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Online service systems have 
become an indispensable part of 

our daily life.
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Online service systems comprise 
many different components (e.g., 
services, containers and servers).

The large scale and complex 
dependencies among components 
make system failures inevitable and 

hard to diagnose.
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Various metrics are closely monitored on a 24×7 
basis. They serve as the most direct signals to the 

underlying failures



Recurring Failures
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Recurring failures are repeated failures 
of the same kinds at different locations. 
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How to determine recurring failures? Recurring failures should be 
discovered, mitigated and fixed in similar ways in engineers’ perspective.

Reasons of Recurring



Recurring Failures
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We analyzed 576 failure tickets, spanning one year, of a 
production banking information system.

Recurring failures are largely 
prevalent in practice.

Typical recurring failures:
• Failed disks
• Unavailable third-party services
• Missing database indexes
• Slow SQLs

Typical non-recurring failures:
• Design flaw
• Data inconsistency
• Code defects
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Various metrics are monitored on different components.

Failure propagates from faulty components due to the 
complex dependencies among components. 

Generalizing to previously unseen failures (no failures 
of the same kinds have occurred at the same 

locations).

It is hard for engineers to trust the localization results 
from black-box models without interpretation.



DéjàVu Overview
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The name DéjàVu comes from a French phrase (Déjà vu) which means“already seen”.



Failure Dependency Graph (FDG)
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The vertices of an FDG is all the candidate failure units of an online service system
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Engineers are supposed to summarize the 
actionable fault types of historical failures and 

the corresponding input metrics 

We can generate all the candidate failure units by combining all 
components and the corresponding fault types.
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Failure Dependency Graph (FDG)
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We connect the candidate failure units on an FDG by 
the call or deployment relationships of the components

FDGs are automatically constructed for different failures
since FDGs are dynamic due to frequent changes
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Model Architecture
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Interpretation Methods
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Local interpretation: finding similar 
historical failures based on the 

aggregated features
Global interpretation: using simpler but 

interpretable models to approximate 
(rather than outperform) it as accurately 

as possible.



Evaluation: Datasets
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Our experiments are conducted on four systems and 601 failures, 
including three production systems and 99 real-world failures.

The typical failure injection types include CPU/memory stress, 
database session limit, and network packet delay/loss.

Dataset #Failures #Metrics #Failure Units #Failure Classes System Failures
𝒜 188 710 102 18 A production system Injected
ℬ 158 2419 189 20 A production system Injected
𝒞 99 2594 41 41 A production system Real-world failures
𝒟 156 5724 1044 23 An open-source benchmark Injected



Evaluation: Overall Performance
Category Approach Mean Average Rank 

(MAR) 
Top-3 Accuracy p-value 

(MAR, t-test)
Supervised DéjàVu 2.82 87.45% ---
Similar failure 
matching

JSS’20 103.56 30.63% 1.1e-16
iSUQAD 80.29 34.34% 1.8e-14

Traditional  
supervised 
ML

Decision Tree 49.25 63.90% 7.3e-17
Gradient Boosting 12.83 71.59% 1.5e-10
Random Forest 6.20 88.78% 2.1e-08
SVM 33.34 26.48% 3.1e-11

Unsupervised 
heuristic

RandomWalk@Metric 36.19 19.13% 7.4e-17
RandomWalk@FI 135.44 20.49% 8.7e-18
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The localization performance of DéjàVu significantly outperforms the baselines.



Limitations and Future Work
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Non-recurring failures: the localization models should be able to 
identify potential non-recurring failures and notify engineers.

Frequent changes: the localization models should be updated after 
every change without relying on new failures.



Thank you

26

https://github.com/NetManAIOps/DejaVu

https://github.com/NetManAIOps/DejaVu

