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Abstract—Using large-scale multi-dimensional data for root
cause analysis (MDRCA) is vitally important for online software
services. It helps operators narrow down the scope of anomalies
and failures quickly and localize the root cause to a finer
granularity. However, most existing MDRCA algorithms can
only solve low-dimensional problems. When dealing with high-
dimensional data, the complexity of these algorithms would
significantly increase, and even some algorithms would no longer
work. Intuitively, passing only a subset of attributes rather than
full attributes can improve the performance of these MDRCA
algorithms. However, it is challenging due to data imbalance and
novel root cause attributes. To better understand the problem of
root-cause-oriented attribute selection (RCOAS), we conduct a
preliminary study based on real-world data. We find that there
exist several straightforward rules to filter out some attributes.
In addition, we reveal that existing approaches do not fit the
requirements of RCOAS. Motivated by the study, we propose
an RCOAS approach, RC-LIR, to select a subset of attributes
for downstream algorithms. RC-LIR first performs rule-based
selection. Then it improves a feature selection algorithm by
two strategies, i.e., scaling up imbalanced data and considering
the redundant cost. Experiments on 1000 real-world fault cases
demonstrate that RC-LIR can achieve an F1-score of 0.88, outper-
forming the baseline approaches by at least 0.15. Furthermore,
our experiments with four widely adopted MDRCA algorithms
show that integrating RC-LIR can lead to more effective and
efficient MDRCA.

Index Terms—Multi-dimensional Data, Attribute Selection,
Root Cause Analysis, Logistic Iterative Relief

I. INTRODUCTION

MULTI-DIMENSIONAL data is prevalent in online soft-
ware services, and it is widely used for Root Cause

Analysis (RCA) [1], [2], [3], [4]. Generally, operators obtain
multi-dimensional data by instrumenting agents that contin-
uously record multi-dimensional logs. For example, Table I
shows several access logs of an online software service. Each
log contains a timestamp, a key performance indicator (KPI)
(i.e., is success) and 6 attributes, i.e., user id, user name,
request type, src, dst, home page. The KPI is the main con-
cern of operators, for it usually reflects the user experience
and service provider’s revenue. When the KPI suffers from
an abnormal increase or decrease, operators need to localize
the root cause timely. Typically, operators aggregate the raw
logs to get formal multi-dimensional data. Table II lists the

* Yongqian Sun is the corresponding author.

TABLE I
ACCESS LOGS AS A EXAMPLE OF MULTI-DIMENSIONAL DATA

time-
stamp

user
id

user
name

request
type src dst home

page
is

success

16251
04800 1203 alice123 0 host0 server1 example

.com 1

16251
04800 1450 booob 1 host2 server0 example

.com 1

16251
06600 51 carol95 0 host0 server1 example

.com 0

16251
06600 1450 booob 2 host0 server1 example

.com 1

16251
08400 51 carol95 0 host0 server1 example

.com 0

16251
08400 1203 alice123 0 host3 server2 example

.com 1

16251
08400 1450 booob 1 host1 server3 example

.com 1

TABLE II
EXAMPLE OF AGGREGATED MULTI-DIMENSIONAL DATA

timestamp request type src dst success ratio
(#success/#request)

1499961600 0 host1 server0 120/120

1499961600 1 host2 server3 1/80
1499961600 0 host1 server2 141/141

1499961600 0 host1 server1 302/305

1499961600 1 host2 server2 5/154
1499961600 2 host0 server2 129/130

1499961600 0 host2 server1 132/132

1499961600 2 host1 server2 147/149

1499961600 1 host2 server1 2/113

aggregated multi-dimensional data. Logs with the same times-
tamp, request type, src, and dst are grouped in this case. In the
aggregated table, we can easily find the anomalously low KPI
values (i.e., 1/80, 1/154 and 1/113), and the corresponding root
cause is a two-attribute combination, i.e., (request type = 1,
src = host2).

Over the years, researchers have proposed many automatic
multi-dimensional root cause analysis (MDRCA) approaches,
e.g., Apriori [5], [6], iDice [2], Hotspot [3], and Squeeze [4].
Typically, the root cause localized by these algorithms is
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Fig. 1. The time and memory consumption of Squeeze, one of the state-of-
the-art MDRCA algorithms, as the number of attributes increases

a combination of certain attributes and values. In the case
of Table II, the root cause attributes are request type and
src, and the values are 1 and host2, respectively. There can
be coarse-grained root causes (i.e., a combination of fewer
attributes) and fine-grained root causes (i.e., a combination
of more attributes). These approaches are proposed under
varied architectures, and target root causes with different
granularities. Operators can choose the MDRCA algorithm
according to the need of their circumstances and their own
favors. We will introduce some typical multi-dimensional RCA
approaches in Section II-A.

However, most existing MDRCA algorithms can only work
under low-dimensional conditions (usually less than 10 di-
mensions). The efficiency and effectiveness of these algorithms
degrade dramatically when the number of dimensions becomes
large. On the one hand, the computational consumption grows
significantly, making these algorithms inefficient. For exam-
ple, Fig. 1 shows the time and memory consumption when
applying Squeeze [4] to conduct MDRCA with a different
number of dimensions. We used a 32-core CPU and 256GB
of RAM to run Fig.1. Please note that the Y-axis of Fig.1
is logarithmic. We can see that both the elapsed time and
memory usage increase rapidly. Here, adding ten attributes will
need 146x of computing power, while more attributes are also
common in production environments. The situation worsens
when there are over 13 attributes, for Squeeze runs into a crash
due to out-of-memory (OOM), even with 64GiB of memory
available. Other MDRCA algorithms face a similar situation.
The reason is that the analysis of multi-dimensional data often
needs to enumerate subsets of attributes, the number of which
increases exponentially (m attributes results in 2m − 2 valid
subsets). On the other hand, the large search space reduces the
probability that the true root cause can be found, thus affecting
the effectiveness of MDRCA algorithms.

The curse of dimensionality lies in the nature of multi-
dimensional data analysis, thereby undermining a wide range
of MDRCA algorithms. Instead of proposing a new
MDRCA algorithm, we attempt to propose a solution that
can benefit a variety of existing MDRCA algorithms. We
use the term RCOAS (Root-Cause-Oriented Attribute Selec-

tion) to describe the task. Specifically, given the raw multi-
dimensional data, our task is to filter out some attributes and
then pass the filtered data to downstream MDRCA algorithms.
Downstream means we do not modify any existing MDRCA
algorithms, thus keeping their applicability. By filtering out
root-cause-irrelevant attributes, we ease the problem of too
many dimensions without loss of the accuracy of downstream
algorithms. Naturally, feature selection (FS), which rules out
redundant or irrelevant features in machine learning, comes
into our sight.

However, applying FS to select attributes for MDRCA
algorithms faces the following challenges (more details in
Section II-C):
1) Native FS does not fit RCOAS. Native FS either cannot

work on categorical data, which is prevalent in RCOAS,
or does not work well on RCOAS because the target is
different.

2) Data imbalance. RCOAS faces imbalanced data
(i.e., #success cases are much more than #failure
cases), while FS usually works on balanced data.

3) Novel root cause attributes. An attribute can be the root
cause attribute for a new fault, even if it has never been a
root cause attribute for any historical faults.

To tackle the challenges above, we propose an RCOAS ap-
proach in this paper, named RC-LIR: (i) based on an improved
LIR algorithm [7], RC-LIR could handle the categorical values
perfectly; (ii) RC-LIR uses an augmentation coefficient in LIR
to sovlve the data imbalance problem; (iv) RC-LIR involves
an redundant cost to consider the influence of no-fault values.

The contributions of this paper are summarized as follows:
1) To the best of our knowledge, we are among the first

to identify the RCOAS problem. Precise RCOAS can
reduce the computation consumption of MDRCA as well
as improve their effectiveness in finding root causes. We
formally define the problem, describe its difference from
feature selection, and state its relationship to MDRCA.

2) We propose an RCOAS approach RC-LIR. RC-LIR first
applies rule-based selecting to discard obviously redun-
dant attributes. Moreover, RC-LIR improves a feature
selection algorithm LIR by three modifications: defining
categorical distance for challenge 1, partially scaling up
origin data for challenge 2, and adding redundant cost for
challenge 3.

3) We evaluate the performance of RC-LIR and downstream
MDRCA algorithms using large-scale multi-dimensional
data from a real-world enterprise. The results show that
RC-LIR achieves an F1-score of 0.88, outperforming
the baseline algorithms by 0.15, and it does improve
the effectiveness and efficiency of downstream RCA
algorithms a lot.

II. BACKGROUND AND MOTIVATION

A. Necessity of Attribute Selection

Root cause analysis algorithms need to analyze the occurred
fault and localize them to a set of attribute-value pairs to
help recover from the fault. For example, in Table II, we
can localize the fault to request type=1 & src=host2 (i.e.,
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TABLE III
AN EXAMPLE OF FAULT CASE

timestamp user id user name request
type src dst home page digest . . . is success

1625106000 1203 alice123 1 host2 server2 example.com 92ccdd . . . 0
1625106000 1450 bob98 1 host1 server3 example.com 8ecc9b . . . 1
1625106060 51 carol95 0 host2 server1 example.com 2e7812 . . . 1
1625106060 1450 bob98 2 host3 server2 example.com 66aacc . . . 1
1625106120 51 carol95 1 host2 server1 example.com 2a6d14 . . . 0
1625106120 1203 alice123 2 host3 server2 example.com 4ada68 . . . 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1625106120 1450 bob98 1 host2 server3 example.com c233a2 . . . 0

multi-dimensional attributes KPI

N records

root cause attributesRule4 Rule2 Rule1Rule3

the shaded cells). MDRCA algorithms usually drill down or
enumerate data to check the potential contribution of each
attribute-value pair to the fault and make the selection.

We can find that the above algorithms need to search
results in a multi-dimensional space of subsets of attributes,
which reduces the efficiency and accuracy in the case of
high-dimension. Although some algorithms use pruning [2]
and other strategies [8], it is still difficult to eliminate the
impact (e.g., the efficiency of Squeeze in Fig. 1). Using
all attributes of the multi-dimensional data as input [3], [4]
without any filter, as we mentioned in Section I, could lead
to the curse of dimensionality for some MDRCA algorithms,
which will cause the elapsed time of the algorithm to rise
to an unacceptable level. Another drawback is that many
downstream algorithms [1], [2] will be affected by redundant
attributes, which reduces the effect of analysis. Some RCA
algorithms [4] may even crash when there are too many
attributes.

B. Definition of Attribute Selection

We first introduce some important terms concerning an
RCOAS (Root-Cause-Oriented Attribute Selection) algorithm.
Then we give the formal definition of RCOAS.

Usage. As discussed in Section II-A, directly applying
MDRCA algorithms faces the problem of too many attributes.
Therefore, operators need to apply RCOAS to identify the
critical attributes of a system periodically. When a new fault
case is alerted, the operators only pass the critical attributes
to MDRCA algorithms to determine the actual root cause.
To retain the probability of finding the true root cause, we
want to keep the possible root-cause-related attributes as well
as filter out root-cause-irrelevant or redundant attributes when
conducting RCOAS.

Fault case and system. A fault case can be regarded as a
period of time where the KPI is degraded. Operators diagnose
an online fault case by analyzing the data during the fault
case. The fact that fault cases are much less than data used in
ML cripples most common supervised models (more details
in Section II-C).

Fig. 2 shows four example fault cases from the same system.
In practice, the root cause attributes and values of fault cases
can be different, often subject to the internal characteristics of

time

multi-dimensional attributes

Fault Case #1 A B C D E F G H I J

Fault Case #2 A B C D E F G H I J

Fault Case #3 A B C D E F G H I J

Fault Case #4 A B C D E F G H I J

unseen root cause attribute

Fig. 2. The root cause attributes of four independent fault cases from the
same systems. Each cell represents an attribute, and the shaded cell means
the root cause attributes of the fault case. Only after the happening of fault
case #4 and a thorough investigation can we can know that the attribute B
can be root cause attribute. In other words, summarizing history fault cases
is insufficient for RCOAS.

a system. Even if two systems share the same definition and
collection of attributes, the probabilities of the same attribute
being a root cause can be different.

The problem of RCOAS concerns a system rather than a
single fault case, because there can be an unseen root cause
attribute for a newly alerted fault case (Fault Case #4 in
Fig. 2). In contrast, MDRCA only cares about the exact root
cause localization for a specific fault case. We believe that
combining RCOAS and MDRCA brings more effectiveness
and efficiency, motivating us to propose an RCOAS solution.

Multi-dimensional attribute data. N denotes the number
of total records. As shown in Table III, there are the attribute
part and the KPI part of a record. For the KPI part, we treat
failure indicating KPI as positive (e.g., 0 in Table III), and
normal status as negative (e.g., 1 in Table III).

Root cause labeling v.s. KPI. The root cause is defined
at the level of fault case, i.e., one fault case corresponds to
one root cause (yet the root cause can be composed of several
attributes and values). KPI is observed at the level of record,
i.e., one record corresponds to one component of KPI. Note
that root cause labeling is different from KPI. Supervised
FS models utilize the KPI, but not a root cause, thus degrading
their applicability for RCOAS, i.e., they try to predict the KPI
but not the root cause. Moreover, we cannot train a supervised
model on root cause labeling due to the high overhead of
manual labeling (more details in Section II-C).
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Definition of RCOAS. Formally, given a fault case y, and
A as the set of all attributes of the raw multi-dimensional data,
the goal of RCOAS is using the data of y to infer S:

max
S

|S ∩ R| s.t. (S ⊊ A) ∧ (|S| ≪ |A|) , (1)

so that we can run MDRCA on S, a subset of attributes. R is
the set of critical attributes (possible root cause attributes) of
the system where y takes place. ∩ is the union operation on
sets. ∧ is the “logical and” operation.

C. Preliminary Study and Challenges

In brief, attribute selection is about discarding and keeping
attributes. But determining whether to discard or keep an
attribute is not easy. We conduct an empirical study using
1000 fault cases from a real-world production environment.
There are 45 attributes, and the critical attributes of these fault
cases are labeled by experienced operators (for more details,
see Section IV-A1).

We find that there are always attributes in the raw multi-
dimensional data that will never become a root cause and
should be filtered out. Next, we have three observations
on the real-world multi-dimensional data that show attribute
redundancy.

1) There are some columns that have great information
gain but are not of analytical value and are just noise
during maintenance. A simple example is the column
access digest in Table III. These attributes of any two
records are unlikely to be identical, which means that the
algorithm cannot classify the two attributes. More impor-
tantly, it is difficult for both operators and algorithms to
derive valuable information from these two attributes (the
id may imply some sort of chronological order, but we
already have a timestamp). Therefore, we can think of
these two attributes as redundant for the RCA process.

2) In Table III, the value of column home page is always
example.com, which means it does not contain any infor-
mation gain and is, therefore, a redundant attribute.

3) Similarly, in the given table, the values of column user id
and username correspond one to one, such as a user
with the user id of 103 is alice123. Therefore, when
analyzing multi-dimensional data, we can simply ignore
one of the attributes, such as user id, only need to analyze
username, which makes us think user id is redundant as
an attribute.

The above observations give our straightforward rules to
discard some attributes, but determining what attributes to
keep is far more difficult due to the highly heuristic nature
of root cause analysis. As we discussed in Section I, we can
introduce feature selection methods to the multi-dimensional
data attribute selection. One of the popular techniques in FS
is to compute KL Divergence on features (i.e., attributes) and
target variables (i.e., KPI). Fig. 3 shows the ineffectiveness of
selecting attributes entirely up to KL divergence. If we select
attributes to an acceptable number for downstream algorithms
(e.g., less than 10 attributes), we can only cover 0.451% of the
cases, thus missing the root-cause-attributes of a large number
of fault cases (point A of Fig. 3); if we want to cover more than

0
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0.6

0.8

1

A(10, 0.451)

B(34, 0.863)

cd
f

10 20 30 40 45
0

0.1

0.2

0.3

Top N Attributes

pd
f

Fig. 3. Fault case coverage using popular feature selection technique. We
compute the KL divergence of each attribute and select the top N attributes
for 1000 real-world fault cases.

80% of the fault cases, the number of attributes will be too
many (e.g., more than 34 attributes) for downstream algorithms
to consume (point B of Fig. 3).

Besides the KL Divergence we discussed above, there are
many more complex and accurate FS methods. However, as
we will mention in the challenge 1 below, most of them are
unsuitable for RCOAS. Specifically, multi-dimensional data
poses the following additional challenges to attribute selection:

Challenge 1: Native FS methods are not suitable for
RCOAS. We need to carefully select the FS methods and
modify them to adapt to RCOAS. The defects of existing FS
methods (which can be mainly divided into filter methods,
embedded methods, and wrapper methods) are as follows:

a) Many filter FS methods, such as the Laplacian Score [9]
and Relief [7], can not handle categorical values (values
are ones of different types, e.g., user id in Table III) in
the multi-dimensional data since they need to calculate
the mean, variance, norm, distribution, etc., which are not
natively available for the categorical value. For example,
you cannot calculate the mean value of user id in Table III.
The KL Divergence is one of the few filter methods that
are suitable for categorical values, but it performs poorly
according to our evaluation. In our approach, we make
some modifications to the Relief-based algorithm so that
its calculation can be applied to categorical values.

b) Some FS methods, especially embedded methods [10], [11],
[12] and wrapper methods [13], [14], will call a specific ML
algorithm to fit KPI by a subset of features, then evaluate the
score of the feature subset by the fitting degree. However,
for the RCOAS problem, our goal is to help the MDRCA
to localize the root cause but not to fit the KPI, and the root
cause and the KPI do not have one-to-one correspondence.
This inconsistency leads to worse results of the FS methods.

c) For those embedded methods and wrapper methods like
SVM, it is neither feasible to call an MDRCA algorithm and
fit the root causes instead of the KPI because evaluating the
MDRCA algorithm will need manually root cause labeling,
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which is not easily available in our problem.
d) Typical non-FS dimensionality reduction algorithms

(e.g., Factor analysis, discriminant analysis, PCA) will
generate new dimensions that change the attributes.
However, our requirement for RCOAS is to reduce the
dimension of attributes for RCA, but cannot change
the meaning of attributes, and we cannot accept the
transformation of attributes.
Challenge 2: Data imbalance. As we will discuss in Sec-

tion VI, most filter FS methods [7], [9] treat the problem as a
binary or multi-classification problem, relying on fault labels.
Here, fault labels mean KPI (e.g., is success in Table III)
but no root cause labels. However, there is always the data
imbalance problem on fault labels due to faults being very rare
among the whole dataset (in our dataset, 1 : 34.71), which will
be really challenging [15] for the FS methods.

Challenge 3: Faults in the training dataset cannot cover
all the possible root cause attributes. Most existing su-
pervised FS methods [13], [14], [16] will assume that the
critical attributes and their values (for MDRCA, root causes)
are independent and identically distributed among the training
dataset and the test dataset, and the training dataset can
fully cover the typical cases in the test dataset. However, in
RCOAS, faults in the training dataset cannot cover all the
possible root cause attributes due to the existence of 0-day
faults (faults that never happened before) and rare faults. For
example, as we discussed in Fig. 2 before, root cause B is
an unseen root cause in the training dataset. Therefore, the
FS method that only learns from faults will not be able to
make a comparison between A and B, while A is a redundant
attribute for MDRCA, but B is not. In our approach, we will
try to remove A by comparing the redundancy of the attributes.

III. APPROACH

A. Overview of RC-LIR

In this paper, we propose an approach RC-LIR, an improved
FS algorithm, to solve the RCOAS problem. Fig. 4 shows the
overall framework of RC-LIR. At first, we apply a rule-based
selecting process before the core RC-LIR approach, which can
significantly speed up the approach and reduce false positives.
For challenge 1, RC-LIR adopts a relief-based FS algorithm
LIR, and improves it by redefining the distance function to
accommodate the categorical values. Then, to tackle the data
imbalance problem of challenge 2, RC-LIR scale up the
influence of positive samples by adding an augmentation co-
efficient. In addition, RC-LIR consider the redundant cost of
no-fault values while logistic regression to overcome challenge
3.

B. Rule-Based Selecting

Before starting the core part of the algorithm, we will
remove the obvious redundant attributes according to the rules
described in Section II-C.

1) According to the first rule, we first remove the attributes
that have no analysis value due to all values being too
unique. If all values of an attribute are strictly unique,

Fig. 4. Overview of RC-LIR

we will remove this attribute. Similarly, if all values of
an attribute do not have enough support for analysis,
we will remove this attribute. In our algorithm, we set
MIN SUPPORT to max (1/N, 0.001), where N is the
number of records, and all the attributes that fail to meet
MIN SUPPORT will be removed.

2) After that, if all values of an attribute are the same, it
will also be removed.

3) Finally, after the first two rules are applied, if the infor-
mation gain of an attribute relative to another attribute is
0, it will also be removed. In particular, if two attributes
are redundant to each other, only one of them should be
removed.

4) The algorithm will find a representative data timestamp
attribute and discard it in the following steps because
we think that the timestamp is indispensable for most
algorithms, so we always keep the timestamp attribute.

The bottom of Table III illustrates the application of the
four rules. Through the automatic and quickly rule-Based
selecting process, we reduce the running time of RC-LIR.
Our experiments show that this rule-based selecting process
reduces the average running time of the whole algorithm from
32.2 seconds to 24.6 seconds.

C. Improved LIR

Facing challenge 1 in Section II-C, we chose LIR as the
base algorithm of RC-LIR due to the following reasons: i)
we can make RC-LIR applicable to multi-dimensional data by
defining the distance function of multi-dimensional data. ii)
Relief-based algorithms do not rely on a specific ML algorithm
to evaluate the weights of features.

Relief algorithm: Relief [7] is the base algorithm of LIR
and our RC-LIR algorithm. At every training epoch of Relief,
the algorithm randomly picks x from the dataset. Then, the
algorithm searches for its two nearest neighbors: one from
the same class (called nearest hit, NH(x)) and the other from
the other class (called nearest miss, NM(x)). By NH(x) and
NM(x), the weight w could be updated by
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w = w + |x−NM(x)| − |x−NH(x)| (2)

Repeatedly update w, then the algorithm can tell the final
result.

I-Relief: I-Relief (Iterative RELIEF) [17] is an extension of
Relief. I-Relief estimates w by using gradient descent to reach
(3) [18].

min
w

∑
n

wT zn

s.t. ∥w∥22 = 1, w ≥ 0

where zn = d (xn,NM(xn)|w)− d (xn,NH(xn)|w)

(3)

For RCOAS, we define the distance d (x, y|w) between
categorical data x and y as

d (x, y|w) =
∑
xi ̸=yi

wi (4)

LIR: LIR improved I-Relief by using logistic regression,
which means iteratively solving w by the expectation maxi-
mization (EM) algorithm. The cost function is shown as (5).

min
w

∑
n

log
(
1 + exp

(
−wT−

zn

))
+ λ ∥w∥1 (5)

where

−
zn =

∑
xi∈Mn

(P (xi = NM(xn)|w)) d (xn, xi|w)

−
∑

xi∈Hn

(P (xi = NH(xn)|w)) d (xn, xi|w)
(6)

Here, Hn and Mn are the sets of hit and miss data
respectively, and λ is the parameter defined by users.

Relief-based algorithms, especially LIR, can easily adapt
to categorical values, as long as there is a definition of
the distance between categorical values. Therefore, with the
distance function (4), our Relief-based on LIR can deal with
categorical values.

Next, a simple example is given to illustrate the multi-
dimensional data oriented LIR. Suppose that in the multi-
dimensional dataset with three attributes A, B and C, there
are three records:

x1 = (A = a1, B = b1, C = c1),negative

x2 = (A = a1, B = b2, C = c2),negative

x3 = (A = a2, B = b1, C = c3),positive

Improved LIR: According to the distance function (4), we
can calculate the distribution of NM(xn) and NH(xn), and
then we can calculate

−
zn. Take x1 as an example, we can

make NM(x1) = {x3} and NH(x1) = {x2}. For x1, the NM

part of
−
z1 is positively correlated with wA and wC because

the increase of wA and wC means that the distance between
x1 and NM(x1) increases, so it will be easier to distinguish
between the positive case and the negative case. Accordingly,
the NH part of

−
z1 is negatively correlated with wB because

the decrease of wB reduces the distance between the two
positive cases x1 and x2. Besides,

−
z2 and

−
z3 follow the

same correlations. By logistic regression, the correlations are
shown in iterations of w (Table IV). Although C is a valuable
attribute, it needs to compete with A and B; meanwhile, C
has a redundant relationship with A and B respectively. So
wC increases only after wB has decreased, which shows the
role of λ ∥w∥1 part in (5). Finally, by threshold τw = 1, we
selected attributes A and C.

TABLE IV
ITERATIONS OF w AFTER EPOCHS

epoch wA wb wc

1 1.0000 1.0000 1.0000
10 1.2037 0.6437 0.8652
100 1.3408 0.2523 0.7730

1000 1.1129 0.0238 1.0013

D. Adapt to Data Imbalance

RC-LIR is superior to LIR in data imbalance cases, where
the low frequency of positive examples [19] (here, positive
means fault) could significantly impact the algorithm’s effec-
tiveness (our challenge 2). Under the influence of an imbal-
anced training set in the cost function (5), the influence of
near hit of positive cases on the weight will become minimal,
which makes LIR tend to ignore the commonalities between
positive cases, but pay more attention to the near hits between
negative cases which are less important in RCA problems. To
solve this problem, RC-LIR uses an augmentation coefficient
βn to scale up the faults in the cost function (5) of LIR, as
shown in function (7), which enlarges the effect of positive
records in training.

E. Adapt to Unseen Root Causes of Faults

For challenge 3 in Section II-C, the key is that if the
algorithm totally relies on fault labeling, it cannot discover
an attribute that never appears as a fault in the training
set. An additional part of RC-LIR will train weights w
without fault labeling to improve this. The comparison be-
tween (9) and (6) shows our improvement, which is re-
dundant cost part of cost function. The redundant cost part
α
∑

xi
max (P (xi = Near (xn))− p0, 0) d (xn, xi|w) in RC-

LIR can be calculated without data labeling and shows the
ability of an attribute to distinguish from surrounding at-
tributes, which means the attribute is unlikely to be redundant.
It reveals the value of each attribute when there is no fault,
so it has the potential to discover the unseen root causes of
faults. The parameter α is used to adjust the weight of this
part.

F. The Whole Framework of the RC-LIR

The whole framework of our approach can be summarized
as follows.
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1) Preprocess and Rule-Based Selecting: Firstly, the sam-
ple data is preprocessed. For each piece of data in the sample,
to prevent attribute inconsistency, the algorithm will find the
complete set of attributes and fill in the default value for the
missing data (in our implementation, the default value is an
empty string). After that, we do the rule-based selecting in
Section III-B

2) RC-LIR Training: Next, we use RC-LIR to train the
weight w of each attribute in a logistic regression process.
RC-LIR’s cost function is shown as (7).

min
w

∑
n

βn log
(
1 + exp

(
−wT−

zn

))
+ λ ∥w∥1 (7)

Among them, βn and
−
zn is

βn =

{
1 if xn is negative
|Mn|/|Hn| if xn is positive

(8)

−
zn =

∑
xi∈Mn

(P (xi = NM(xn)|w)) d (xn, xi|w)

−
∑

xi∈Hn

(P (xi = NH(xn))|w) d (xn, xi|w)

+α
∑
xi

max (P (xi = Near (xn))− p0, 0) d (xn, xi|w)

(9)
Here, Near (xn) is the union of NH (xn) and NM (xn),

and the probability threshold p0 is set to 0.5. The conditional
probability P (xi = NM(xn)|w), P (xi = NH(xn)|w), and
P (xi = Near (xn)) is estimated through the standard kernel
density estimation method in the weighted space.

During the logistic regression process, we initialize w as a
zero vector and specify the distance function d(x, y|w) of the
categorical value vector as the proportion of unequal values
in all values. Our cost function (7) is basically the same as
the LIR algorithm (5), except for some differences. We will
explain our ideas for making these improvements in the rest
of this section. After the logistic regression of w process by
the Gradient Descent method, the weight w of every attribute
is calculated by RC-LIR. To deal with the dynamic changes
in the environment or changes brought about by configuration
changes, we set up a regular update mechanism based on the
periodicity of the data (i.e., the update period is one day in
the scenario).

3) Pass Selected Attributes to Downstream Algorithms:
Finally RC-LIR uses a threshold τw to control the keeping
and discarding of each attribute. Only attributes with w larger
than τw will be passed to downstream MDRCA algorithms.

G. Summary

According to its principle and our evaluation, we believe
that Relief-based algorithms are good for multi-dimensional
data attribute selection. However, Relief-based algorithms like
LIR also have two aspects of improvement. (i) it does not
consider the data imbalance problem, which makes it perform
poorly on only a few positive data sets. (ii) it relies heavily
on manual labeling, so we can assert that it cannot recognize
rare root causes of faults; Our RC-LIR algorithm mainly

modified the algorithm for the two points and made two
major improvements. Our evaluation in Section IV-C shows
the benefits of two improvements to the final effect.

IV. EVALUATION

We conducted an extensive experimental study based on
real-world data to demonstrate the effectiveness of RC-LIR,
aiming to answer the following research questions (RQs):
• RQ1: How effective and efficient is RC-LIR in selecting

critical attributes?
• RQ2: How does each component and hyperparameter affect

the performance of RC-LIR?
• RQ3: Does the attribute selected by RC-LIR beneficial to

downstream MDRCA algorithms?

A. Evaluation Setup

1) Dataset: In this work, we conduct experiments collected
from a real-world enterprise. Some basic information is shown
in Table V.

TABLE V
SUMMARY OF DATASETS

System Index Amount of Logs Attributes Faults |R|
1 1083411 45 204 10

2 688025 45 8 6

3 259514 45 196 3

5 844810 45 43 7

6 744467 45 63 8

7 710588 45 19 4

8 393996 45 5 5

9 622984 45 154 9

10 342014 45 5 6

11 653749 45 1 5

12 213418 45 1 5

13 539358 45 227 3

15 640059 45 74 10

For the problem of RCOAS, the data we collected has the
following advantages:

1) For the attribute selection problem, the dataset has up
to 45 attributes and has strong data diversity, which can
cover all the situations mentioned in Section II;

2) The data are collected from 15 different systems. Data
from both 15 systems have the same 45 attributes, while
each system has its own format and characteristic of
values, so the selection result should be different in
different systems. The same 45 attributes can also prevent
the attribute selection algorithms from simply classifying
the data into systems and then answering;

3) Data from every system have completed 45 attributes but
in different forms. About 2.8% of the points can be identi-
fied as failure or timeout, enabling us to analyze different
systems’ characteristics and mark the fault manually;

4) Root causes and critical attributes of every system have
been manually labeled.
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TABLE VI
F1-SCORE COMPARISON OF ATTRIBUTE SELECTION ALGORITHMSS

Algorithm F1-score Recall Precision Elapsed
Time (s)

Using All Attributes 0.2500 1.0000 0.1429 -
Laplacian Score 0.5739 0.7332 0.4714 4.3

Top10 KL Divergence 0.2065 0.2638 0.1696 1.2
Top5 KL Divergence 0.2751 0.2445 0.3144 1.2

Best-of-Adtributor 0.6895 0.5373 0.9621 6.6
Boruta 0.5419 0.6197 0.4814 16.5
Relief 0.5691 0.6706 0.4942 148.0

Logistic I-Relief 0.7240 0.6424 0.8293 28.6

RC-LIR (τw=0.2) 0.8692 0.8413 0.8990 25.3
RC-LIR (τw=0.5) 0.8642 0.8248 0.9075 25.6
RC-LIR (τw=1.0) 0.8788 0.8115 0.9583 24.6
RC-LIR (τw=2.0) 0.8582 0.7703 0.9687 23.8
RC-LIR (τw=5.0) 0.8457 0.7471 0.9742 25.0

As stated in Section II-B, we evaluate the performance of
RCOAS at the fault case level. There are 1000 fault cases in
total. The root cause attributes and values of these fault cases
are carefully labeled to accurately evaluate the performance
of RC-LIR, baseline methods, and downstream algorithms.
Four experienced operators completed the root cause labeling
process: Two operators find the anomalies and label the root
causes independently; When their labels diverge, the third
operator is involved and judges independently. The fourth
operator supervises and checks the whole process and makes
decisions when the other three take different opinions. The
entire labeling process took nearly a month.

2) Baselines: Because we are considering the RCA process
of multi-dimensional data, the existing FS baseline may not
be completely suitable, and the selection of baseline is hard
to deal with.

For filter methods, we choose two widely used algorithms,
KL Divergence and Laplacian Score. For the KL Divergence, it
is difficult to determine a unified threshold for each system, so
we individually choose the top5 or the top10 as two baselines,
in reference to a common solution. For the Laplacian Score,
we adjust its threshold to maximize its overall F1-score.

As for embedded methods, common ones are SVM or
Random Forest, which can tell feature importance, but these
algorithms may not be suitable for multi-dimensional data.
Instead, we hope to find an RCA algorithm that can tell the
importance of features, so we can select attributes according to
their scores with a threshold. Note that most RCA algorithms
encounter great difficulties in dealing with our 45-dimensional
dataset D due to the aforementioned curse of dimensionality,
so we have little choice. Finally, we choose the Adtributor [1]
algorithm, which runs impressively fast, and then construct the
Best-of-Adtributor attribute selection based on the scoring of
attributes as an embedded method for multi-dimensional data.

Among wrapper methods, we choose the Boruta algorithm,
which has been widely used and considered effective. Another
important reason why we choose Boruta is that, among all

kinds of wrapper methods, Boruta is one of the few algorithms
that support the categorical values. In terms of implementa-
tion details, we basically adopt BorutaPy implementation and
params, only adjusting some code to make it compatible with
categorical values of string type.

Of course, to show that our improvement on LIR is effective,
we also add Relief and LIR as a baseline. In addition, we also
consider using all attributes without any filter as evidence of
the effectiveness of our RC-LIR algorithm.

The settings of our baselines are tuned to reach as higher
F1-scores in the dataset as possible:

1) KL-Divergence: pick the top 5 or 10
2) Boruta: nestimators = 1000, perc = 75, α = 0.05, maxiter =

200
3) Relief: nepoch = 200, τ = 0.3
4) LIR: nepoch = 2000, lr = 0.01, τ = 2.5, λ = 0.01
5) Others: default or no parameters
3) Evaluation Metric: We use F1-Score to evaluate the per-

formance RCOAS approaches and the downstream MDRCA
algorithms. It is calculated based on attributes, so if an attribute
is selected or specified by the algorithm and it is in the
standard results, it will be a true positive (TP); if the attribute
is not in the standard results, it is a false positive (FP); if the
algorithm misses one attribute in the standard results, it is a
false negative (FN). Then, among all the test cases, F1-Score
is calculated as (10):

precision =
#TP

#TP +#FP

recall =
#TP

#TP +#FN

F1-Score =
2 ∗ precision ∗ recall
precision+ recall

(10)

For RQ1 & RQ2, we use precision, recall, and F1-Score.
The target is critical attributes, which is the union of all fault
cases of the system.

For RQ3, we use F1-Score. The target attributes are directly
the root cause attributes labeled by operators.

4) Implementation: During all the evaluations, we run ev-
ery experiment on 12×Intel(R) Core(R) i9-10920X@3.5GHz
CPU, 64GiB RAM, and Geforce RTX 3080 GPU. All algo-
rithms are implemented with Python.

B. Evaluation of Critical Attribute Prediction (RQ1)

For the first experiment, we directly compared the results of
attribute selection with the critical attributes of manual labeling
to get the recall, precision, and F1-score. In this experiment,
recall and precision have different practical meanings: a higher
recall rate means that the process of attribute selection will
not cause valuable attributes to be ignored, while a higher
precision rate means fewer redundant attributes so that the
efficiency and performance of downstream algorithms can be
improved.

The experimental results are shown in Table VI. We can see
that under the appropriate threshold, our RC-LIR algorithm
can achieve the highest F1-score, which proves that the algo-
rithm is effective. At the same time, with some adjustments of



9

100 100.5
0.3

0.5

0.7

0.9

time(/s)

F1
-S

co
re

Adtributor

102 103 104
0.3

0.5

0.7

0.9

time(/s)

Squeeze

101 101.5
0.3

0.5

0.7

0.9

time(/s)

iDice

101 102
0.3

0.5

0.7

0.9

time(/s)

HALO

KL Divergence Laplacian Score Best-of-Adtributor Boruta
Relief Logistic I-Relief Using All Attributes RC-LIR

Fig. 5. Performance of RCA algorithms with different attribute selection algorithms.

the threshold, our RC-LIR algorithm can achieve great recall
or precision under the condition of ensuring the overall effect,
which can adapt to the needs of different scenes. In terms of
time consumption, there is no significant difference between
the attribute selection algorithms, and the attribute selection
process only needs to be carried out once when the whole
multi-dimensional data analysis system is started. Therefore,
we think that the time consumption of RC-LIR is satisfactory.

C. Ablation Study and Hyperparameter Sensitivity (RQ2)
Components. We will show that our two significant im-

provements to LIR are effective. Therefore, we design three
kinds of baseline algorithms based on RC-LIR: the first does
not contain improvement Section III-D (which means βn is
always 1 but not calculated by (8) ), and the second does not
contain improvement III-E so that they are concerned only
about supervised learning (which means α in (9) is 0), and
the last ignores supervised learning (which means α in (9) is a
large number). Among all the tests, we adjust other parameters
like learning rate to get the best F1-score. The experimental
results are shown in Table VII, which shows that our two main
improvements to LIR are effective.

Hyperparameters. There are two parameters that need to be
pre-configured for RC-LIR: τw as the threshold to accept w
and α in (9). τw decides how likely to accept an attribute.
Lower τw means higher recall and lower precision, and vice
versa. The corresponding experimental results are shown in
Table VI. Here, as our determination is aimed to get an
F1-score as higher as possible, we set τw as 1. α decides
the weights of the supervised learning and the unsupervised
learning parts in (9). Through experiment results in Table VII,
we set α as 0.5, and we also found that α between 0.1 and
10 has little impact on the results.

D. Evaluation of Downstream MDRCA Algorithms (RQ3)
We carefully choose four MDRCA algorithms for the sake

of their effectiveness and efficiency, i.e., Squeeze [4] as a
state-of-the-art MDRCA algorithm, Adtributor [1] with short
elapsed time, and HALO [8], iDice [2] with both aspects.
Because the Squeeze and iDice are too slow or even crash
when facing data with all the 45 attributes, we only evaluate
Using All Attributes on Adtributor and HALO.

The experimental results are shown in Fig. 5. In each subfig-
ure, every line represents a combination of RCOAS and RCA.
The X-axis (logarithmic) is the average (for all 1,000 cases)
time overhead of RCA, and Y-axis is the average F1-score of
RCA. Every combination has up to 3 measurement points for
different settings of each RCOAS method, which can provide
a detailed comparison. (e.g., estimate the F1-scores for the
same time overhead). Take HALO as an example, Compared
to Using All Attributes, RC-LIR reduces the time overhead
from 199.6s to 5.9s and reaches even higher F1.

It can be seen that our RC-LIR algorithm can achieve a
better F1-score under the same elapsed time, and it can greatly
shorten the time consumption of downstream algorithms under
the same effect of the downstream algorithm. We can also
see that the more obvious the curse of dimensionality of the
downstream RCA algorithm, the greater the advantage of our
RC-LIR algorithm compared with other FS algorithms.

TABLE VII
F1-SCORE COMPARISON OF DIFFERENT PARAMS

α β F1-score Recall Precision

0.0 calculated by (8) 0.7667 0.6805 0.8780
0.01 calculated by (8) 0.7844 0.7355 0.8404
0.1 calculated by (8) 0.8534 0.8150 0.8957
0.3 calculated by (8) 0.8696 0.8158 0.9310
0.5 calculated by (8) 0.8788 0.8115 0.9583
1.0 calculated by (8) 0.7840 0.8629 0.7184
10.0 calculated by (8) 0.6640 0.8334 0.5519

100.0 calculated by (8) 0.6068 0.7575 0.5061

0.1 always 1 0.7097 0.6357 0.8031
0.3 always 1 0.7260 0.6343 0.8488
0.5 always 1 0.7530 0.6754 0.8507
1.0 always 1 0.6899 0.6747 0.7058

V. DISCUSSION AND FUTURE WORK

From evaluation, we prove that RC-LIR is effective on
RCOAS. Compared with the existing FS algorithms, RC-
LIR can select the critical attributes more accurately, and the
process of attribute selection does have a favorable impact on
the downstream multi-dimensional data analysis algorithm.



10

TABLE VIII
ADVANTAGES AND LIMITATIONS OF EXISTING SOLUTIONS

Algorithms Generalization Categorical Values Support Wide RCA Algorithms Suitable for Incomplete Training Set Method

Information Divergence [16] Yes Support Yes No Filter

Laplacian Score [9] Yes Not Support Yes Yes Filter

Relief [7] Yes Support Yes No Filter

Boruta [14] Yes Support No No Wrapper

Embedded Methods Yes Depends on Implementation No No Embedded

RC-LIR Yes Support Yes Yes Filter

Some evaluation results also attracted our attention. The
Best-of-Adtributor algorithm we constructed also gets quite
high precision since most of the algorithm’s results are the
root causes from the small training set, so it can only learn
from the alerts that have occurred in a short period of time.
Most root causes from these alerts are surely the critical
attributes, but the root causes that are not in this period will be
ignored. Therefore, the Best-of-Adtributor algorithm has high
precision and low recall, which is in line with our expectations.
However, in the experiment, we also found that if the training
set is large enough, this kind of attribute selection which
directly calls the RCA algorithm can also have a good effect.
In the future, we may be able to construct RCA algorithms that
are efficient for high-dimensional datasets to select attributes.

We also notice that different downstream algorithms have
different requirements for attribute selection. For example,
when the downstream algorithm is iDice, which is fast to
a certain extent, we can accept that the result of attribute
selection has as many as 20 attributes. But for Squeeze, the
efficiency of 20 attributes in practical application is likely to be
unacceptable. This inspires us to increase the customization of
attribute selection results. A simple solution can be to output
the weight of each attribute so that downstream algorithms can
make choices according to their own needs.

In addition, in our experimental setup, feature engineering
can only carry out feature selection but not feature transfor-
mation and merging. However, we can expect that the more
complex feature engineering applied to multi-dimensional data
can better meet the needs of the downstream algorithms, which
could be a huge improvement.

VI. RELATED WORKS

This section introduces some common feature selection
methods in the ML field. Based on the interaction with
the learning model, feature selection methods can be mainly
grouped into three types: filter, wrapper, and embedded meth-
ods. We will introduce their general principles and shortcom-
ings.

A. Filter Methods

Some common feature selection algorithms are based on
a filter, which means that they first calculate the weight
of each feature according to its distribution and then select
the retained features according to the weight. Some typical
algorithms are based on Information Divergence [16]. The
algorithm calculates the information gain of each feature to
the classification result as the weight of the feature. There is

also a better algorithm based on Fisher Score [20] or Laplacian
Score [9], which calculates the score of features according to
the following two principles: (i) the variance of features should
be as large as possible; (ii) features should reflect continuity
within the same category.

Filter methods may have the following problems on
RCOAS. First, independently calculating the weight of each
attribute means that the algorithm cannot consider multiple
attributes comprehensively, which may be reasonable in the
ML field, but for RCA algorithms, it is likely that multiple
effective features with mutual redundancy will be regarded as
good attributes. Secondly, a large number of filter methods
based on statistics rely on the classification results for weight
calculation, which means that their selected features can only
reflect the situation of training data, which is very reasonable
in the ML field, but for RCA algorithms, it means that the
whole analysis process cannot deal with unseen patterns of
faults. [21] Finally, like the Laplacian Score [22] algorithm,
many algorithms cannot adapt to the categorical values in the
data well, and the categorical values in the multi-dimensional
data are very common and of great significance.

There are also many filter methods based on the Monte
Carlo algorithm [23]. One approach is to turn the problem into
a high-dimensional problem and use the simulated annealing
process to select features. The other approach is to take feature
selection as a decision and use reinforcement learning to select
features. The common feature of these Monte Carlo algorithms
is that they all need a specific downstream algorithm to
evaluate the solution (in this case, the solution is a set of
features), which means that the feature selection is customized
for this downstream algorithm, and it may not work well for
other downstream algorithms. In addition, due to the high
time cost of the RCA algorithm, repeated calls to downstream
algorithms may also bring high time complexity to the feature
selection process.

Relief [7] is a classical method of feature selection. It is also
a Monte Carlo method, but several variants of Relief [17], [24]
are not Monte Carlo methods. According to our evaluation
in Section IV, Relief-based algorithms, especially LIR, are
suitable for the multi-dimensional data attribute selection
problem to a certain extent. However, LIR still has many
characteristics that are unsuitable for multi-dimensional data
attribute selection, which has been introduced in Section III.

B. Embedded Methods

Most embedded methods construct a specific classifier to
train the classifier and realize feature selection at the same
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time. The most typical embedded idea is to use some al-
gorithms that can naturally output feature weights, such as
SVM [10], Random Forest [25], XGBoost [11], [12], etc., and
directly use the weight output by the algorithm to complete
feature selection. However, when directly applied to multi-
dimensional data attribute selection, our experiments show that
the important evaluation of RCA algorithms is not consistent
with the classifier inside the embedded methods, which makes
the effect of attribute selection unsatisfactory. In addition, the
application of SVM, Random Forest, XGBoost, and other
algorithms to the RCA process is also prone to problems such
as the inability to deal with unseen patterns of faults, difficulty
dealing with categorical data, and so on.

C. Wrapper Methods

Wrapper methods select the best feature subset based on a
specific classifier’s results. The Boruta [13], [14] algorithm is
a widely used wrapper FS method, which means that in the
process of the algorithm, it will repeatedly call downstream
algorithms to process feature selection. The Boruta algorithm
is very effective, but it has two serious defects for the
downstream MDRCA process. First, Boruta needs to call a
downstream algorithm to score the importance of features.
In real-world processing, it may be impossibly difficult to
find a suitable algorithm. Even if it is found, it may not be
suitable for a variety of data. Second, because the downstream
algorithms for outputting the importance of features here
are usually Random Forests, XGBoost, etc., Boruta also has
similar problems as the embedded methods mentioned above.
That is, it cannot deal with unseen patterns of faults.

VII. CONCLUSION

Multi-dimensional root cause analysis is of critical impor-
tance for many online software services, but the performance
of existing algorithms is severely affected by the curse of
dimensionality. In this work, we formally introduce the task
of RCOAS to ease the problem of too many dimensions for
a variety of MDRCA algorithms. Moreover, we conduct an
empirical study to reveal the insufficient of native feature
selection methods. Inspired by the study, we propose RC-
LIR, an RCOAS approach. Our main application area is time-
sensitive operation scenarios, including banks, cloud services,
and large-scale data centers. In our time-sensitive operation
scenarios, hundreds of seconds of latency are significant. RC-
LIR combines rule-based selecting and a improved feature
selection approach. The evaluation based on real-world data
results shows that RC-LIR can achieve an F1-score of 0.8788,
outperforming all the baseline approaches. Furthermore, our
experiments show that RC-LIR can improve the effectiveness
and efficiency of MDRCA algorithms.
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