
Actionable and Interpretable Fault Localization
for Recurring Failures in Online Service Systems

Zeyan Li
Nengwen Zhao

Mingjie Li
Xianglin Lu

Tsinghua University
Beijing, China

Lixin Wang
Dongdong Chang

China Construction Bank
Beijing, China

Xiaohui Nie
Li Cao

Wenchi Zhang
Kaixin Sui

BizSeer
Beijing, China

Yanhua Wang
Xu Du

Guoqiang Duan
China Construction Bank

Beijing, China

Dan Pei∗

Tsinghua University
Beijing, China

ABSTRACT

Fault localization is challenging in an online service system due to

its monitoring data’s large volume and variety and complex depen-

dencies across/within its components (e.g., services or databases).

Furthermore, engineers require fault localization solutions to be

actionable and interpretable, which existing research approaches

cannot satisfy. Therefore, the common industry practice is that, for

a specific online service system, its experienced engineers focus on

localization for recurring failures based on the knowledge accumu-

lated about the system and historical failures. More specifically, 1)

they can identify the underlying root causes and take mitigation

actions when pinpointing a group of indicative metrics on the faulty

component; 2) their diagnosis knowledge is roughly based on how

one failure might affect the components in the whole system.

Although the above common practice is actionable and inter-

pretable, it is largely manual, thus slow and sometimes inaccurate.

In this paper, we aim to automate this practice through machine

learning. That is, we propose an actionable and interpretable fault

localization approach, DéjàVu, for recurring failures in online ser-

vice systems. For a specific online service system, DéjàVu takes

historical failures and dependencies in the system as input and

trains a localization model offline; for an incoming failure, the

trained model online recommends where the failure occurs (i.e.,

the faulty components) and which kind of failure occurs (i.e., the

indicative group of metrics) (thus actionable), which are further

interpreted both globally and locally (thus interpretable). Based on

the evaluation on 601 failures from three production systems and

one open-source benchmark, in less than one second, DéjàVu can
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rank the ground truths at 1.66∼5.03-th among a long candidate list

on average, outperforming baselines by 54.52%.
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1 INTRODUCTION

Recently, online service systems (e.g., online shopping platforms

or E-banks) have gradually replaced traditional software systems

and play an indispensable part in our daily life [10, 11, 13, 58].

Though tremendous effort has been devoted to software service

maintenance (e.g., various metrics, such as average response time or

memory usage, are closely monitored on a 24×7 basis [13]), failures

are inevitable due to the large scale and complexity, causing huge

economic loss and user dissatisfaction [7, 35, 42, 47].

To enable engineers to resolve failures efficiently, fault local-

ization is at the core of software maintenance for online service

systems [12, 16, 39]. However, existing approaches mainly focus on

unactionable fault levels, e.g., individual metrics [27, 37, 52] or com-

ponents [20, 36, 47, 60], which, respectively, can be too fine-grained

(e.g., it is hard to tell what exactly happened if only memory usage

is localized) or coarse-grained (e.g., diagnosing faulty components

is still challenging). To be actionable, we aim to inform engineers

where the failure occurs (i.e., the faulty component) and which kind

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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of failure occurs (e.g., memory leak). For convenience, we name the

combination of a specific kind of failure and a location as a failure

unit. More specifically, monitoring metrics serve as the most direct

signals to the underlying failures [13], and different kinds of fail-

ures (thus the corresponding mitigation actions) can be indicated

by different groups of metrics on the faulty components [13, 49].

For example, a combination of high memory usage and high #re-

quests indicates insufficient memory caused by bursting requests

rather than a memory leak. In summary, we aim to recommend the

faulty components and the corresponding indicative metric groups

to engineers, i.e., the faulty failure units.

There are four challenges to this goal. First, it is hard to represent

failure units uniformly for further analysis because 1) failure units

can contain different numbers of metrics, and 2) feature engineering

for various metrics is hard. Second, due to the complex dependen-

cies in an online service system, the faulty failure units can cause

other metrics on the same or other components abnormal, and it is

challenging to model the complex and various failure propagation.

Third, since it is unlikely that all failure units have been faulty,

it is essential but challenging to generalize to previously unseen

failures (no failures of the same kinds have occurred at the same

locations). Fourth, both local (interpreting individual cases) and

global (interpreting general model decisions) interpretability [45]

are important for engineers to trust the localization results, since

they provide interpretation from different perspectives.

This paper proposes an actionable and interpretable fault local-

ization approach, DéjàVu1, for recurring failures in online service

systems. Recurring failures are repeated failures of the same kinds at

different locations (e.g., high response time caused by different inef-

ficient SQL queries). Failures may recur due to misunderstanding of

root causes, delayed fix deployment or emergent behaviors caused

by high utilization [6]. Fault localization for recurring failures is

important due to its large prevalence (e.g., 74.38% in compA) in

practice (see § 2.1). For recurring failures in a specific online service

system, its engineers can summarize the indicative metrics on each

class of components to recognize the underlying failure types and

direct their mitigation action, according to their domain knowledge

and diagnosing experience. Based on these groups of indicative

metrics, we define the candidate failure units for recurring failures

in the system. Furthermore, to represent the complex dependencies

in the system, we connect the failure units that have dependen-

cies between each other into a failure dependency graph (FDG) (see

§ 2.2). Note that a system’s FDG is evolving due to deployment and

software changes, and engineers can also add new failure units.

When a failure occurs, the monitoring system raises alerts and

triggers DéjàVu, which takes the latest FDG and the metric values

as inputs and recommends suspicious failure units from the can-

didate failure units on the FDG to engineers (see later in Fig. 5).

For challenge 1, DéjàVu employs gated recurrent unit-based [14]

feature extractors to represent each failure unit as a fixed-width

vector (unit-level feature) regardless of its metrics. For challenge

2, we apply graph attention networks [50] on the FDG to consider

both the dependencies and the unit-level features. For challenge 3,

our model learns from the historical failures of the same kind but

at any locations to recommend a faulty failure unit by the metrics

1A French phrase translating literally to łalready seen”

values and relative structure on the FDG only. For challenge 4, we

provide local interpretation by finding the representative historical

failures from which the trained model probably learns to make

the recommendations for a failure. We also globally interpret the

trained model as human-readable rules (e.g., see later in Fig. 16)

by mimicking it with decision trees [61]. After engineers get the

faulty failure units, they can timely recognize the underlying failure

types and take mitigation action to ensure the quality of software

services. Finally, the ground-truth failure units manually confirmed

by engineers will be saved for future retraining. Unlike existing

works [6, 7, 41], we do not aim to find similar historical failures and

adopt their ground truths because such methods cannot localize

previously unseen failures.

We extensively validated DéjàVu with four datasets, three of

which are based on real-world systems, containing 502 injected

failures of 18 types and 99 real-world failures2. The results show

that DéjàVu is effective in localizing faulty failure units. Specif-

ically speaking, the average rank of the ground truths achieves

1.66∼5.03 and outperforms baselines by 54.52%∼97.92%. The results

also show that the main modules, such as feature extractors and

GAT-based aggregation, indeed contribute. Particularly, the results

on production systems and real-world failures demonstrate practi-

cal performance. DéjàVu is efficient as it costs tens of minutes to

train the localization model and less than one second to localize

for a failure. Moreover, DéjàVu can achieve similar performance on

previously unseen failures compared with seen failures. Finally, we

demonstrate the effectiveness of our interpretation techniques.

The contributions of this paper are summarized as follows:

• For the first time, we propose an actionable and interpretable fault

localization approach, DéjàVu, for recurring failures in online

service systems. DéjàVu offline trains a localization model using

historical failures in a given online service system and online

recommends and interprets faulty failure units.

• We propose a novel localization model and two interpretation

methods addressing all four challenges.

• We conduct extensive experiments on 601 failures from four

systems, including 99 real-world failures and three real-world

systems. The results show DéjàVu’s effectiveness, efficiency, gen-

eralizability, and interpretability. We also share lessons learned

from our industrial experience.

2 BACKGROUND

2.1 Recurring Failures

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15
0

20

40

60
#All failures #Recurring failures

Figure 1: The number of recurring failures at compA.

We investigated the failures tickets at compA, a large commer-

cial bank with over a hundred million users, to motivate our work

on recurring failures. The banking information system at compA

contains over 300 applications, each of which runs on dozens of

servers and contains many components such as databases, web

servers, and load balancers. We collected 576 failure tickets from

2The datasets and implementation can be found in our replication package [4].
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this system, spanning 12 months, which are triggered by applica-

tion SLO (service level objective) violation and contain a detailed

diagnosis and mitigation process.

We categorize the root causes of these failures into recurring and

non-recurring categories by whether they can be repetitive with

historical failures (maybe at different locations). The recurring cate-

gories are mainly external, hardware, or middleware reasons, such

as bad requests, unavailable third-party services, failed disks, slow

SQL queries, and missing database indices. The non-recurring cate-

gories are mainly logical reasons, such as code defects, design flaws,

and data inconsistency (e.g., incorrect modification on a manually

maintained special account list).

In Fig. 1, we present the number of all/recurring failures in the

applications with the most failure tickets. On all applications except

S6, most failures (at least 2/3) are recurring. In total, there are 74.38%

recurring failures. Lots of failures (39.28%) are recurring due to

unavailable third-party services. There are also existing studies

reporting the large prevalence of recurring failures. For example,

Dogga et al. find that recurring categories of root causes cause 94%

of the failures at a major SaaS company [18], and Lee and Iyer find

that 70% of the failures they studied are recurring [31].

In summary, diagnosing recurring failures is important due to

the large prevalence. Moreover, the repetitive nature motivates us

to diagnose recurring failures by learning from historical failures.

2.2 Defining Failure Units and FDGs

at

include

Component
Failure Unit Failure Dependency Graph (FDG)

1* vertex of

1

* 1

1

Metric

Figure 2: The relationship of the basic concepts

Table 1: Component classes (CC) and metric groups in sysA
CC Group Metrics in the metric group

DB, OSB,
Service

Requests #requests, average response time, success rate, process time

DB Load

ACS, AIOS, AWS, CPUUsedPct, CPUFreePct, CPUPused, {Call,
DFParaWrite, Exec, LFParaWrite, LFSync, Login, TPS, Sc-
tRead}PerSec, Logic/Physical ReadPerSec, PGAUsedPct, SE-
QUsedPct, SessConnect, TbsUsedPct, UndoTbsPct, UserCommit

DB Memory MEMTotal, MEMUsed, MEMUsedPct, MEMRealUtil

DB Session
ProcUsedPct, ProcUserUsedPct, Sess{Active, Connect, UsedTemp,
UsedUndo, Pct}

DB State DbTime, Hang, OnOffState, RowLock, tnspingResultTime

DB Space
AsmFreeTb, DbFileUsedPct, NewTbs FreeGb/UsedPct, PGAUsed-
Total, RedoPerSec, TbsFreeGb, TbsUsedPct, TempTbsPct, To-
tal/Used TbsSize

Docker CPU containerCpuUsed
Docker Memory containerMemUsed
Docker Session containerSessionUsed
Docker Thread Thread{Idle, Running, Total, UsedPct}
Docker Full GC containerFgc, containerFgct
OS State AgentPing, ICMPPing

OS Disk

Disk{AvgquSz, Await, IoUtil, RdIos, RdKbs, Svctm, WrIos,
WrKbs}, FS{MaxAvail, MaxUtil, TotalSpace, UsedPct,
UsedSpace}, Free/Total DiskSpace, Free/Total Inodes, Used
DiskSpace/Inodes, Used DiskSpace/Inodes Pct

OS Load

BuffersUsed, CPU{Frequency, IdlePct, IowaitTime, KernelNumber,
Number, Pused, SystemTime, UserTime, UtilPc, UtilPct}, NumOf-
Processes, NumOfRunningProcesses, ProcessorLoad 1/5/15 Min,
System Block/Wait Queue Length, ZombieProcess

OS Memory
BuffersUsed, CacheUsed, MemoryAvailable, MemoryAvailablePct,
MemoryFree, MemoryTotal, MemoryUsed, MemoryUsedPct,
PagePi, PagePo, SharedMemory, SwapUsedPct

OS Network
Incoming/Outgoing NetworkTraffic, Received/Sent ErrorsPack-
ets/Packets/Queue/Total, ssTotal

* #components in OSB (Oracle Service Bus)/Service/Docker/DB/OS: 2/8/8/3/6.

This section describes howDéjàVu defines failure units and FDGs

to enable actionable fault localization. As introduced in § 1, the

experienced engineers of an online service system can define the

candidate failure units by summarizing the indicative metric groups

on different component classes. For example, in Table 1, we present

the component classes and metric groups for A (see § 5.1). Each

group of such indicative metrics at a corresponding component is a

candidate failure unit for recurring failures in the system. For example,

the metrics in Requests (i.e., #requests/average response time/…) at

DB1 form a failure unit, DB1 Requests. In this paper, we focus on

metrics, as logs are of huge volume and various types and traces

contain little information on low-level performance issues. For

convenience, we name the failure units defined by the same group

of metrics on the same component class, which contain the same

metrics at different locations, as a failure class.

To model the complex and various failure propagation, we rep-

resent the dependencies in an online service system with an FDG.

Definition 1. An FDG (failure dependency graph) is an undirected

graph, 𝐺 = (𝑉 , 𝐸). 𝑉 is the set of all the defined candidate failure

units of an online service system. An edge (𝑣𝑖 , 𝑣 𝑗 ) exists in the edge

set, 𝐸, iff. the failure unit 𝑣𝑖 depends on 𝑣 𝑗 or vice versa.

For example, the FDG of sysA (§ 5.1) is shown in Fig. 3, which

is complex considering that sysA comprises only 27 components

(see Table 1). In Fig. 3, a failure caused by CPU exhaustion on

Docker6 propagates to Service6 Requests, since Service6 is deployed

on Docker6. It further propagates to Service1 Requests, Service2 Re-

quests, and OSB1 Requests, since Service1 and Service2 rely on Ser-

vice6 and OSB1 relies on these two services.

We construct FDGs automatically, which is necessary because

FDGs are complex and dynamic (e.g., in microservice systems, pods

are dynamically created and deleted), based on the call and deploy-

ment component relationships. For example, in sysA, we collect

the call relationships among OSBs, services, and databases through

tracing tools (the leftmost graph in Fig. 4) and collect deployment

relationships among services, containers, and servers (the others

in Fig. 4) through configuration management database. By com-

bining the component relationships and failure units, we auto-

matically construct an FDG. For example, as Service1 is deployed

on Docker1 (see Fig. 4), Service1 Requests is connected to Docker1

CPU/Memory/… (see Fig. 3). Besides, engineers can manually add

or remove edges on the FDG according to their domain knowledge

and existing diagnosis knowledge. For example, when two services

depend on a stateful third-party service, which cannot be captured

by tracing, engineers can manually connect them on the FDGs.

In this paper, we group metrics roughly by their general cate-

gories (e.g., CPU-related or network-related) for most datasets and

include no prior knowledge in the construction of FDGs. In practice,

engineers can carefully tune the specifications of failure units and

FDGs to make the localization results more helpful, which is out of

the topic of this work.

2.3 Industrial Localization Practice

The current industrial fault localization is largely manual. We have

analyzed over 20,000 failure tickets in a large commercial bank

spanning two years. We found that the average diagnosis time is

28.98 minutes, and the 25/50/75 percentile is 4.27/9.65/25.81 minutes.
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Figure 3: The FDG of sysA. There are 102 vertices and 109 edges in total, some of which are omitted due to the space limit.
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Figure 4: The call (solid) and deployment (dashed) compo-

nent relationships of sysA

Notably, the diagnosis time could be extremely long when the

failure is triaged among many teams.

Furthermore, the average time cost for engineers to localize the

fault locations and types (i.e., failure units) is 9.2 minutes. The

25/50/75 percentile is 2.8/5.0/10.0 minutes. As a result, localizing

faulty failure units is promising to save much time for engineers.

Here are some examples:

• At 21:23, the on-call engineer (OCE) was alerted that a server

had suffered from a high I/O delay. At 21:26, the OCE confirmed

a failed disk caused the failure by checking logs.

• At 17:27, the OCE was alerted that the success rate of service A

was low. At 17:32, the OCE confirmed that a problematic third-

party service caused the failure by checking the success rate

under different conditions (e.g., user request type, client version,

and client location).

• At 09:45, the OCE was alerted of the low success rate of service

B. The OCE checked the owned systems and found no problems,

and thus, called the OCEs of the related third-party system for co-

operation. At 10:30, the OCEs of a third-party system confirmed

the fault lay in their system.

2.4 Problem Statement

In this work, we target recommending the faulty failure unit given

the latest FDG and the corresponding metric values when a failure

occurs. The faulty failure unit pinpoints where the failure occurs

(the component) and which kind of failure occurs (indicated by the

metrics), and thus, helps engineers take the right mitigation actions

rapidly. Finding the most helpful specifications of failure units or

FDGs and failure discovery are out of the scope of this paper.

3 DESIGN OF DÉJÀVU MODEL

Monitoring System

Engineers

FDG

Localization 
model

Interpretation

Historical failures

Alerts
Ground truths

Local and global 
interpretationLocalization results

Metrics

Failure
occurs

Feedback

Offline training

The scope of DejaVu

Trigger

Figure 5: Workflow of DéjàVu

In this section, we introduce the design of DéjàVu model. As

shown in Fig. 5, we train a model offline with historical failures

and FDGs of a given online service system. The trained model

recommends faulty failure units online when a failure occurs, given

the metric values and the latest FDG.
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Figure 6: DéjàVu model architecture

3.1 Overview

As shown in Fig. 6, the DéjàVu model takes the metric values and

the FDG around the failure time as inputs and outputs a suspicious

score for each failure unit with a binary classifier. Note that different

failures could have different corresponding FDGs.

More specifically, first, to solve the challenge of representing

failure units uniformly, we introduce a feature extractormodule that

can grasp temporal information of metrics and correlations among

metrics (§ 3.2). A feature extractor is trained to map the metrics of

any failure unit of the same failure class into a fixed-width vector

(unit-level feature). We train a failure extractor for each failure

class, since failure units of different failure classes contain different

metrics. Second, to enable modeling failure propagation, we employ

a feature aggregator to encode the structural information on the

FDG into aggregated features (§ 3.3). The feature aggregator utilizes

attention mechanism to pay more attention on related failure units.

Finally, we introduce a classifier to score each failure unit based on

its aggregated feature (§ 3.4). For generalizability, the failure units

in the same failure class share a feature extractor, and all failure

units share a feature aggregator and classifier. For different failure

classes, their feature extractors are all the same except the input

size. In this way, the score of a failure unit (e.g., Docker6 CPU in

Fig. 3) is majorly determined by its metric values and the metric

values of its related failure units (e.g., Service6 Requests, Service2

Requests, OSB1 Requests) rather than its location.

Our model is trained by minimizing a revised loss function (§ 3.5).

Furthermore, we employ class balancing for training, since the

frequency of each failure class in training data varies (§ 3.6).

3.2 Feature Extractor

Each metric of a failure unit has temporal information, and there

are correlations among the metrics. To better extract meaningful

features, we use a three-stage feature extraction method. Specifi-

cally speaking, the first stage learns temporal information, while

the latter two learn higher-level features.

In the first stage, the temporal feature of a failure unit is extracted

using gated recurrent unit (GRU)[14] recurrent neural networks.

GRU is a recurrent neural network with a gating mechanism but

has simpler architecture and fewer parameters than LSTM. The

input metrics of a failure unit are encoded as a numerical matrix of

dimension𝑊 ×𝑀𝑣 , where𝑊 is the length of time window we slice

at the failure time and 𝑀𝑣 is the number of metrics of the failure
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unit 𝑣 . In this paper, we empirically set𝑊 as 20 minutes to capture

the near history of the metrics.

In the second stage, we apply 1-D convolution neural network

(1-D CNN) [21] and GELU (Gaussian error linear unit) activation

function [25] on the temporal feature matrix obtained at the first

stage. With the application of 1-D CNN, we get multiple feature

maps extracting the correlations among different time points and

metrics. GELU provides nonlinearity by preserving linearity in the

positive activations and suppressing the negative activations while

relieving vanishing gradients problem [25].

In the third stage, a fully connected layer is applied to learn the

relations among different feature maps obtained in the second stage

and output a numeric unit-level feature vector of dimension 𝑍 .

3.3 Feature Aggregator

The second module, feature aggregator, is responsible for aggre-

gating the unit-level features of related failure units of a failure

unit 𝑣 and the structure information into one aggregated feature,

𝒇 (𝑣) , based on the FDG, 𝐺 . For generalizability, the feature aggre-

gator should be structure-independent. Thus, graph convolutional

network (GCN) [29] is unsuitable. Since the relationship between

any pair of failure units varies, it is also inappropriate to simply

average features of connected failure units together as GraphSAGE

[23] does. Therefore, for each failure unit, we dynamically calculate

the aggregation weights of its related failure units based on their

unit-level features through graph attention networks (GAT)[50].

However, a single GAT aggregates features of a failure unit’s

neighbors only, while failures propagate along the FDG for more

than one hop. Therefore, we stack multiple GAT together sequen-

tially, and the outputs of the last GAT are taken as the input of

the next GAT. In this way, we aggregate features of farther re-

lated failure units and thus, model multi-hop failure propagation.

Though multiple-layer graph neural network could suffer from

over-smoothing, we apply residual connections to relieve the prob-

lem [32]. On the other hand, we also introduce multi-head atten-

tion to improve the capacity and stabilize the training process

[50]. Specifically speaking, we apply multiple GATs in parallel and

concatenate their outputs together. We denote the number of se-

quentially stacked GATs as 𝐿 and the number of heads as 𝐻 . We set

𝐻 = 4 and 𝐿 = 8 by default and discuss their impact in § 5.3. For

generalizability, the feature aggregator is shared by all failure units

regardless of their classes. In summary, the feature aggregator can

be formalized as follows.

{𝒇 (𝑙+1,𝑣) |𝑣∈𝑉 }= [GAT({𝒇 (𝑙,𝑣) |𝑣∈𝑉 }); ...; GAT({𝒇 (𝑙,𝑣) |𝑣∈𝑉 })]
︸                                                      ︷︷                                                      ︸

𝐻 GATs in total

where 𝑙 ∈ {0, 1, ..., 𝐿 − 1}, 𝒇 (0,𝑣) :=𝒇 (𝑣) , 𝒇 (𝑣) :=𝒇 (𝐿,𝑣) , and 𝐺𝐴𝑇 (·)

calculates aggregated features for all failure units in the FDG.

3.4 Classifier

The final module, classifier, assigns a suspicious score, 𝑠 (𝑣), for each

failure unit given its aggregated feature, 𝒇 (𝑣) . Specifically speaking,

we simply employ a two-layer dense neural network since it is

already enough to achieve satisfactory performance. To restrict

the output value in [0, 1], we use sigmoid function 𝜎 as the output

activation. In summary, the output suspicious score for a failure

unit 𝑣 (denoted as 𝑠 (𝑣)) can be formulated as follows,

𝑠 (𝑣) = (𝜎 ◦ Dense ◦ GELU ◦ Dense) (𝒇 (𝑣) ) (1)

We do not need thresholds on the suspicious scores to obtain binary

classification for failure units. Instead, we only rank all failure units

by their suspicious scores in descending order, based on which

engineers can check the suspicious failure units one by one.

3.5 Loss Function

For each failure unit 𝑣 of a failure𝑇 , we expect the suspicious score

𝑠𝑇 (𝑣) ∈ [0, 1] to be as close as possible to its ground truth label

𝑟𝑇 (𝑣) ∈ {0, 1}. To measure the difference between 𝑠𝑇 (𝑣) and 𝑟𝑇 (𝑣),

we use the widely-used binary cross-entropy [21]:

𝐵𝐶𝐸 (𝑟𝑇 (𝑣),𝑠𝑇 (𝑣)) = 𝑟𝑇 (𝑣) · log
(

𝑠𝑇 (𝑣)
)

+ (1−𝑟𝑇 (𝑣)) · log
(

1−𝑠𝑇 (𝑣)
)

Since most failure units are not faulty, their losses are dominant

compared with the faulty ones. As a result, the model could fall

back to score every failure unit equally. To solve this problem, we

assign different weights to faulty and normal failure units to make

the weight of faulty failure units equal to the sum of all normal

failure units. Specifically speaking, the weights of normal and faulty

failure units are 1 and 𝑁 (the number of failure units), respectively.

In summary,

L𝑠 =
1

𝑁𝐻

∑

𝑇 ∈{𝑇1, · · · ,𝑇𝑁𝐻
} [

∑

𝑣∈𝑉 𝒘
(𝑇 )
𝑣 𝐵𝐶𝐸

(

𝑟𝑇 (𝑣),𝑠𝑇 (𝑣)
)

∑

𝑣∈𝑉 𝒘
(𝑇 )
𝑣

] (2)

where𝑉 is the set of failure units,𝒘
(𝑇 )
𝑣 = 𝑟𝑇 (𝑣) · |𝑉 | + (1−𝑟𝑇 (𝑣)) ·1,

and {𝑇1, · · · ,𝑇𝑁𝐻
} is the set of training failures. By minimizing L𝑠

on all historical failures, we train the DéjàVu model.

3.6 Class Balancing

In practice, the number of failures in different classes varies. Thus,

to prevent theDéjàVumodel from neglecting the minority classes in

the training process, we upsample historical failures of such classes.

Suppose there are𝐶 failure classes and the number of failures of the

𝑖-th class is 𝑁
(𝑖)
𝐻

, we sample a failure with probability 1/(𝐶 · 𝑁
(𝑖)
𝐻

)

for each training step. In this way, the failures of each class are

sampled with the same probability (i.e., 1/𝐶).

4 INTERPRETATION METHODS

4.1 Global Interpretation

Figure 7: Global interpretation

Our core idea is to use simpler but interpretable models to ap-

proximate (rather than outperform) the sophisticated black-box

DejaVu models as accurately as possible. As shown in Fig. 7, we use

decision trees (DTs) as the surrogate models. The inputs for DTs are

selected interpretable time-series features of failure units’ metrics,

and targets are the suspicious scores from DéjàVu. We do not use ex-

isting deep-learning model interpretation methods for two reasons.

On the one hand, though many interpretation methods [5, 17, 57]
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are targeted at interpreting deep-learning models by understanding

their inner mechanism, engineers are mainly concerned about the

relationship between raw data and root causes [43]. On the other

hand, the inputs and targets of our problem are non-standard and

require extra effort.

First, we select 57 easy-to-understand time-series feature ex-

tractors (e.g., range count and variance) from tsfresh[2]. They

would extract 191 time-series features for each metric (see our repli-

cation package [4]), each of which represents an understandable

property of a metric, such as level and variance.

However, the number of time-series features for a failure unit

(i.e., #metrics × 191) can be extremely large (e.g., thousands), while

the feature dimension of DéjàVu (i.e., 𝑍 ) is much lower (e.g., three).

It indicates that DéjàVu cannot consider most of these time-series

features. To remove the useless and noisy time-series features, for

each failure class, we first train a decoder to reconstruct metrics

from the unit-level features given by DéjàVu and then compare the

time-series features extracted from the original and reconstructed

metrics. A decoder comprises a one-dimensional transpose convo-

lution (1-D DeConv) layer, which can be treated as a transpose op-

eration of Conv1D [19], and a fully-connected layer, and is trained

by minimizing the mean square error between the original and

reconstructed metrics. If a time-series feature differs a lot in the

original and reconstructed metrics, it is not reserved by the DéjàVu

model and should be removed.

The training sample for decision trees of a failure unit comprises

the selected time-series features of its metrics (as input) and the

categorized suspicious score given by the DéjàVu model (as target).

When interpreting a DéjàVu model, we are not concerned about

the knowledge on which it is unconfident. Thus, we categorize the

suspicious scores (i.e., 𝑠 (𝑣) in (1)) into three different categories.

Specially speaking, if 𝑠 (𝑣) > 0.9, then failure unit 𝑣 is classified as

a faulty failure unit; if 𝑠 (𝑣) < 0.1, then failure unit 𝑣 is a normal

failure unit; otherwise, the DéjàVu model is uncertain. With the

training samples, we train decision trees which mimic the DéjàVu

model (part 3 in Fig. 7) and classify failure units as łfaulty” or łnor-

mal.” Since failure units in different failure classes contain different

metrics, we train a decision tree for each failure class.

On the trained decision trees, we focus on the decision paths

leading to only faulty or normal failure units (part 4 in Fig. 7). These

paths are the diagnosis rules that the DéjàVu model learns from

historical failures. The rules are used to help engineers understand

and trust the DéjàVu model rather than replace it. On the one hand,

the performance of the decision trees is still worse than DéjàVu. On

the other hand, the interpretations provided by the decision trees

can also make mistakes [43]. As a result, engineers are supposed

to pay attention to the qualitative meaning of split conditions (e.g.,

the success rate of an external service is very low) rather than the

specific thresholds.

4.2 Local Interpretation

Since the DéjàVu model is trained with historical failures, it is

straightforward to interpret how it diagnoses a given failure by

figuring out from which historical failures it learns to recommend

the faulty failure units. To achieve this goal, we compare the in-

coming failure with each historical failure based on the aggregated

features extracted by the trained DéjàVu model. The comparison

is conducted on each pair of failure classes instead of failure units,

since two similar failures can occur at different localization (thus

have different faulty failure units). Due to the space limit, we omit

the details, which can be found in our code [4].

5 EXPERIMENTS

In this section, we aim to address the following research questions.
• RQ1: How does DéjàVu perform in fault localization?

• RQ2: How does DéjàVu perform in various situations?

• RQ3: How does DéjàVu perform in terms of efficiency?

• RQ4: How does DéjàVu perform on previously unseen failures?

• RQ5: How do our interpretation methods perform?

5.1 Experiment Setup

5.1.1 Study Data. In the study, we use four datasets (A, B, C,

and D), containing 601 failures in total. In particular, 16 failures

have multiple root causes and thus multiple faulty failure units.

A, B, and C are from production systems, and D is based on an

open-source benchmark system. The statistics of them are shown

in Table 2. In all datasets, the FDGs are automatically constructed

without any manual modification following the process in § 2. To

obtain failures for training, we split each dataset into a training set

(40%), a validation set (20%), and a testing set (40%). All experiment

results are calculated on the testing sets only.

The ground truths of A, B, and D are determined by the loca-

tions and types of failure injection. In A and B, their engineers

injected ten types of failures: 1) CPU exhaustion on containers,

physical servers (only B), or middlewares (only B); 2) packet loss

or delay on physical servers; 3) database session limit (only A) or

halt (only A); 4) low free memory for JVM/Tomcat (only B); 5)

disk I/O exhaustion (only B). For D, we deploy Train-Ticket [59]

on a 4-node Kubernetes cluster. Train-Ticket is one of the largest

open-source microservice benchmarks, containing 64 services. Fol-

lowing existing works [38, 56], we performed eight types of failure

injection at random locations with ChaosMesh [3]: CPU/memory

stress on pods/nodes, pod failure, and packet corrupt/loss/delay on

pods. Details of the deployment and failure injection for D can be

found in our replication package [4].

For C, we collected 99 real-world failures on sysC, spanning

several months, and we labeled their ground-truth failure units

with the engineers. Different from the other three, sysC is not a

typical online service system and has only one component. Thus,

each failure class in C contains only one failure unit. The definition

of the failure units in C are confirmed by the experienced engineers.

In the FDG of sysC, all failure units are only connected to a virtual

vertex (there is no metric in it), as we do not assume any prior

diagnosis knowledge on the causal dependency among the metrics.

5.1.2 Baselines. We compare DéjàVu with the following state-of-

the-art baseline methods:

• JSS’20 [7] represents failures as graphs and finds similar diag-

nosed failures by graph similarity for each incoming failure.

• iSQUAD [41] clusters historical failures, labels the root causes of

each cluster, and assigns each incoming failure to a cluster.

• Traditional machine learning (ML) models, including Decision

Tree (DT), Gradient Boosting (GB), Random Forest (RF), and
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Table 2: Dataset summary
Dataset #Failures #Metrics #Failure units #Failure Classes System Failure Source

A 188 710 102 18 A production microservice system of a major ISP (sysA) Injected by the engineers
B 158 2419 189 20 A production serivce-oriented system of a commercial bank (sysB) Injected by the engineers
C 99 2594 41 41 A production Oracle database system of a commercial bank (sysC) Real-world failures
D 156 5724 1044 23 A open-source microservice benchmark system, Train-Ticket [59] (sysD) Injected by us

SVM. For each failure class, we train a model which takes the

time-series features (see § 4.1) of a failure unit and determines

whether it is faulty.

• Random walk (RW) is widely used in unsupervised heuristic

fault localization. As existing random walk-based works [27, 53]

cannot take various numbers of metrics as input, we compare

with two variants:

– RandomWalk@Metric. Following existing works, we first con-

struct a causal graph, calculate transition probabilities based

on metric correlations, and obtain the score of each metric

with personalized PageRank.Then, we obtain the score of each

failure unit by summing up the scores of its metrics.

– RandomWalk@FI. We score failure units (FI) directly by ap-

plying random walk on the FDGs and using the average corre-

lation of all pairs of metrics of two failure units as transition

probabilities.

The aggregation methods for RandomWalk@Metric (sum) and Ran-

domWalk@FI (average) are selected so as to maximize the overall

performance. Some methods [20, 34, 36, 60] are not applicable be-

cause they localize faulty services only.

5.1.3 Implementation. We implementDéjàVu and all baselinemeth-

ods based on PyTorch[1] and DGL[51]. We use Adam [28] to train

the DéjàVu models and set the initial learning rate to 0.01 and

weight decay to 0.01. To avoid gradient exploding, we clip the gra-

dients of all parameters at 1. We train each model for 3000 epochs

and set the batch size to 16. Our implementation, including the

baselines, are public in our replication package [4].

5.1.4 Evaluation Metrics. Following related works [36, 60], we

validate the effectiveness with top-𝑘 accuracy (𝐴@𝑘) and mean

average rank (MAR). 𝐴@𝑘 is the fraction of failures whose ground

truths are included in the top-𝑘 recommendations. It represents

how many failures can be diagnosed by checking only the first

top-𝑘 recommendations, and larger is better. MAR is the mean of

the average suggested rank of all ground truths of each failure.

It represents how many recommendations should be checked to

diagnose a failure on average, and smaller is better. Compared with

𝐴@𝑘 , MAR considers all recommended failure units but could be

affected by extreme bad cases. We also measure the efficiency with

respect to localization and training time.

5.2 RQ1: Effectiveness

5.2.1 Overall Performance. In Table 3, we present the fault local-

ization results. We repeat each experiment ten times due to the sto-

chastic training and present the average results.TheMAR ofDéjàVu

achieves 1.66∼5.03 and outperforms the baselines by 11.84%∼99.41%

on all datasets. On B and D, all methods generally perform worse

because there are many more candidate failure units (see Table 2).

For statistical analysis, we calculate the effect size (Cohen’s d [15])

and conduct 𝑡-test between the MARs of DéjàVu and the base-

lines. As shown in Table 3, the improvement over the baselines is

huge and significant (𝑝<0.05). By further calculation, the MAR of

DéjàVu achieves 2.82 on average and outperforms the baselines by

54.52%∼97.92%. In conclusion, DéjàVu achieves good performance

and significantly outperforms the baselines.

JSS’20 and iSQUAD perform poorly for two reasons. First, they

do not utilize historical failures until taking the ground truths of the

found similar historical failures. Although carefully designed, their

critical intermediate steps (e.g., anomaly detection methods and

similarity functions) are completely unsupervised. Thus, they can

be confused by irrelevant abnormal changes in other metrics, which

are caused by noises or fluctuation, especially when the number

of metrics or failure units is large. In contrast, DéjàVu learns to

focus on important metric patterns from historical failures. Second,

JSS’20 and iSQUAD localize faulty failure units by taking the ground

truths of similar failures. However, there may not be a historical

failure having the same faulty failure unit as the incoming failure,

especially when there are lots of failure units. In such cases, the

faulty failure units’ ranks are half of the number of failure units.

The traditional machine learning baselines, on the one hand,

perform poorly due to the numerous useless and noisy time-series

features. On the other hand, such traditional machine learning

models have poorer capacity than deep learning models, which

limits their performance [21]. As a result, the ensemble models (e.g.,

Random Forest and Gradient Boosting) with better capacity can

perform better than simple models (e.g., Decision Tree). Though on

some datasets (e.g., B andD), Random Forest achieves the best top-

𝑘 accuracies, DéjàVu still significantly outperforms it with respect

to MAR. It indicates that Random Forest works extremely badly in

some cases. Furthermore, such models could cost too much time in

online localization (see § 5.4).

The two random walk-based methods perform poorly as their

underlying intuition (i.e., the correlation of metrics faithfully re-

flects the probability of failure propagation) could not hold in all

situations. Furthermore, for RandomWalk@Metric, it is hard to con-

struct the causal graph from scratch, especially when the number

of metrics is large. For RandomWalk@FI, there lacks an appropriate

method to calculate the correlations of two groups of different met-

rics. Finally, as well as JSS’20 and iSQUAD, they are unsupervised

and can be affected by noises.
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Figure 8: Sensitivity to frequencies of training failures

In Fig. 8, we group testing failures in each dataset by the number

of training failures in the same classes (i.e., the failure classes of

their faulty failure units) and show the recommended ranks of

ground truths of each group. The results show that DéjàVu does

not perform worse as the number of training failures in the same

class decreases. Note that the number of outliers differs because

the number of failures in each group differs a lot.
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Table 3: Fault localization results

Dataset Category Method Effect Size p-value MAR A@1 A@2 A@3 A@5

A

Supervised DéjàVu - - 1.66 77.18% 90.38% 93.40% 96.28%

Similar failure matching
JSS’20 Huge (40.75) 5.4e-40 24.31 16.66% 25.64% 35.89% 47.44%
iSQUAD Huge (10.90) 2.3e-18 12.91 23.07% 30.77% 39.74% 46.16%

Traditional ML

Decision Tree Huge (9.45) 1.2e-40 18.05 53.20% 63.46% 65.77% 66.03%
Gradient Boosting Huge (2.65) 5.0e-14 3.82 63.62% 72.49% 76.18% 81.35%
Random Forest Medium (0.51) 3.3e-02 1.88 73.37% 89.15% 91.94% 95.71%
SVM Huge (6.62) 2.9e-32 7.66 31.54% 39.05% 44.53% 51.34%

Unsupervised heuristic
RandomWalk@Metric Huge (12.23) 4.3e-20 11.26 5.04% 8.89% 12.74% 26.73%
RandomWalk@FI Huge (28.70) 5.2e-34 33.64 16.51% 19.04% 20.32% 20.32%

Ablation Study
DéjàVu w/o GRU Large (1.01) 2.5e-04 3.25 74.36% 87.56% 91.67% 93.46%
DéjàVu w/o AGG Medium (0.70) 6.8e-03 2.32 76.80% 92.44% 94.49% 97.05%
DéjàVu w/o BAL Large (1.04) 1.8e-04 2.39 71.28% 85.00% 88.97% 92.44%

B

Supervised DéjàVu - - 5.03 66.21% 71.21% 75.61% 79.24%

Similar failure matching
JSS’20 Huge (55.03) 1.7e-17 47.92 15.15% 19.70% 24.24% 30.30%
iSQUAD Huge (33.00) 1.7e-15 30.75 7.58% 10.61% 15.15% 24.24%

Traditional ML

Decision Tree Huge (16.29) 1.3e-18 30.70 55.91% 60.30% 63.49% 65.00%
Gradient Boosting Huge (6.55) 9.5e-12 8.77 72.00% 75.23% 76.77% 80.00%
Random Forest Huge (3.11) 8.6e-07 8.75 84.46% 85.84% 87.84% 88.92%
SVM Huge (11.94) 3.1e-16 23.30 0.15% 1.23% 1.54% 12.15%

Unsupervised heuristic
RandomWalk@Metric Huge (12.95) 7.7e-12 15.12 9.38% 20.31% 28.12% 31.25%
RandomWalk@FI Huge (32.88) 1.8e-15 30.66 21.88% 21.88% 28.12% 40.62%

Ablation Study
DéjàVu w/o GRU Huge (3.80) 5.2e-08 15.97 65.91% 70.76% 73.18% 77.42%
DéjàVu w/o AGG Large (0.95) 2.4e-02 5.77 69.70% 75.15% 78.03% 81.06%
DéjàVu w/o BAL Small (0.44) 1.7e-01 5.75 62.43% 69.39% 74.85% 78.18%

C

Supervised DéjàVu - - 1.70 61.84% 82.63% 90.79% 96.32%

Similar failure matching
JSS’20 Huge (335.31) 1.5e-24 26.34 34.21% 52.63% 60.53% 68.42%
iSQUAD Huge (24.53) 2.5e-14 3.50 31.58% 57.89% 63.16% 76.32%

Traditional ML

Decision Tree Huge (13.20) 5.4e-17 11.21 38.95% 44.74% 45.27% 58.42%
Gradient Boosting Huge (24.77) 7.3e-22 3.09 44.74% 67.37% 73.68% 77.11%
Random Forest Very Large (1.83) 3.4e-04 2.26 61.05% 75.26% 82.11% 87.10%
SVM Huge (11.08) 1.2e-15 4.09 26.84% 46.32% 60.26% 73.69%

Unsupervised heuristic
RandomWalk@Metric Huge (89.17) 2.3e-19 8.25 10.53% 18.42% 34.21% 47.37%
RandomWalk@FI Huge (73.25) 1.3e-18 7.08 23.68% 36.84% 42.11% 52.63%

Ablation Study
DéjàVu w/o GRU Large (0.90) 3.0e-02 2.10 63.95% 90.00% 92.63% 96.05%
DéjàVu w/o AGG Small (0.32) 2.4e-01 1.75 58.95% 88.68% 94.48% 97.37%
DéjàVu w/o BAL Very Large (1.24) 6.4e-03 2.16 50.00% 74.47% 86.84% 94.21%

D

Supervised DéjàVu - - 2.63 75.62% 84.69% 90.42% 94.27%

Similar failure matching
JSS’20 Huge (529.06) 4.8e-40 303.39 8.70% 8.70% 13.04% 18.84%
iSQUAD Huge (451.10) 4.5e-39 259.07 21.74% 30.43% 30.43% 31.88%

Traditional ML

Decision Tree Huge (24.37) 5.0e-27 128.98 64.37% 72.19% 73.13% 73.60%
Gradient Boosting Huge (54.81) 2.9e-26 33.79 50.72% 59.42% 59.42% 63.77%
Random Forest Huge (2.65) 6.4e-07 12.35 85.66% 86.67% 89.13% 91.88%
SVM Huge (157.82) 1.1e-32 92.35 1.45% 7.25% 10.14% 15.94%

Unsupervised heuristic
RandomWalk@Metric Huge (179.88) 1.7e-33 104.89 2.90% 5.80% 8.70% 13.04%
RandomWalk@FI Huge (776.04) 2.2e-42 443.79 0.00% 0.00% 0.00% 1.45%

Ablation Study
DéjàVu w/o GRU Huge (2.84) 2.2e-07 13.32 68.12% 80.94% 89.06% 91.41%
DéjàVu w/o AGG Huge (2.58) 9.5e-07 3.81 83.60% 91.40% 92.19% 93.75%
DéjàVu w/o BAL Very Small (0.17) 3.4e-01 2.74 72.97% 83.13% 90.47% 94.69%

* ⇑ denotes the improvement rate (%) of DéjàVu over the compared method. Effect sizes (Cohen’s d [15]) and p-values (𝑡 -test) are calculated based on MAR.

In summary, DéjàVu is effective in localizing faulty failure units

for recurring failures so as to save much effort for engineers and

reduce time to mitigate. Particularly, the performance on real-world

failures demonstrates the effectiveness in real-world scenarios.

5.2.2 Contribution of Main Modules. We study the contribution

of the main modules used in DéjàVu by removing each of them.

In Table 3, we compare complete DéjàVu with DéjàVu without

GRU feature extractor (i.e., using 1-D CNN directly, denoted as

DéjàVu w/o GRU), DéjàVu without feature aggregator (i.e., directly

feeding the unit-level features into the final classifier, denoted as

DéjàVu w/o AGG), and DéjàVu without class balancing (DéjàVu

w/o BAL). In all datasets, the MAR of DéjàVu outperforms DéjàVu

w/o GRU by 19.07%∼80.25%, outperforms DéjàVu w/o AGG by

3.19%∼30.92%, and outperforms DéjàVu w/o BAL by 3.85% ∼30.70%.

By further calculation, on all datasets, the average MAR of DéjàVu

outperforms DéjàVu w/o GRU by 69.03%, outperforms DéjàVu w/o

AGG by 20.45%, and outperforms DéjàVu w/o BAL by 15.66%, and

the improvement is significant. Thus, generally speaking, all three

modules contribute significantly to the overall performance.

In particular, there is a small improvement comparedwithDéjàVu

w/o AGG on C because, as introduced in § 5.1.1, we connect all

failure units to a virtual vertex on the FDG of sysC. The result

shows that modeling failure propagation contributes little without

meaningful relationships among the failure units. DéjàVu can still

achieve high performance in such a case because, in this dataset, the

engineers are concerned about the metrics indicating more waiting

events and consider little failure propagation.

On B and D, the improvement over DéjàVu w/o BAL is small

and insignificant. It is mainly because in B and D, the numbers of

failures in different classes are close to each other, and there are

still many failures in the most minor class.

With respect to top-1 accuracy, the performance of DéjàVu keeps

similar or slightly poorer than a variant without any one of these

modules. For feature extractor and aggregator, the gradient van-

ishing problem causes the extracted features to tend to be similar
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to each other [32]. Thus, the features of ground truths get slightly

harder to be distinguished in the first place in some cases. For

class balancing, the modification on training data introduces ex-

tra noises and could incur performance degradation. However, the

degradation is slight, and DéjàVu always performs well.

In conclusion, the individual modules in DéjàVu (GRU feature

extractor, feature aggregator, and class balancing) in DéjàVu indeed

contribute to the overall performance.

5.3 RQ2: Performance in Various Situations

We investigate how DéjàVu performs with varying or incomplete

FDGs, insufficient training data, and different model architectures.

Due to the space limit, without loss of much generality, we present

results on part of the datasets.

10
−2

10
−1

(a) A

2

3

M
A

R

10
−2

10
−1

(b) B

5

10

M
A

R

60

80

A
@

k

70

80

A
@

k

MAR A@1 A@2 A@3 A@5

Figure 9: Impact of removed FDG edge fractions

5.3.1 Varying and Incomplete FDGs. The FDGs collected for a sys-

tem could be incomplete and vary over time due to insufficient

knowledge or software/deployment changes. To evaluate DéjàVu

under such cases, we randomly remove a fraction of FDG edges for

each failure and then train and evaluate DéjàVu. We repeated the

experiments ten times. As shown in Fig. 9, as the fraction increases,

the performance degrades, but the degradation is slight when the

fraction is not greater than 10%. When too many edges are removed,

the performance is worse than DéjàVu w/o AGG in Table 3 because

the random FDGs give wrong structural information for feature

aggregation. In conclusion, our approach can handle varying FDGs

and achieve relatively good performance with incomplete FDGs.
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Figure 10: Impact of the percent of used training data

5.3.2 Insufficient Training Data. In Fig. 10, we present the perfor-

mance when only part of the training data is used. As the training

set grows larger, DéjàVu performs better in all datasets. When more

than 50% of historical failures are used, the performance increases

slowly. A possible explanation is that we require only a few training

failures for each failure class due to the generalizability of DéjàVu.

Thus, it is possible to achieve good enough performance with much

fewer training data.
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Figure 11: Impact of the feature dimension 𝑍

5.3.3 Different Model Architectures. The model architecture is con-

trolled by 𝑍 (the dimension of features), 𝐻 (#GAT heads), and 𝐿

(#GAT layers). As shown in Fig. 11, the performance keeps steady as
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Figure 12: Impact of feature aggregator architecture

𝑍 changes in a large range. When 𝑍 is small, the feature extractors

and aggregators can be considered to use their former layers to

extract/aggregate features and use their latter layers to help map

the features into suspicious scores. Therefore, though the feature

is of small dimension, it can still keep enough information for the

classifier. In summary, it is acceptable to set 𝑍 to our default value

(3) when applying DéjàVu on other systems. Moreover, as shown in

Fig. 12, using multiple heads and layers improves the performance

compared with vanilla GAT in general. However, the performance

can degrade when H or L is too large. The best setting of 𝐻 and 𝐿

differ in different datasets. In practice, we set 𝐻 and 𝐿 to the default

values (4 and 8, respectively), and, when necessary, we can fine-tune

them in each online service system for better performance.

In conclusion, DéjàVu performs well in various situations.

5.4 RQ3: Efficiency
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We compare the localization and training time with the baselines

on servers with Xeon E5-2680 v4, 30G RAM, and GeForce 2080Ti. As

shown in Fig. 13, DéjàVu produces localization results for a failure

within one second, which is enough in practice. Compared with

manual localization (several minutes to tens of minutes, see § 2.3),

DéjàVu can automatically diagnose a failure much more rapidly.

Though the traditional machine learning models are fast, the time-

consuming time-series feature extraction (TS Feat. Ext. in Fig. 13)

makes them impractical. Then, though the training time will not

affect the efficiency of online localization, we analyze it to demon-

strate the scalability of DéjàVu. As shown in Fig. 13, though it costs

more time to train a DéjàVu model than most baselines, the overall

time consumption is not large. Note that the two random-walk

methods have no training stage. In Fig. 14, we further analyze the

training time for each epoch with respect to the number of failure

instances/metrics/failures with simulated data. The results show

that the training time of DéjàVu increases linearly to these factors,

and with GPU acceleration, the training time can be significantly

reduced. In conclusion, our approach is efficient and scalable.

5.5 RQ4: Generalization

We evaluate the generalizability of DéjàVu by comparing the per-

formance of previously seen (the ground truths are faulty in some
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Figure 15: The recommended ranks of the ground truths of

previously seen/unseen failures.

historical failures) and unseen failures. As shown in Fig. 15, for

DéjàVu, the ranks of ground truths of previously unseen failures

are close to those of previously seen failures. In contrast, iSQUAD

and JSS’20, perform significantly worse on previously unseen fail-

ures. It is because they cannot recommend failure units other than

those faulty in some historical failures. A decision tree is shared

inside each failure class and thus, can generalize in many cases.

RW@Metric and RW@FI can also generalize since they are heuris-

tic methods and do not rely on historical failures. However, their

overall performance is poor compared with DéjàVu. In conclusion,

DéjàVu has good generalizability to localize faulty failure units

effectively for previously unseen failures.

5.6 RQ5: Interpretation

5.6.1 Global Interpretation. We compare our global interpretation

method with two widely-used methods, LR (logistic regression)

and LIME [44, 48]. In Fig. 16, we present the decision tree given by

our interpretation method for OS Network failures in A. It shows

reasonable rules for discovering network-related issues. For exam-

ple, the path A○→ B○ leads to most normal failure units, and its

corresponding rule is that range count(Sent queue, max=1, min=-

1)>16.5→normal. When most values of Sent queue are within the

normal range (i.e., [-1, 1]), the send queue is not stuck, and the

network works as expected. The path A○→ C○→ D○→ E○ leads to

most faulty failure units. The first two conditions ( A○ and C○) mean

that many values of Sent queue are large, indicating the send queue

gets stuck. The third one ( D○) means that the ss total is abnormal.

We also confirmed with the engineers that the decision tree is

reasonable for this dataset.

For LR, we train LR models with exactly the same features and

targets as the decision trees in our interpretation method and take

the coefficients of the features as feature importances. In Fig. 17,

we present the top-5 feature importances for OS Network failures

in A. Compared with decision tree, logistic regression cannot give

illustrative rules but only importances.

LIME interprets individual predictions by learning a local linear

approximation of the model to interpret. In Fig. 18, we present the

average metric importances by LIME on all OS Network failures

in A for global interpretation. LIME gives only importance scores

as well as LR, which are not illustrative. Furthermore, LIME gives

very different metric importances for similar failures, which could

be confusing (see § 5.6.2).

Figure 16: A decision tree trained for the failure classOSNet-

work of A. Note that the metrics values are normalized.

Figure 17:The top-5 feature importances given by LR for the

failure class OS Network of A

Figure 18: The top-5 average metric importances given by

LIME on all OS Network failures in A

Table 4: The decision trees’ statistics for global interpreta-

tion

Dataset Accuracy #Nodes #Layers

A 94.45% 5.0 ± 7.1 2.3 ± 2.2
B 98.70% 49.3 ± 10.0 9.9 ± 11.0

In Table 4, we further present some statistics of the decision

trees for global interpretation in dataset A and B. The relatively

high accuracies show that the decision trees can mimic the deep-

learning models well.The sizes (i.e., the number of nodes and layers)

of the decision trees depend on the dataset scale. The large standard

deviations indicate they also vary in different failure classes.

Figure 19: The normalized metrics of the ground truth of a

failure (left) and its top-1 similar failure (right).

5.6.2 Local Interpretation. We compare our local interpretation

method with GNNExplainer [55], a state-of-the-art model-agnostic

interpretation method for graph neural networks, and LIME. In

Fig. 19, we present a failure of OS Network in A (𝑇1) and its top-

1 similar failure found by our method (𝑇2). By presenting 𝑇2 to

engineers, engineers can understand that we recommend os 018

Network for 𝑇1 because its failure scenario is similar to that of 𝑇2
in DéjàVu’s perspective. With the help of the failure ticket of 𝑇2,

engineers could easily understand the underlying failure scenario

of 𝑇1 and find correct mitigation process. As a result, the time to

diagnose and mitigate can be saved. For comparison, we present

the interpretations of 𝑇1 (left) and 𝑇2 (right) from GNNExplainer

in Fig. 20. GNNExplainer can only show engineers the important

neighbors (green) of the ground truth (red), which requires further

efforts to discover why they are important. In Fig. 21, we present

the top-5 metric importances of 𝑇1 and 𝑇2 given by LIME. LIME

gives very different metric importances for the two similar failures,

making engineers confused.

In summary, DéjàVu provides more helpful interpretation.

6 DISCUSSION

6.1 Lessons Learned

We summarize some lessons learned from our industrial experience

in compA. First, the current industrial practice of fault localization
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Figure 20: The local interpretations given by GNNExplainer

Figure 21: The local interpretations given by LIME

relies on the hard-earned intuition from engineers’ diagnosing ex-

perience, inspired by which we explore learning from historical

failures in this paper. The superiority of DéjàVu over the heuristic

or unsupervised methods demonstrates that learning from histor-

ical failures is effective for fault localization. Second, periodical

re-training is necessary in practice due to the frequent software

and deployment change. In Fig. 5, we propose re-training theDéjàVu

model after mitigating a new failure, which costs only tens of min-

utes at most each time. Besides, DéjàVu supports using a new FDG,

even with new failure units, for each new failure. Finally, in prac-

tice, there are also many non-recurring failures. Since they have

not occurred previously, the suspicious scores of the recommended

root causes by DéjàVu would be small. In such cases, we will warn

engineers of the potential non-recurring failures.

6.2 Limitations and Future Works

Not only the faulty metric names but also their patterns are helpful

in determining which kind of failure occurs. Thus, we can integrate

metric patterns in the definition of failure units in the future.

Engineers usually expect failure localization solutions compati-

ble with their existing knowledge. Currently, engineers can integrate

it into DéjàVu by labeling ground truths of historical failures or

manually specifying FDGs and failure units. However, such integra-

tion is neither flexible nor accurate enough for all kinds of diagnosis

knowledge or rules, which is also a limitation of DéjàVu.

In different online service systems, engineers may define com-

pletely different failure units, so currently, we cannot transfer a

trained model to another system. However, transfer learning in

similar systems could be our future work.

The frequent changes in modern online service systems make

concept drifts common. In such cases, without enough new failures,

wemay re-train theDejaVumodel by analyzing themetrics’ concept

drift pattern and adapting the historical metrics accordingly.

6.3 Threats to Validity

The internal threat to validity mainly lies in our implementation.

To reduce it, our implementation is based on mature frameworks

(§ 5.1.3) and is carefully checked and tested.

The external threat to validity mainly lies in the study subjects.

We evaluate DéjàVu on four systems, which cannot represent all

online service systems. But we believe our approach is general

enough for two reasons. First, the four systems are from different

companies and have completely different architectures. Particularly,

DéjàVu is even applicable to traditional software systems (Oracle

database for C). Second, our approach is applicable to other online

service systems, as the input data of it (e.g., metrics, historical

failures, and the relationships between components) are common,

and DéjàVu is scalable as discussed in § 5.4. In the future, we will

reduce this threat by evaluating DéjàVu on more systems.

The construct threat to validity mainly lies in the hyperparam-

eters and evaluation metrics. We tuned the hyperparameters for

DéjàVu and baselines by grid-search following existing works [11].

We also use widely used evaluation metrics (see § 5.1.4).

7 RELATED WORK

Fault localization. Most existing fault localization methods [9,

22, 27, 38, 52] are unsupervised and heuristic. For example, Moni-

torRank [27] takes the historical and current metrics as its input

and ranks all root cause candidates with random walk strategy on

call graphs. Prior works also use historical failures to find similar

historical failures [6, 7, 41, 47] or train supervised localization mod-

els [18, 37, 60]. For example, MEPFL [60] treats faulty microservice

localization for traces as a multi-class classification problem and

directly builds supervised machine learning models (e.g., Random

Forest [8]) for it. FluxRank [37] ranks suspicious metric digests in a

supervised manner, which are a group of similar metrics and cannot

indicate the fault type as failure units do. Though not directly local-

izing root causes in a supervised manner, some prior works [40]

utilize historical failures to tune parameters. Other than metrics,

logs [24, 35, 46] and traces [34, 56, 60] are extensively studied for

fault localization by many prior works.

Interpretability. Most existing fault localization methods [6, 7,

18, 37, 47, 59] do not provide interpretation explicitly. iSQUAD [41],

Fingerprint [6], and JSS’20 [7] work by finding similar historical

failures. As discussed in § 4.1, many existing interpretation methods

for deep-learning models [5, 17, 57] focus on understanding the

inner model mechanism and do not meet our requirements.

Deep learning-based program debugging aims to localize

the faulty code elements by deep learning techniques with various

features, such as spectrum-based suspiciousness, mutation-based

suspiciousness, and complexity-based fault proneness [26, 30, 33,

54]. In contrast, the faulty failure units we are concerned about

could be either software bugs (e.g., when the components are ser-

vices), deployment issues, or hardware failures.

8 CONCLUSION

This paper proposes an actionable and interpretable fault localiza-

tion approach, DéjàVu. The large prevalence of recurring failures

motivates us to use supervised models to learn fault localization

from the numerous historical failures. We design a novel deep

learning-based model based on graph attention networks, which

achieves good performance for this limited scenario (i.e., recurring

failures). To be actionable, our model aims to localize faulty loca-

tions and types. To be interpretable, we propose two interpretation

methods. An extensive study on four systems demonstrates the ef-

fectiveness (the average MAR of 1.66∼5.03) and efficiency (less than

one second localization time for one failure) of DéjàVu. The results

also confirm the contributions of the main modules in DéjàVu. Par-

ticularly, the results on production systems and real-world failures

demonstrate our practical performance.
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