
Actionable and Interpretable Fault Localization
for Recurring Failures in Online Service Systems

Zeyan Li, Nengwen Zhao, Mingjie Li, Xianglin Lu, Lixin Wang,
Dongdong Chang, Xiaohui Nie, Li Cao, Wenzhi Zhang, Kaixin Sui,

Yanhua Wang, Xu Du, Guoqiang Duan, Dan Pei

1

ESEC/FSE 2022

Table of Contents
• Background
• Design
• Evaluation
• Limitations and Future Works

2

Background

3

Online service systems have
become an indispensable part of

our daily life.

Videos

Social
network

Online
shopping

Search
engine

Background

4

Span2Span1
Span3

Span4
User
requests

Containers

Infrastructure Server Storage Network

Container
Process

Container
Process

Container

Process

Service B Service C

Service A ServiceD
Services

Service E

Online service systems comprise
many different components (e.g.,
services, containers and servers).

The large scale and complex
dependencies among components
make system failures inevitable and

hard to diagnose.

Monitoring Metrics

5

Span2Span1
Span3

Span4
User
requests

Containers

Infrastructure Server Storage Network

Container
Process

Container
Process

Container

Process

Service B Service C

Service A ServiceD
Services

Service E
QPS
Latency

CPU Util
Memory util

CPU Util
Thoughput
Load average

Various metrics are closely monitored on a 24×7
basis. They serve as the most direct signals to the

underlying failures

Recurring Failures

6

Recurring failures are repeated failures
of the same kinds at different locations.

Wrong fix

Delayed fix

High utilization

Hardware issues

Third-party services

How to determine recurring failures? Recurring failures should be
discovered, mitigated and fixed in similar ways in engineers’ perspective.

Reasons of Recurring

Recurring Failures

7

We analyzed 576 failure tickets, spanning one year, of a
production banking information system.

Recurring failures are largely
prevalent in practice.

Typical recurring failures:
• Failed disks
• Unavailable third-party services
• Missing database indexes
• Slow SQLs

Typical non-recurring failures:
• Design flaw
• Data inconsistency
• Code defects

Core Ideas

8

Service1

Service2 Service3 Docker1

Docker2 Docker3

Server1

DB1

Server2 Server3 Server4

call
deployed on

Docker2 CPU Exhausation

RCA rules

Service1

Service2 Service3 Docker1

Docker2 Docker3

Server1

DB1

Server2 Server3 Server4

call
deployed on

Docker2 CPU Exhausation

ML
model

Maually
summarize Train

Core Ideas

9

Service1

Service2 Service3 Docker1

Docker2 Docker3

Server1

DB1

Server2 Server3 Server4

call
deployed on

Service1

Service2 Service3 Docker1

Docker2 Docker3

Server1

DB1

Server2 Server3 Server4

Docker2 CPU Exhausation Docker3 CPU Exhausation

Failure symptoms

Root causes

ML
model

Monitoring metrics
and the
dependency graph

Faulty Failure Unit Fault location + fault type Fault location + fault type

Challenges

10

Service1

Service2 Service3 Docker1

Docker2 Docker3

Server1

DB1

Server2 Server3 Server4

call
deployed on

Docker2 CPU Exhausation

ML
model

Various metrics are monitored on different components.

Failure propagates from faulty components due to the
complex dependencies among components.

Generalizing to previously unseen failures (no failures
of the same kinds have occurred at the same

locations).

It is hard for engineers to trust the localization results
from black-box models without interpretation.

DéjàVu Overview

11

Monitoring
system

Failure
occurs

Historical
failures

DéjàVu
Model

Engineers

Interpretation
methods

Localization
results

Interpretation

Manually
confirmed
root causes

Offline trainingMetrics

Failure
dependency graph

Trigger

Alerts

The name DéjàVu comes from a French phrase (Déjà vu) which means“already seen”.

Failure Dependency Graph (FDG)

12

The vertices of an FDG is all the candidate failure units of an online service system

Service

Docker

DB

Server

CPU Exhaustion : CPU utilization, I/O wait...
Packet loss：Recv/Sent packets，Recv/Sent bytes.....
Out of memry: free bytes, cached bytes, total bytes......

Engineers are supposed to summarize the
actionable fault types of historical failures and

the corresponding input metrics

We can generate all the candidate failure units by combining all
components and the corresponding fault types.

Service1
Requests

Service2
Requests

Service3
Requests

DB1
Requests

DB1
Space

DB1
State

DB1
Session

DB1
Load

DB1
Memory

Docker1
Thread

Docker1
CPU

Docker1
Full GC

Docker1
Session

Docker1
Memory

Docker2
Thread

Docker2
CPU

Docker2
Full GC

Docker2
Session

Docker2
Memory

Docker3
Thread

Docker3
CPU

Docker3
Full GC

Docker3
Session

Docker3
Memory

......

Failure Dependency Graph (FDG)

13

We connect the candidate failure units on an FDG by
the call or deployment relationships of the components

FDGs are automatically constructed for different failures
since FDGs are dynamic due to frequent changes

Service1
Requests

Service2
Requests

Service3
Requests

DB1
Requests

DB1
Space

DB1
State

DB1
Session

DB1
Load

DB1
Memory

Docker1
Thread

Docker1
CPU

Docker1
Full GC

Docker1
Session

Docker1
Memory

Docker2
Thread

Docker2
CPU

Docker2
Full GC

Docker2
Session

Docker2
Memory

Docker3
Thread

Docker3
CPU

Docker3
Full GC

Docker3
Session

Docker3
Memory

......

Model Architecture

15

Docker2 CPU Exhaustion

Input metrics
of a failure unit

GRU
+CNN

Unit-level
feature

GAT

Aggregated
Feature

MLP score ∈ [0, 1]

FDG and the unit-level
features of other
failure units

Challenge 1 Challenge 2

Challenge 3

How likely
the failure unit
is faulty

Interpretation Methods

18

Local interpretation: finding similar
historical failures based on the

aggregated features
Global interpretation: using simpler but

interpretable models to approximate
(rather than outperform) it as accurately

as possible.

Evaluation: Datasets

19

Our experiments are conducted on four systems and 601 failures,
including three production systems and 99 real-world failures.

The typical failure injection types include CPU/memory stress,
database session limit, and network packet delay/loss.

Dataset #Failures #Metrics #Failure Units #Failure Classes System Failures
𝒜 188 710 102 18 A production system Injected
ℬ 158 2419 189 20 A production system Injected
𝒞 99 2594 41 41 A production system Real-world failures
𝒟 156 5724 1044 23 An open-source benchmark Injected

Evaluation: Overall Performance
Category Approach Mean Average Rank

(MAR)
Top-3 Accuracy p-value

(MAR, t-test)
Supervised DéjàVu 2.82 87.45% ---
Similar failure
matching

JSS’20 103.56 30.63% 1.1e-16
iSUQAD 80.29 34.34% 1.8e-14

Traditional
supervised
ML

Decision Tree 49.25 63.90% 7.3e-17
Gradient Boosting 12.83 71.59% 1.5e-10
Random Forest 6.20 88.78% 2.1e-08
SVM 33.34 26.48% 3.1e-11

Unsupervised
heuristic

RandomWalk@Metric 36.19 19.13% 7.4e-17
RandomWalk@FI 135.44 20.49% 8.7e-18

20

The localization performance of DéjàVu significantly outperforms the baselines.

Limitations and Future Work

23

Non-recurring failures: the localization models should be able to
identify potential non-recurring failures and notify engineers.

Frequent changes: the localization models should be updated after
every change without relying on new failures.

Thank you

26

https://github.com/NetManAIOps/DejaVu

https://github.com/NetManAIOps/DejaVu

