑇 in the unit of seconds.

𝐴𝐶@𝑘 =
1
|F |

∑︁
M∈F

|M ∩ {𝑅𝑖 (M) | 𝑖 = 1, 2, · · · , 𝑘}|
|M| (5)

5.1.3 Baselines. Each baseline is separated into two steps, namely
graph construction and scoring. Monitoring metrics will be ranked
based on the scores calculated in the final step. We classify the
scoring step in the recent RCA literature for OSS into three groups:
DFS-based, random walk-based, and invariant network-based. In
each group, we choose the representative works. Moreover, we
choose the graph construction methods adopted in those works as
the baseline ones for the first step.

In the graph construction step, the PC algorithm [12] is widely
used [4, 14, 16, 25]. We choose Fisher’s z-transformation of the
partial correlation and𝐺2 test as the conditional independence tests
for PC, denoted as PC-gauss and PC-gsq, respectively. PCMCI [22]
adapts PC for time series, based on which PCTS [17] transfers the
lagged graph into the one among monitoring metrics. Moreover,
the structural graph proposed in this work is denoted as Structural.

As for the scoring step, DFS traverses the abnormal nodes in the
graph, ranking the roots of the sub-graph via anomaly scores [4].
Its variant DFS-MS further ranks candidate metrics according to
correlation with the SLI [14]. Another variant DFS-MH traverses
the abnormal sub-graph until a node is not correlated with its
parents [15]. The DFS-based methods take the result of anomaly
detection as input. We choose z-score used in [14] and SPOT [23]
used in [17] as options. These anomaly detection methods are also
taken as baselines2, denoted as NSigma and SPOT, respectively.
Another line of works is random walk-based methods. RW-Par
calculates the transition probability via partial correlation [17],
while RW-2 is short for the second-order randomwalk with Pearson
correlation [25]. ENMF3 constructs an invariant network based on
the ARX model, explicitly modeling the fault propagation [5]. CRD
further extends ENMF with broken cluster identification [18].

5.2 Simulation Study
Three datasets are generated with 50 / 100 / 500 nodes and 100 /
500 / 5,000 edges, respectively, denoted as D𝑁

𝑆𝑖𝑚
where 𝑁 is the

number of nodes. For each dataset, we generate 10 graphs and 100
cases per graph. Evaluation metrics averaged among the 10 graphs
will be presented. The parameters of baseline methods are selected
to achieve the best AC@5 on the first graph in D50

𝑆𝑖𝑚
.

5.2.1 Data Generation. We generate time series based on the Vec-
tor Auto-regression model, as shown in Eq. (6). x(𝑡 ) is a column
vector of the metrics at time 𝑡 . A is the weighted adjacency matrix
encoding the CBN. 𝐴𝑖 𝑗 ≠ 0 means the 𝑗-th metric is a cause of the
𝑖-th one, where 𝐴𝑖 𝑗 represents the causal effect, e.g., the memory
usage per request. The CBN is enforced to be a connected DAG
with only the first node (SLI) having no children. The item 𝛽x(𝑡−1)

reflects the auto-regression nature of the time series. The final item
𝜖 (𝑡 ) is Gaussian noises, representing the natural fluctuation due to
unobserved variables.

x(𝑡 ) = Ax(𝑡 ) + 𝛽x(𝑡−1) + 𝜖 (𝑡 ) (6)
To inject a faultM at time 𝑡 , we first generate the number of root

cause metrics |M|. |M| − 1 follows a Poisson distribution, as it is
2Anomaly detection and invariant network-based methods will utilize an empty graph
with all the available monitoring metrics but no edges.
3We take “ENMF” from their code to prevent abbreviation duplication between Ranking
Causal Anomalies [5] and Root Cause Analysis.

https://github.com/NetManAIOps/CIRCA
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rare for a fault to affect many metrics directly. For each𝑉𝑖 ∈ M, the
noise item will be altered as𝑢 (𝑡 )

𝑖
= 𝜖 (𝑡 )

𝑖
+𝑎𝑖𝜎𝑖 for 2 timestamps. The

random parameter 𝑎𝑖 will make the SLI metric abnormal according
to the three-sigma rule of thumb.

5.2.2 Performance Evaluation. Table 1 summarizes the performance
of different methods in three simulation datasets. The scoring
step of each method uses the graph deduced by A directly, i.e.,
𝑋 𝑗 ∈ Pa(𝑋𝑖 ) ⇔ A𝑖 𝑗 ≠ 0. We choose the linear regression for RHT.
Moreover, RHT could achieve the best performance in theory if
it regards the parents as Pa(𝑋 (𝑡 )

𝑖
) = Pa(𝑡 ) (𝑋𝑖 ) ∪

{
𝑋
(𝑡−1)
𝑖

}
. Such

implementation is denoted as RHT-PG, where PG represents the
perfect graph. As the linear relation with the perfect graph per-
forms as the best proxy of L1, we do not consider the descendant
adjustment in the simulation study.

RHT-PG approaches the ideal performance, outperforming base-
line methods (𝑝 < 0.001 in t-test for AC@k), which shows the
theoretical reliability of our method. There is a gap between the
performance of RHT and RHT-PG, which enlarges as the number
of nodes increases. This phenomenon illustrates the restriction of
Corollary 3.2 that a broken CBN cannot guarantee a correct answer
to RCA. On the other hand, RHT-PG is not perfect yet, which may
be the result of statistical errors introduced in hypothesis testing
with limited faulty data.

5.2.3 Robustness Evaluation. Faults with the same strength may
have different effects on the SLI. Yang et al. name such a phenome-
non as the dependency intensity in cloud systems, i.e., “how much
the status of the callee service influences the caller service” [26].
In this simulation study, we further classify faults into three types
based on their dependency intensities with the SLI. We evaluate the
performance of RCA methods against faults of each type separately.

Eq. (6) can be transformed into x(𝑡 ) = W(𝛽x(𝑡−1) + 𝜖 (𝑡 ) ), where
W = (𝐼 − A)−1. Notice that W is well-defined as A is generated
to be a DAG, which does not have full rank. The element of W
means that 𝑥𝑖 will increase by W𝑖 𝑗 when 𝑥 𝑗 increases by 1. Denote
the standard deviation of 𝑋𝑖 based on data before fault as �̂�𝑖 . We
classify each faultM in the simulated datasets into three types:

Weak The root cause metrics deviate from the normal status
dramatically to make a slight fluctuation in the SLI (the first
node), i.e., (∀𝑋𝑖 ∈ M)W1𝑖 �̂�𝑖/�̂�1 < 1;

Strong A slight fluctuation in the root causemetrics can change
the SLI dramatically, i.e., (∀𝑋𝑖 ∈ M)W1𝑖 �̂�𝑖/�̂�1 > 1;

Mixed A fault contains metrics with both the above two types
or 𝑋𝑖 withW1𝑖 �̂�𝑖/�̂�1 = 1.

Table 2 shows the results on D50
𝑆𝑖𝑚

. The results on D100
𝑆𝑖𝑚

and
D500
𝑆𝑖𝑚

are omitted since there are only 4 and 5 strong faults in these
two datasets, respectively. RHT and RHT-PG achieve the best results
no matter the type of faults, implying that RHT is more robust than
baseline methods. Anomaly detection methods have competitive
performance with weak faults. Their performance drops in strong
faults because root cause metrics may be less abnormal than others.
DFS-basedmethods are sensitive to the results of anomaly detection.

4RW-2 is degraded to the first-order randomwalk with its best parameter, hence having
the identical performance to RW-Par.

Their performance shares a similar trend with anomaly detection
methods, from weak faults to strong ones.

5.3 Empirical Study on Oracle Database Data
We further evaluate different methods in a real-world dataset, de-
noted as D𝑂 . There are 99 cases in D𝑂 . Each case comes from
Oracle databases with high AAS faults in a large banking system.
We choose the parameters of baseline methods for better AC@5.

5.3.1 Implementation. We manually extract the call graph in an
Oracle database instance from the official documentation5. After
that, wemap 197monitoring metrics to meta metrics in the skeleton.
The final structural graph contains 2,641 edges. Oracle database
instancesmay have different sets ofmetrics. Therefore, we construct
the structural graph for each instance with monitored metrics.

In this empirical study, the ground truth graph is unavailable.
Hence, we compare graph construction methods for each scoring
method, choosing the graph with the highest AC@5. Meanwhile,
there is no perfect proxy of L1 (like the CBN and linear relation
in the simulation study). As a result, we fail to include the ideal
implementation of RHT (RHT-PG) in the experiment.We choose the
Support Vector Regression (SVR) as the regression method for RHT,
which will be discussed in Appendix C.4. To alleviate the bias in
hypothesis testing, we equip RHT with the descendant adjustment,
denoted as CIRCA.

5.3.2 Performance Evaluation. CIRCA achieves the best results
compared with baseline methods, as shown in Table 3. Random
walk-based methods achieve their best performance with PCTS
while taking much time to construct the graph. With the struc-
tural graph, DFS-based methods and CIRCA recommend root cause
metrics within seconds.

We remove components from CIRCA progressively to show their
contribution, summarized in Table 4. The result illustrates that both
regression-based hypothesis testing and descendant adjustment
have a positive effect. Figure 3 compares the proposed structural
graph with other graph construction baselines. We exclude anomaly
detection and invariant network-based methods from this figure, as
they cannot utilize the CBN. Each box in Figure 3 presents the dis-
tribution of AC@5 for a scoring method with different parameters.
One data point is the best AC@5 from different graph construction
parameters with the same scoring ones. The 3 horizontal lines of
each box show 25th, 50th, and 75th percentile, while two whiskers
extend to minimum and maximum. The proposed structural graph
improves AC@5 for DFS-based methods and CIRCA, while PCTS
fits random walk-based methods better.

5.3.3 Case Study. Figure 4 presents a failure, where “log file sync”
(LFS) is the root cause metric labeled by the database administrators
(DBAs). A poor understanding of L1 puzzles RCA methods. On the
one hand, DFS fails to stop at LFS and continues to check “execution
per second” (EPS), missing the desired answer. No baseline method
recommends LFS in the top-5 results, except NSigma, ENMF, and
CRD. On the other hand, CIRCA assigns a high anomaly score for
AAS after revising it from 532.4 (given by NSigma) to 480.2 with
regression.

5Oracle Database Concepts. https://docs.oracle.com/cd/E11882_01/server.112/e40540/

https://docs.oracle.com/cd/E11882_01/server.112/e40540/
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Table 1: Performance of different methods in the simulation study. We put the standard deviation in the parentheses behind
each evaluation metric. RHT-PG represents RHT with the perfect graph.

Scoring
Method

D50
𝑆𝑖𝑚

D100
𝑆𝑖𝑚

D500
𝑆𝑖𝑚

AC@1 AC@5 T (s) AC@1 AC@5 T (s) AC@1 AC@5 T (s)
NSigma 0.432(0.05) 0.733(0.03) 0.306(0.00) 0.384(0.05) 0.613(0.03) 0.575(0.01) 0.376(0.04) 0.579(0.03) 2.759(0.03)
SPOT 0.508(0.04) 0.761(0.03) 6.601(0.21) 0.451(0.04) 0.670(0.03) 17.365(1.14) 0.225(0.07) 0.509(0.07) 83.465(10.85)
DFS 0.541(0.04) 0.682(0.05) 0.308(0.00) 0.555(0.03) 0.653(0.03) 0.579(0.01) 0.540(0.03) 0.611(0.02) 2.790(0.06)
DFS-MS 0.515(0.03) 0.682(0.05) 0.502(0.00) 0.517(0.03) 0.652(0.03) 0.964(0.01) 0.191(0.09) 0.542(0.06) 4.665(0.06)
DFS-MH 0.178(0.08) 0.217(0.09) 0.501(0.00) 0.272(0.05) 0.365(0.05) 0.969(0.01) 0.489(0.04) 0.605(0.03) 4.735(0.05)
RW-Par 0.188(0.06) 0.433(0.07) 0.714(0.00) 0.136(0.05) 0.295(0.07) 1.761(0.01) 0.004(0.01) 0.017(0.02) 20.246(0.10)
RW-24 0.188(0.06) 0.433(0.07) 0.437(0.00) 0.136(0.05) 0.295(0.07) 1.059(0.01) 0.004(0.01) 0.017(0.02) 10.141(0.11)
ENMF 0.116(0.03) 0.278(0.04) 0.624(0.01) 0.200(0.03) 0.336(0.05) 1.865(0.03) 0.217(0.04) 0.354(0.07) 34.082(0.55)
CRD 0.074(0.02) 0.223(0.04) 4.844(0.03) 0.013(0.01) 0.064(0.02) 6.767(0.10) 0.003(0.01) 0.011(0.01) 46.933(0.74)
RHT 0.598(0.03) 0.880(0.02) 0.338(0.01) 0.535(0.06) 0.749(0.06) 0.658(0.01) 0.510(0.04) 0.644(0.04) 3.326(0.06)
RHT-PG 0.615(0.02) 0.952(0.01) 0.346(0.00) 0.631(0.02) 0.930(0.01) 0.665(0.01) 0.623(0.03) 0.823(0.03) 3.310(0.07)
Ideal 0.617(0.02) 0.999(0.00) 0.633(0.02) 0.999(0.00) 0.634(0.04) 1.000(0.00)

Table 2: Robustness evaluation on D50
𝑆𝑖𝑚

. Faults are classified
into three types based on their indicators’ influence on SLI.

Scoring
Method

Weak (n=916) Mixed (n=64) Strong (n=20)
AC@1 AC@5 AC@1 AC@5 AC@1 AC@5

NSigma 0.454 0.753 0.249 0.498 0.000 0.550
SPOT 0.534 0.783 0.293 0.503 0.000 0.550
DFS 0.558 0.707 0.282 0.368 0.550 0.550
DFS-MS 0.531 0.707 0.277 0.368 0.550 0.550
DFS-MH 0.184 0.223 0.069 0.123 0.250 0.250
RW-Par 0.194 0.445 0.142 0.300 0.050 0.300
RW-24 0.194 0.445 0.142 0.300 0.050 0.300
ENMF 0.111 0.269 0.124 0.321 0.300 0.550
CRD 0.071 0.207 0.088 0.353 0.150 0.550
RHT 0.613 0.888 0.325 0.730 0.800 1.000
RHT-PG 0.624 0.954 0.358 0.914 1.000 1.000

Ideal 0.627 1.000 0.358 0.995 1.000 1.000

0.0
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Graph Method PC−guass PC−gsq PCTS Structural

Figure 3: AC@5 for different combinations of ranking meth-
ods and graph construction ones

DFS-based methods will drop descendants once meeting an ab-
normal metric. In contrast, CIRCA scores each metric separately,

Table 3: Performance of different methods on D𝑂

Scoring
Method

Graph
Method

AC@1 AC@5 Avg@5 T (s)

NSigma Empty 0.323 0.662 0.525 0.472
SPOT Empty 0.152 0.419 0.296 5.027
DFS Structural 0.187 0.313 0.271 0.483
DFS-MS Structural 0.207 0.308 0.275 0.839
DFS-MH Structural 0.268 0.439 0.372 0.844
RW-Par PCTS 0.086 0.449 0.290 24.695
RW-24 PCTS 0.086 0.449 0.290 24.559
ENMF Empty 0.111 0.374 0.254 0.771
CRD Empty 0.035 0.313 0.165 4.787
CIRCA Structural 0.404 0.763 0.603 0.578

Ideal 0.929 1.000 0.986

Table 4: Contribution of CIRCA’s components on D𝑂 with
the structural graph.

Scoring
Method

AC@1 AC@3 AC@5 Avg@5 T (s)

NSigma 0.323 0.586 0.662 0.525 0.472
RHT 0.328 0.601 0.677 0.546 0.576
CIRCA 0.404 0.616 0.763 0.603 0.578

preventing missing answers like DFS-based methods. Moreover,
CIRCA adjusts the anomaly score of LFS with that of the average
time of “log file parallel write” (LFPW), i.e., 𝑠 ′

𝐿𝐹𝑆
= 7028.6. This

technique helps CIRCA rank LFS ahead of the other metrics.

5.3.4 Lessons Learned. CIRCA outperforms baseline methods on
D𝑂 , consistent with the simulation study. Table 4 and Figure 3
further illustrate that each of the 3 proposed techniques has a
positive effect.



KDD ’22, August 14–18, 2022, Washington, DC, USA Mingjie Li et al.

EPS
𝑠 = 3.3

0 50 100

LFS
𝑠 = 1638.8

0 50 100

LFS avg time
𝑠 = 4431.7

0 50 100

LFPW avg time
𝑠 = 5389.8

0 50 100

AAS
𝑠 = 480.2

0 50 100

Figure 4: Part of an Oracle database failure, where LFS is the
root cause metric labeled by the DBAs. Below each metric
name is the score calculated by Eq. (4) and the time series at
the same period. Time (horizontal axis) is shown in minutes.
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Figure 5: Performance with various hyperparameters on D𝑂

Though RCA is a difficult task related to Layer 2 of the causal
ladder (Corollary 3.2), the knowledge of Layer 1 (L1) is incomplete.
We illustrate the negative effect through a case study. We believe
that further advancement in the future has to handle this obstacle
explicitly. At present, we prefer CIRCA to pure RHT if deployed.
Meanwhile, the effectiveness of the descendant adjustment has to
be verified on more real-world datasets.

5.4 Discussion
5.4.1 Hyperparameter Sensitivity. Figure 5 compares RCAmethods
with different 𝑡𝑑𝑒𝑙𝑎𝑦 and 𝑡𝑟𝑒 𝑓 . CIRCA has stable performance with
these two hyperparameters, outperforming baseline methods.

5.4.2 Performance of Existing Methods. RW-Par and RW-2 repre-
sent the scoring methods of MicroCause [17] and CloudRanger [25],
respectively. However, RW-Par (RW-2) fails to achieve the perfor-
mance in the corresponding paper. MicroCause utilizes metric prior-
ity provided by operators, which is unavailable for RW-Par. On the
other hand, CloudRanger achieves its best result with a sampling
interval of 5 seconds. The coarse monitoring frequency ofD𝑂 may
explain the poor performance of RW-2.

As stated by Corollary 3.2, knowledge of Layer 2 (such as Pa) is
necessary for RCA. The invariant network-based methods utilize
the observation data only (Layer 1). Their unsatisfying performance
illustrates the restriction of CHT [1].

5.4.3 Feasibility. Graph Construction. The construction of the
proposed structural graph requires system architecture and a map-
ping from monitoring metrics to the targets to be monitored. The
former is usually in the form of documentation. We argue that
a metric is neither insightful nor actionable unless operators un-
derstand its underlying meaning. Operators need to classify each
distinct metrics only once to obtain the mapping. The mapping can
be shared among similar instances of the same type (like Oracle
database instances).
Scalability. As shown in Table 1, RHT’s time cost grows around
linearly with the size of the dataset. Moreover, the design of CIRCA
supports horizontal scalability to handle large-scale systems via
adding computing resources, as each metric is scored separately.
We plan to train the regression models offline to speed up online
analysis. Mature parallel programming frameworks, such as Apache
Spark, may further help accelerate CIRCA.

6 RELATEDWORKS
Root Cause Analysis. Corollary 3.2 explains that graph construc-
tion is a common step in the RCA literature for online service system
operation. DFS-based methods [4, 14, 15] traverse abnormal sub-
graph, which is sensitive to anomaly detection results. Some works
adopt random walk [16, 17, 25] or PageRank [24] to score candidate
root cause indicators, lacking explainability. Another line of works
is invariant network-based methods [5, 18]. As these works adopt
the pair-wise manner to learn the invariant relations, it is hard for
them to reach the knowledge of RCA, restricted by CHT [1]. No
methods above utilize causal inference. Sage [8] conducts counter-
factual analysis to locate root causes without a formal formulation.
Corollary 3.3 states that counterfactual analysis is unnecessary.
Hence, we did not include this method as a baseline. Meanwhile,
CHT [1] indicates that it can be hard to conduct counterfactual
analysis even with a CBN.

The definition of root cause analysis varies with the scenario in
the literature. Some applications require an answer beyond the data,
taking RCA as a classification task with supervised learning [28].
For homogeneous devices or services, operators are interested in the
common features [30]. Accordingly, a multi-dimensional root cause
analysis is conducted. In contrast, we treat the observed projection
of a fault as the desired answer. The Intervention Recognition Cri-
terion further relates RCA in this work with contextual anomaly
detection [3], treating parents in the CBN as the context for each
variable. We take complex contextual anomaly detection methods
as future work.
Causal Discovery. The task to obtain the CBN is named causal
discovery. We refer the readers to a recent survey [10] for a thorough
discussion. NOTEARS [32] converts the DAG search problem from
the discrete space into a continuous one. Following NOTEARS,
some recent works are based on gradient descent [11].

Although causal discovery has its sound theory, the CBN dis-
covered from data directly is not explainable for human operators.
In contrast, some works obtain the CBN based on domain knowl-
edge. MicroHECL [15] traces the fault along with traffic, latency,
or error rate in the call graph. Meanwhile, Sage [8] constructs the
CBN among latency and machine metrics. The structural graph
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proposed in this work is compatible with the assumptions in these
two works, extending the kinds of meta metrics.

7 CONCLUSION AND FUTUREWORK
Root cause analysis (RCA) is an essential task for OSS operations.
In this work, we formulate RCA as a new causal inference task
named intervention recognition, based on which, we further obtain
the Intervention Recognition Criterion to find the root cause. We
believe such a formulation bridge two well-studied fields (RCA and
causal inference) and provide a promising new direction for the
critical-yet-hard-to-solve RCA problem in OSS.

To apply such a criterion in OSS, we propose a novel causal
inference-based RCA method, CIRCA. CIRCA consists of three tech-
niques, namely structural graph construction, regression-based
hypothesis testing, and descendant adjustment. We verify the the-
oretical reliability of CIRCA in the simulation study. Moreover,
CIRCA also outperforms baseline methods in a real-world dataset.

In the future, we plan to include faulty data for regression. We
hope that diverse data can help overcome the limited understanding
of the system’s normal status. This work rests on a set of assump-
tions that a real application may not satisfy. For example, some
meta metrics do not have corresponding monitoring metrics in the
skeleton we construct for the Oracle database. As a result, they can
imply common exogenous parents of the downstream monitoring
metrics, violating the Markovian assumption. Explicitly modeling
these hidden meta metrics may improve RCA performance. Mean-
while, the retrospect of analysis mistakes may also point to the
lack of monitoring. Beyond the analysis framework in this work,
discoveries on the underlying mechanism of OSS can also help
climb the ladder of causation for the RCA task.
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A PROOF OF THEOREM 3.1
We define identifiable intervention recognition (IIR) as follows:

Definition A.1 (Identifiable Intervention Recognition, IIR). Iden-
tifiable intervention recognition is to find out a set of potential
interventions {m′ | L1 (V | 𝑑𝑜 (m′)) ≡ 𝑃m} (i.e., identifiable inter-
ventions).

With Definition A.1, we have Lemma A.2 and Lemma A.3.

Lemma A.2. The knowledge of IIR can be derived from L2.

Proof of Lemma A.2. Denote C as the equivalence classes de-
fined by L2 among F =

⋃
M∈2V 𝑉𝑎𝑙 (M), where F is all possible

interventions, including no intervention. For each equivalent class
𝑐 ∈ C, 𝑐 is a set of interventions [m] which leads to the same
distribution over V:

[m] = {m′ | L1 (V | 𝑑𝑜 (m′)) ≡ 𝑃m}

Denote the distribution of V under [m] as L−1
2 (𝑃m) = [m]. Denote

L′2 ( [m]) = 𝑃m, where [m] ∈ C. For any m1,m2 ∈ F , we always
have:

𝑃m1 ≡ 𝑃m2 → [m1] = [m2]
Hence, L′2 is a one-to-one correspondence and have its inverse
mapping, denoted as L−1

2 (𝑃m) = [m].
When an intervention occurs, based on 𝑃m ∈ L2 (F ), L−1

2 (𝑃m)
is the set of targets of IIR. Hence, the knowledge of IIR can be
derived from L2. □

Lemma A.3. The knowledge of IIR encodes L2.

Proof of Lemma A.3. For any valid 𝑃m ∈ L2 (F ), IIR will pro-
duce a set of possible interventions {m′ | L2 (m′) ≡ 𝑃m}. Hence,
the knowledge of IIR can be extended to the mapping L−1

2 that
maps 𝑃m to the element of C. Meanwhile, L−1

2 is the inverse map-
ping of L′2 and L2 can be derived from L′2. Hence, the knowledge
of IIR encodes L2. □

Based on Lemma A.2 and Lemma A.3, the knowledge of IIR is
equivalent to L2. Then we have Theorem A.4.

Theorem A.4. The knowledge of IIR is at the second layer of the
causal ladder.

For an SCM with a CBN, we get Lemma A.5.

Lemma A.5. For a given SCMM with a CBN G, let Pa(𝑉𝑖 ) be the
parents of 𝑉𝑖 in G. 𝑃 (𝑉𝑖 | pa(𝑉𝑖 ), 𝑑𝑜 (m)) can be reduced to the form
defined in Eq. (7).

𝑃 (𝑉𝑖 | pa(𝑉𝑖 ), 𝑑𝑜 (m)) =
{
𝑃 (𝑉𝑖 | pa(𝑉𝑖 ), 𝑑𝑜 (𝑣𝑖 )), 𝑉𝑖 ∈ M
𝑃 (𝑉𝑖 | pa(𝑉𝑖 )), 𝑉𝑖 ∉ M (7)

Proof of Lemma A.5. Given a variable 𝑉𝑖 , the intervened vari-
ables M can be separated into three parts: 1) M𝑃𝑎 = M ∩ Pa(𝑉𝑖 ), 2)
M𝑖 = M ∩ {𝑉𝑖 }, and 3)M𝑂𝑡ℎ𝑒𝑟 = M \ Pa(𝑉𝑖 ) \ {𝑉𝑖 }. Hence,
• M = M𝑃𝑎 ∪M𝑖 ∪M𝑂𝑡ℎ𝑒𝑟 ,
• M𝑃𝑎 ∩M𝑖 = M𝑃𝑎 ∩M𝑂𝑡ℎ𝑒𝑟 = M𝑖 ∩M𝑂𝑡ℎ𝑒𝑟 = ∅, and
• there is no arrow fromM𝑂𝑡ℎ𝑒𝑟 to 𝑉𝑖 in G.

Case 1. With 𝑉𝑖 ∈ M, denote the interventional SCM ofM with
𝑑𝑜 (m) asM ′.M ′ replaces 𝑓𝑖 inM with 𝑣𝑖 ←𝑚𝑖 [20]. As a result,
other variables cannot affect 𝑉𝑖 any longer. Hence, 𝑑𝑜 (𝑣𝑖 ) makes
𝑃 (𝑉𝑖 | pa(𝑉𝑖 ), 𝑑𝑜 (m)) and 𝑃 (𝑉𝑖 | pa(𝑉𝑖 ), 𝑑𝑜 (𝑣𝑖 )) equivalent by
𝑃 (𝑉𝑖 | pa(𝑉𝑖 ), 𝑑𝑜 (m)) = 𝑃 (𝑉𝑖 | 𝑑𝑜 (𝑣𝑖 )) = 𝑃 (𝑉𝑖 | pa(𝑉𝑖 ), 𝑑𝑜 (𝑣𝑖 ))

Case 2. With 𝑉𝑖 ∉ M, we get M𝑖 = ∅ and M = M𝑃𝑎 ∪M𝑂𝑡ℎ𝑒𝑟 for
the equation below
𝑃 (𝑉𝑖 | pa(𝑉𝑖 ), 𝑑𝑜 (m)) = 𝑃 (𝑉𝑖 | pa(𝑉𝑖 ), 𝑑𝑜 (m𝑃𝑎), 𝑑𝑜 (m𝑂𝑡ℎ𝑒𝑟 ))

Since G is a CBN, the “Parents do/see” condition [1] states that we
can replace pa(𝑉𝑖 ) with 𝑑𝑜 (pa(𝑉𝑖 )).

𝑃 (𝑉𝑖 | pa(𝑉𝑖 ), 𝑑𝑜 (m)) = 𝑃 (𝑉𝑖 | 𝑑𝑜 (pa(𝑉𝑖 )), 𝑑𝑜 (m𝑂𝑡ℎ𝑒𝑟 )) (8)
As we already take 𝑑𝑜 (m𝑃𝑎) as the condition, the “Missing-link”
condition [1] ensures that we can drop 𝑑𝑜 (m𝑂𝑡ℎ𝑒𝑟 ).

𝑃 (𝑉𝑖 | pa(𝑉𝑖 ), 𝑑𝑜 (m)) = 𝑃 (𝑉𝑖 | 𝑑𝑜 (pa(𝑉𝑖 ))) (9)
With the “Parents do/see” condition [1] again, we obtain

𝑃 (𝑉𝑖 | pa(𝑉𝑖 ), 𝑑𝑜 (m)) = 𝑃 (𝑉𝑖 | pa(𝑉𝑖 )) (10)
Combining the two cases above provides the final conclusion. □

Proof of Theorem 3.1. Given an intervention m and any iden-
tifiable intervention m′ provided by IIR, 𝑃 (V | 𝑑𝑜 (m)) ≡ 𝑃 (V |
𝑑𝑜 (m′)). Hence, 𝑃 (𝑉𝑖 | pa(𝑉𝑖 ), 𝑑𝑜 (m)) ≡ 𝑃 (𝑉𝑖 | pa(𝑉𝑖 ), 𝑑𝑜 (m′))
for any 𝑉𝑖 ∈ V. Notice that the corresponding assignment for an
intervention is just encoded in the interventional distribution. As a
result, (∀𝑥 ∈ m, 𝑥 ′ ∈ m′)𝑋 = 𝑋 ′ → 𝑥 = 𝑥 ′.

Assume that m is different from m′, e.g., (∃𝑋 ∈ V)𝑋 ∈ M ∧
𝑋 ∉ M′. With Lemma A.5, we have 𝑃 (𝑋 | pa(𝑋 ), 𝑑𝑜 (𝑥)) ≡ 𝑃 (𝑋 |
pa(𝑋 )), which violates the Faithfulness assumption. It is the same
for the case (∃𝑋 ∈ V)𝑋 ∉ M ∧ 𝑋 ∈ M′. Hence, IIR can distinguish
m from other interventions, providing the same answer as IR.

According to Theorem A.4, we reach the conclusion that the
knowledge of IR is at the second layer of the causal ladder. □

B PROOF OF THEOREM 3.4
Proof of Theorem 3.4. Notice that 𝑃m (𝑉𝑖 | pa(𝑉𝑖 )) = 𝑃 (𝑉𝑖 |

pa(𝑉𝑖 ), 𝑑𝑜 (m)), while L1 (𝑉𝑖 | pa(𝑉𝑖 )) = 𝑃 (𝑉𝑖 | pa(𝑉𝑖 )).

Case 1. With 𝑉𝑖 ∈ M, we getM𝑖 = {𝑉𝑖 }. Under the Faithfulness
assumption, Eq. (11) must hold, while Lemma A.5 provides 𝑃 (𝑉𝑖 |
pa(𝑉𝑖 ), 𝑑𝑜 (m)) = 𝑃 (𝑉𝑖 | pa(𝑉𝑖 ), 𝑑𝑜 (𝑣𝑖 )).

𝑃 (𝑉𝑖 | pa(𝑉𝑖 ), 𝑑𝑜 (𝑣𝑖 )) ≠ 𝑃 (𝑉𝑖 | pa(𝑉𝑖 )) (11)
Hence,

𝑉𝑖 ∈ M⇒ 𝑃m (𝑉𝑖 | pa(𝑉𝑖 )) ≠ L1 (𝑉𝑖 | pa(𝑉𝑖 ))

Case 2. With𝑉𝑖 ∉ M, LemmaA.5 provides 𝑃 (𝑉𝑖 | pa(𝑉𝑖 ), 𝑑𝑜 (m)) =
𝑃 (𝑉𝑖 | pa(𝑉𝑖 )). Hence,

𝑉𝑖 ∉ M⇒ 𝑃m (𝑉𝑖 | pa(𝑉𝑖 )) = L1 (𝑉𝑖 | pa(𝑉𝑖 ))
Its contrapositive stands as well,

𝑃m (𝑉𝑖 | pa(𝑉𝑖 )) ≠ L1 (𝑉𝑖 | pa(𝑉𝑖 )) ⇒ 𝑉𝑖 ∈ M
, which is the converse proposition of Case 1.

In conclusion, 𝑉𝑖 ∈ M ⇔ 𝑃m (𝑉𝑖 | pa(𝑉𝑖 )) ≠ L1 (𝑉𝑖 | pa(𝑉𝑖 )).
□
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C IMPLEMENTATION DETAILS
C.1 Baseline Methods
Most of the code in this work is written in Python, while we adopt
the R package pcalg [12] for the PC algorithm. We utilize process-
based parallel programming to isolate errors only.

NSigma calculates max𝑡
|𝑣 (𝑡 )
𝑖
−𝜇𝑖 |
𝜎𝑖

. We adopt the authors’ imple-
mentation6 for SPOT [23] while re-implementing ENMF [5] in
Python based on the authors’ MATLAB implementation7. The other
baseline methods are not publicly available. We implement them
by our understanding.

C.2 Simulation Data Generation
We generate the simulation datasets based on the Vector Auto-
regression model, as shown in Eq. (6). Following existing work [11,
32], the value of non-zero elements in the weighted adjacent matrix,
𝐴𝑖 𝑗 , is uniformly sampled from (−2.0,−0.5) ∪ (0.5, 2.0). For the
second item 𝛽x(𝑡−1) , we set 𝛽 = 0.1 in the experiment. Finally, we
sample the standard deviations from an exponential distribution
for the zero-mean Gaussian noises 𝜖 (𝑡 ) .

The structure of 𝐴 is generated in two steps, as shown in Al-
gorithm 3. We first generate a tree to ensure that the graph is a
connected DAG. Then, the other edges are inserted randomly.

Algorithm 3 Graph Generation in the Simulation Study
Require: 𝑁𝑛𝑜𝑑𝑒 , the number of nodes; 𝑁𝑒𝑑𝑔𝑒 , the number of edges

1: G ← (V, E), where V = {1, 2, · · · , 𝑁𝑛𝑜𝑑𝑒 }
2: for 𝑖 = 2, · · · , 𝑁𝑛𝑜𝑑𝑒 do
3: 𝑗 ← choose one node from {1, 2, · · · , 𝑖 − 1} randomly
4: Add the edge 𝑖 → 𝑗 into E
5: end for
6: for 𝑘 = 𝑁𝑛𝑜𝑑𝑒 , 𝑁𝑛𝑜𝑑𝑒 + 1, · · · , 𝑁𝑒𝑑𝑔𝑒 do
7: 𝑖, 𝑗 ← sample 𝑖, 𝑗 ∈ V randomly, s.t., 𝑖 > 𝑗 ∧ (𝑖 → 𝑗) ∉ E
8: Add the edge 𝑖 → 𝑗 into E
9: end for
10: return G

C.3 Structural Graph Construction
In the empirical study, we construct the structural graph for the
Oracle database instances. Figure 6 shows the SQL processing and
memory structures in the call graph. Figure 4 further shows part of
the graph among metrics. We drop metrics not included in the final
structural graph, as our knowledge fails to cover them. Baseline
methods only use labeled metrics for a fair comparison.

C.4 Regression Method Selection
Table 5 shows RHT’s performance with several regression methods.
RHT with the linear regression (Linear) has unsatisfying perfor-
mance, as the relations among real-world variables are seldom
linear. Support Vector Regression (SVR) with the sigmoid kernel,
which is non-linear, improves the performance. Fu et al. provide
6https://github.com/Amossys-team/SPOT
7https://github.com/chengw07/CausalRanking
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Figure 6: Part of the Oracle database call graph

Table 5: RHT with different regression methods on D𝑂

Regression
Method

AC@1 AC@3 AC@5 Avg@5 T (s)

Linear 0.197 0.424 0.556 0.409 0.559
SVR 0.328 0.601 0.677 0.546 0.834
RF 0.202 0.394 0.525 0.382 22.065
MDN 0.111 0.212 0.253 0.195 694.329

a way to predict distribution based on Random Forest (RF) and
Mixture Density Networks (MDN), respectively, instead of a single
value [7]. Hence, RHT combined with RF or MDN can measure
the deviation for a new datum against the predicted distribution.
However, these two methods perform worse than the simple linear
regression due to a limited understanding of the normal status, as
shown in Figure 1. As a result, we choose SVR in the empirical
study.
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