
Identifying Erroneous Software Changes
through Self-Supervised Contrastive Learning

on Time Series Data
Xuanrun Wang†, Kanglin Yin†, Qianyu Ouyang†, Xidao Wen†, Shenglin Zhang‡

Wenchi Zhang§, Li Cao§, Jiuxue Han¶, Xing Jin¶, Dan Pei*†
†Tsinghua University, {xr-wang20, oyqy19}@mails.tsinghua.edu.cn, {yinkanglin, wenxidao, peidan}@tsinghua.edu.cn

‡Nankai University, zhangsl@nankai.edu.cn, §Bizseer, zhangwenchi@bizseer.com, xyzcaoli@outlook.com
¶China Construction Bank, {hanjiuxue.zh, jinxing.zh}@ccb.com

Abstract—Software changes are frequent and inevitable. How-
ever, erroneous software changes may cause failures and inci-
dents, degrading user experience and system stability. Thus, it is
critical to distinguish erroneous software changes from normal
ones. Our empirical study from a global data center reveals that
erroneous software changes have caused nearly one-third of the
critical incidents in the last two years. Some quantitative results
also imply that the number of software changes and that of
the Key Performance Indicator (KPI) time series related to a
software change are relatively large. Based on the observations,
we propose Kontrast, a self-supervised, generic and adaptive
approach using contrastive learning, aiming to identify erroneous
software changes on time. Its key idea is to compare pre-change
and post-change KPI time series related to the software change,
assuring the time series is still in a normal state after the software
change. Since contrastive learning approaches need a fully-
labeled dataset, we propose a novel data augmentation technique
inspired by self-supervised learning to generate data with pseudo
labels. Our model significantly outperforms all the compared
approaches on two datasets with a millisecond-level speed for
each KPI and is proven to obtain cross-dataset adaptability. To
better certify our contribution, we also exhibit some success cases
of Kontrast from its deployment.

Index Terms—Software Change, Contrastive Learning, Time
Series

I. INTRODUCTION

Software change is a major method for operators to add
new features, fix bugs, or update configurations in large-scale
online service systems. As the software change introduces new
codes or configurations into the current running system, some
erroneous software changes may incur incidents or failures
even though these changes have been carefully analyzed and
reviewed, possibly causing service outages and user dissatis-
faction or even large economic losses. A survey [1] reports that
over 70% of the incidents were directly or indirectly attributed
to software changes in Google. Another report [2] points out
that in October 2021, Facebook services were abruptly down
for several hours in many countries, leading to a $60 million
loss, whose root cause was an erroneous software change of
the backbone network routers. Therefore, it is critical to detect
incidents in the online service system induced by erroneous

* Dan Pei is the corresponding author.

software changes quickly. Current approaches to improving the
reliability of software changes are typically threefold, includ-
ing impact assessment and risk analysis before the software
change [3]–[5], optimizing the deployment strategy during the
software change [6], [7], and identifying whether it is erro-
neous after the software change via monitoring performance
[8]–[10]. Since there could be unknown differences between
production and development environments, defects including
bugs or misconfigurations would remain concealed during the
testing phase before the software change [1], possibly causing
incidents once deployed. Key Performance Indicators (KPIs,
e.g., success rate, CPU usage) are essential for erroneous
software change identification since they reflect the system’s
running status from different levels [8], [9]. Only monitoring
after the software change is capable of identifying these hidden
defects; therefore, we aim to perform post-change monitoring
using KPI data.

To better understand software changes, we conducted a
comprehensive empirical study based on real-world data col-
lected from a global data center, revealing the following
observations. 1) The erroneous software changes have caused
roughly one-third of critical incidents in online services. 2)
The number of concurrent software changes is rather large,
and that of KPIs related to a software change is tremendous,
causing millions of KPIs should be checked simultaneously.
3) To identify erroneous software changes, operators manually
compare KPI time series before and after the software change
based on their experience. 4) Current practices ignore the
sequential order information of the compared KPI time series
segments or require too many computation resources.

In the literature, to identify erroneous software changes,
supervised learning approaches (e.g., Opprentices [11]) have a
plausible accuracy but need a manually-labeled dataset, which
is costly to obtain. Unsupervised learning approaches (e.g.,
SCWarn [8], Gandalf [10], FluxRank [12]) can work with
unlabeled data. However, these approaches aim to learn normal
patterns from independent KPIs; thus have to train a dedicated
model for each KPI time series before the testing phase
[8], suffering from extremely high training costs. Statistics
approaches (e.g., t-Test, k-sigma [13]) run rapidly, but they

1

ignore the sequential order or the physical meanings of differ-
ent KPIs, leading to unsatisfying performances. In summary,
current approaches are not capable of solving these significant
challenges: 1) Lack of labeled data: It is costly for operators
to label anomalous KPI manually. 2) Massive quantity of
KPIs: The number of KPI time series to be checked within
several minutes is tremendous, requesting a highly efficient
approach. 3) Heterogeneous KPIs: Time series with various
physical meanings or collected from heterogeneous instances
diverge on anomaly criteria. For example, a 10% decrease in
success rate is much more critical than in memory usage. Thus
they cannot be compared simply with the same set of rules.

Inspired by the operators’ practices, we propose a novel
self-supervised contrastive learning approach, named Kontrast
(KPI Contrast), to identify erroneous software changes by
comparing the KPI time series before and after the software
change deployment. We apply the self-supervised learning
mechanism to tackle the problem of lacking labeled data,
generating data with pseudo labels from the unlabeled via
noise pattern injection. Since Kontrast is a comparison-based
neural network approach, time series inputs from different
KPIs can be processed simultaneously in a batch, dramatically
increasing efficiency. A specially designed noise intensity
mechanism is applied to learn different anomaly criteria for
KPIs of heterogeneous nature, making it applicable for KPIs
of varying kinds.

To evaluate the performance of Kontrast, we conduct com-
prehensive experiments on two datasets. Our experimental
results suggest that Kontrast identifies erroneous software
changes and anomalous KPI time series more accurately (0.01
to 0.08 on F1-score) and much faster (100 to 1,000 times) than
the compared non-contrastive learning approaches. The results
also certify the adaptability of Kontrast. In summary, this work
makes the following contributions:

• We have done a comprehensive empirical study on erro-
neous software changes from a global data center, whose
key observations motivated us to propose Kontrast and
address the challenges.

• We propose Kontrast, an efficient, generic, and self-
supervised contrastive learning approach. Kontrast aims
to identify erroneous software changes, outperforming all
the compared approaches with a millisecond-level speed
for each KPI. Kontrast can also be trained and tested
on different datasets while outperforming the majority of
current models.

• We propose a novel KPI data augmentation approach
based on noise pattern injection. Besides, for better
reproductivity, we opensource Kontrast on GitHub [14].

The rest of this paper is structured as follows. In Section II,
we report the comprehensive empirical study to understand
erroneous software changes better and clarify our motivation.
We introduce Kontrast in Section III, and its evaluation results
in Section IV. In Section V, we discuss success application
stories and limitations of our work. Finally, we review the
current basis of academic research of several related domains

(a) The number of software changes
per day in a two-month period.

(b) CDF of the deployment duration
of a software change.

Fig. 1: Data collected from the empirical study.

in Section VI and conclude our paper in Section VII.

II. EMPIRICAL STUDY

We conducted an empirical study on real-world data to
understand the software change practices in the industrial
environment. This section shows our observations on software
changes and current practices of erroneous software change
identification. Due to the security and privacy issues, the exact
numbers reported in this study are masked.

A. Data Collection

We manually analyzed change tickets and incident reports
from a global data center over a two-year period. Each
change ticket records the software change’s deployment pe-
riod, change objectives, changed systems, etc.

B. Software Changes in the Online Service System

Software change is a vital part of the online service
system. The online service system consists of thousands
of applications, each supporting a particular set of online
services. Typical types of software changes include bug fixing,
new feature enhancement, configuration updates, etc.

To identify an erroneous software change, operators
are expected to monitor a large number of KPIs closely
after the software change. Software changes are frequent,
especially for those critical applications. The daily count of
the software changes is shown in Fig. 1(a), whose peak value
is about one thousand. Because stability is crucial in the data
center, the frequency of software changes is once per two
weeks. There could be more than two hundred applications
deploying software changes concurrently. For an application,
there are hundreds of instances to keep high availability. Once
a software change on a particular application is deployed,
operators use hundreds of system-level (e.g., CPU usage)
and service-level (e.g., transaction count) KPIs to monitor
its instances and know their running status. Considering all
the factors, for a software change, operators should check
more than ten thousand KPIs. Thus, up to two million KPIs
require to be checked concurrently during the peak. Operators
expect to identify the erroneous software changes before a
significant loss emerges; namely, the time for algorithms
to identify erroneous software changes is limited to merely
several minutes.

The software change deployment process. The process
of software change deployment is displayed in Fig. 2. Since
the scale of applications is enormous, the process takes some

2

OngoingPre-Change Post-Change
t

t0 t1

Fig. 2: The software change process. The orange line below shows a real-
world KPI time series. The vertical green lines indicate the software change’s
start and end time points, respectively. KPI fluctuations can be found inside
the circle in ongoing period.

time to finish all deployment actions. This time is called
ongoing period in our paper, whose distribution is shown
in Fig. 1(b). During ongoing period, we notice some KPI
time series are influenced by the software changes irregularly,
which is probably caused by service restart, traffic shift, etc.
We denote t0 as the start time point of the software change and
t1 as the finish time point, and ongoing period is the period
between t0 and t1. t1 denotes the time when all the related
KPIs have reached stability, given by the input. We call the
period before t0 as pre-change period, and the one after t1 as
post-change period.

C. Erroneous Software Change Identification Approaches in
Current Practice

Since the online service systems typically have their own
Service Level Objectives (SLO), operators monitor closely
for anomalies in the KPI time series. In the data center,
several monitor systems (e.g., Prometheus [15]) collect KPI
time series data from related service instances. Once several
change-related KPI time series are considered anomalous, an
incident ticket will be raised, labeling the software change
as erroneous, requiring the immediate attention of operators.
The root causes of erroneous software changes include code
logical bugs, configuration errors, slow SQL queries, etc., each
of which has a set of particular patterns on its related KPIs.
Due to privilege issues, we cannot show detailed root cause
analysis results here.

Operators’ current approach to identifying anomalous KPIs
is relatively simple: compare the post-change KPI time series
segments (usually a short time span right after deployment) to
the pre-change ones (the contemporaneous historical data of
the post-change time series segment or a short time span right
before deployment), checking whether the KPI time series
segments are close. Some lightweight comparison algorithms,
like t-Test, k-sigma [13] and Kernel Density Estimation (KDE)
[16], are used to meet the efficiency requirements. However,
the accuracy of these algorithms is unsatisfactory because
these statistics-based algorithms ignore the sequential order
information of the KPI time series. Thus, as a critical supple-
mentary to the identifying process, manual verification of the
current algorithms’ outputs is needed to achieve reasonable
accuracy. Operators judge the KPI time series based on their
domain knowledge, which is primarily influenced by the KPI’s
physical meanings. For example, they treat success rate more
strictly than memory usage; a 10% decrease in success rate
is regarded as anomalous, while a 10% decrease in memory

Phase 3

Phase 1Phase 2

Phase 4

Periodicity
Data

Local Stability
Data

Post-Change
Data Training Data

Generation

Distance
Result
(KPI)

Pre-Trained
Model

Analysis
Report
(Case)

Operator
Decision Erroneous

Benign
Inference &
Aggregation

Fig. 3: An overview of Kontrast.

usage is not. However, as the quantity of KPI time series
falsely alarmed by current approaches becomes too large,
human labor is far from enough.

In addition, common approaches [8], [10] identifying er-
roneous software changes are not capable of handling cross-
dataset adaptation situations. When running on a new appli-
cation, there is seldom historical data. Thus, it is difficult
to determine the parameters of these approaches. Operators
seldom have appropriate tools to identify erroneous software
changes in this situation. Nevertheless, adaptive models can
learn general anomaly patterns from other systems’ software
change data, thus making accurate decisions in this new
application.

In conclusion, a desired erroneous software change identi-
fication model should meet all the requirements below. 1) Ef-
ficient. The model should be capable of processing a massive
number of KPIs in a short time with low delay. 2) Accurate.
Stability is the primary consideration of the online service
system. Thus, accurately identifying the erroneous software
change is critical. 3) Adaptive. Models that are trained based
on one application and can be used on another are preferred.
As current approaches fail to satisfy all the requirements, we
propose Kontrast, aiming to provide a solution meeting all the
demands.

III. APPROACH

We propose a novel approach called Kontrast. In Kontrast,
we first determine whether each change-related KPI time series
is normal after the change deployment. Then decide whether
the software change introduces defects according to the results
of its related KPIs. Fig. 3 shows the overview of Kontrast.

Kontrast is composed of four phases. 1) To deal with
the lack of labeled data, we apply noise pattern injection to
generate pseudo-labeled KPI time series segment pairs for
model training (Section III-B). 2) Upon the foundation of
the generated data in phase 1, we train a set of generic
comparison-based models (Section III-C). 3) When a software
change is deployed, we extract specific post-change KPI time
series segments (consecutive fragments of a KPI time series)
and compare them with pre-change KPI time series segments
using the model in phase 2 (Section III-D). 4) We aggregate
the results to judge whether the software change is erroneous
or not and send reports to operators (Section III-D).

3

Before introducing the four phases, we first exhibit our data
extraction specifications for KPI time series segments.

A. Data Extraction Specifications

We found that a normal KPI time series roughly exhibit
two properties: periodicity [17], [18] and local stability
[19] through empirical observations. In real-world production
environments, a large proportion of the KPIs follow a certain
periodicity, which are also called seasonal KPIs in many
other works [20]–[22]. These KPIs are closely related to user
behavior and people’s work and rest routines. To ensure a
KPI time series is expected after a software change, checking
whether it remains its periodicity is essential. If not, the KPI
time series falls into an abnormal state, indicating a potential
defect introduced from the software change process.

Another observation is that a KPI time series rarely changes
abruptly in typical situations. Whenever a sudden change
occurs, an anomaly is highly likely to reveal [9], [20]. This
property is called local stability in our paper. Based on this
observation, local stability should be kept before and after the
software change if the software change is benign and relatively
short. Moreover, according to our interview with the operators,
local stability holds in both seasonal and non-seasonal KPIs.

We then extract the following three parts from a KPI time
series to validate the properties:

1) X ′: Given the software change starts at t0 and ends at
t1, we can get the post-change KPI time series data by X[t1+
1, t1 + ω] (short for {xt1+1, xt1+2, · · · , xt1+ω−1, xt1+ω}),
which is denoted as X ′. Here X is the KPI time series, and
ω is the inspection window size.

2) XP : Denote T is the period of a given KPI time series;
namely, T is the minimum interval of the recurrence of the
general pattern. Our model treats T as a given input value,
and this value can be easily inferred by expert knowledge
or autocorrelation algorithms, which is out of our research
domain. Typically in the business scenarios, including ours,
T is one day. We use {X[t1 + 1 − δ, t1 + ω − δ] | δ ∈ ∆}
where ∆ contains a set of time intervals, typically including
1T, 2T, 3T, 7T, 14T, 21T , etc. For example, if a software
change deploys on a Monday, then the contemporaneous data
from the last Friday (3T) reflects the newest pattern on
weekdays, and the ones from the weekend (1T, 2T) show the
latest pattern, the ones from the past Mondays (7T, 14T, 21T)
reflect weekly patterns possibly due to weekly-scheduled tasks.
For each aspect, three samples are enough to reflect the
respective patterns because Kontrast uses minimum distance
as the aggregation strategy (Section III-D). Thus, any one of
the samples reflecting the normal pattern is sufficient.

We collect these KPI time series segments and denote them
as XP , here ·P is the abbreviate of periodicity.

3) XLS: We extract X[t0 − ω, t0 − 1] as XLS , which
displays the data pattern just before the software change
deployment. Compare XLS with X ′, and we can certify the
local stability property. Here ·LS is the abbreviate of local
stability.

Fig. 4: Illustration of extraction specifications. Red shadow shows the ongoing
period, orange shows X′, green shows XLS and purple shows XP .

Extracted
Historical Normal

KPI Segments

ith Noise
Intensity
Category

Noise Intensity
Classifier

Similar Pairs
(Negative)

Dissimilar Pairs
(Positive)

Normal-Scaled
Pattern Injection

Failure-Indicating
Pattern Injection ith Model

Train

Fig. 5: Training data preparation of Kontrast.

Till now, we obtain the XP , XLS , and X ′. Checking if X ′

follows the patterns inferred by XP and XLS , we can decide
whether the KPI time series is anomalous. A brief illustration
of the extraction phase can be found in Fig. 4.

B. Training Data Generation

To train the contrastive learning model in Kontrast, we need
first to collect labeled training data containing similar and
dissimilar KPI time series segment pairs. However, manually
labeling large-scale training data is costly and time-consuming,
thus not realistic. Self-supervised learning is a suitable tool
to solve this problem by creating self-defined pseudo labels
as supervision and learning the representations of the data
[23]. Inspired by that, we propose a novel data augmentation
approach whose architecture is shown in Fig. 5. It uses pre-
change KPI time series data and generates sufficient data
with pseudo labels, positive (dissimilar) and negative (similar),
for the model to train. This approach contains two major
components, as introduced below.

1) Noise Intensity Classifier: The KPI time series with
different physical meanings may have divergent anomaly cri-
teria. Even for the KPIs that share similar physical meanings
being collected from different service instances, the patterns
of anomaly may be diverse. Thus, using a single model to
deal with all the KPIs is unrealistic. Thus, we need to make a
simple yet effective classification first, dividing the KPI time
series into several categories by their historical characteristics
and checking them with different criteria.

To this end, a noise intensity classifier is required. Denote
the noise intensity N as the divergence between the data on
a specific time point and those on the same time point in
other periods. The overall noise intensity of a time series is
the average noise intensity of each specific time point, as (1)
shows.

NX,i = std(Xi, Xi+T , Xi+2T , · · ·)

NX =
1

T

T−1∑
i=0

NX,i

(1)

In (1), std(·) stands for standard deviation function, and NX

denotes the noise intensity of KPI time series X . For each of

4

Fig. 6: Noise pattern injection modules. Modules in the second row show
positive pair injection while the others show negative ones.

the X , an NX is derived. We divide all the KPI time series
into K categories based on their N . The noise intensity of
a KPI time series implies its anomalous judgment threshold.
We build a dataset and train a dedicated model for each noise
intensity category.

2) Pair Selection & Noise Pattern Injection: The data
generation procedures of each noise intensity category are
similar, hence we take one category for example.

We aim to build a dataset containing similar and dissimilar
time series segment pairs. Our solution is to construct pseudo-
labeled pairs from the unlabeled KPI time series. As patterns
of XP and XLS are not the same, we should build a model to
compare X ′ with XP , and another to compare X ′ with XLS ,
which are called P model and LS model, respectively.

First, we introduce the data generation approach for P
model. Based on the periodicity property, we randomly select
these contemporaneous pairs from a KPI time series for
negative cases to simulate XP and X ′, aiming to cover all
the possible time spans in the KPI time series, improving
the comprehensiveness of the dataset. For positive cases,
methods are twofold. The first is to select pairs ignoring the
time information randomly. The second is to select a random
segment and inject intense noises, making it dissimilar to its
original pattern. A simple Euclidian distance filtering is also
needed to ensure the pairs are indeed dissimilar. Furthermore,
to improve the robustness of the contrastive model, mild
and noise-category-specific noises should be injected into the
selected data pairs both in positive cases and negative cases.

For the LS model, approaches are similar. The only dif-
ference is the pair selecting method in the negative case
generation approach. Here, a random-lengthed ongoing period
starting from an arbitrary time point is selected. Its front and
back are extracted as the negative pair, simulating XLS and
X ′.

The noise pattern injection method consists of several mod-
ules, each injecting one kind of failure pattern. We refer [24]
and use the failure pattern from it, and conclude five modules
of our noise pattern injection, namely, Level Shift, Gaussian
Noise, Transient Noise, Ramping, and Steady Change. Their
pattern demonstrations can be found in Fig. 6. These modules
are not mutually exclusive, and we utilize multiple of them on
one KPI time series. The intensity of the noise pattern injection
is randomly generated, aiming to cover noise intensities from
the slightest to the strongest.

KPI Series A
RL×1

KPI Series B
RL×1

LSTM Network

LSTM Network

FC
L

ayer
FC

L
ayer

Feature A

RH×1

Feature B

RH×1

−
RH×1

Similarity

Scalar

Share
W

eights

Share
W

eights

Neural Network

Fig. 7: The neural network design of Kontrast.

C. Model Design

To determine whether the KPI time series after the change
is abnormal, we propose a novel contrastive learning model
to make the comparison. As introduced, given the processed
KPI time series, the next is to check the similarity between
X ′ and XP , X ′ and XLS respectively. If X ′ does not
follow the pattern inferred by XP and XLS , the KPI time
series is judged as anomalous. Neural network architecture
is applied to compare time series segments. This is because
neural networks can fit distributions of arbitrary complexity,
including encoding complex features of time series patterns.
Moreover, neural networks support testing in batch, largely
improving the degree of parallelism. The core idea of our
model is to use Long Short-Term Memory (LSTM) [25] as
the feature extractor, Siamese network architecture as the
comparator, with the foundation of pseudo-labeled time series
pairs, to learn the similarity computation principles of time
series, which is shown in Fig. 7.

Siamese network [26] uses covariant-shared feature extrac-
tors to parse two input series simultaneously, producing two
features. It is a classical model used for comparing two objects.
The contrastive loss function (2) introduced in [27] affects the
outputs of the Siamese network along with a provided label.
It enforces the feature extractor to learn the similarities of the
time series data when the label Y is 0 (negative case) and the
differences when the label is 1 (positive case). Here M denotes
a margin to avoid overfitting. −→x1,

−→x2 are the input samples, and
L(F , ·, ·, ·) is the contrastive loss function using the encoding
of neural network setup F .

L(F , Y,−→x1,
−→x2) = (1− Y)

1

2
(∥F(−→x1)−F(−→x2)∥22) +

(Y)
1

2
(max{0,M − ∥F(−→x1)−F(−→x2)∥2})2

(2)
The ability of LSTM in processing complex time series

data has been proved by many emerging approaches nowadays
[8], [28]. Inspired by the effectiveness of LSTM, we apply
it to extract rich information about the shapes and patterns
from the two input time series parallelly. The twin-tower
architecture from Siamese network requires parameters from
the two feature extractors to be shared during training and
testing. Thus, the criteria for extracting useful information
in the KPI time series are unified. The feature extractors’
outputs are then sent to a fully connected module, encoded,
and converted to a distance-comparable expression. In the

5

training phase, output of the fully connected layer is sent to
(2); while in the testing phase, distance between two input
samples is obtained via a simple subtraction, namely:

D(F ,−→x1,
−→x2) = ∥F(−→x1)−F(−→x2)∥22 (3)

where D(F , ·, ·) is the distance function with the neural
network setup F .

Having obtained the distance function result of the KPI time
series segment pairs, next, we should aggregate the results to
a verdict of anomalous KPI.

D. Erroneous Software Change Identification

When a software change has been deployed, multiple related
KPIs will be sent to Kontrast, requesting a check. Here, the
KPIs being monitored include the ones of updated services
and the influenced services, i.e., upstream and downstream
services. Each input KPI time series is classified into a specific
noise intensity category c by its historical characteristics and
then performed data extraction, obtaining its XP , XLS and
X ′.

Then, we use the pre-trained P model and LS model of noise
intensity category c (i.e., FP

c and FLS
c) to get their distance

predictions. Since there are multiple XP s, we have a series
of D(FP

c , XP
i , X ′). We use (4) to get the final result of the

distance function:

pred = min
i
{D(FP

c , XP
i , X ′)}+ αD(FLS

c , XLS , X ′) (4)

where α is a hyper-parameter, fusing the results from two
models to a unified final distance result pred. We use a
minimum function based on the observation: some historical
data may contain anomalies; therefore, if X ′ is similar to one
of its contemporaneous time series segments, it is regarded
as normal. The KPI time series is abnormal if pred is greater
than a pre-set threshold. Finally, if a certain number of the KPI
series are considered abnormal, the change would be regarded
as erroneous. An alert will be raised and immediately reported
to the operators in this scenario.

IV. EVALUATION

To demonstrate the superior performance and the adapt-
ability of Kontrast, we conducted experiments to answer the
following research questions (RQs).

• RQ1: What is the performance of Kontrast?
• RQ2: What is the time efficiency of Kontrast?
• RQ3: How does Kontrast adapt to different datasets?
• RQ4: How do the main components contribute to Kon-

trast’s performance?
• RQ5: What is the influence of the related hyper-

parameters?

A. Experiment Setup

1) Dataset: To evaluate the performance of Kontrast, we
prepared two different datasets, A, and B. Dataset A consists
of 368 KPI time series, while dataset B contains 336 software
change cases and 34,944 related KPI time series.

Table I: Dataset Properties.

Property Dataset A Dataset B
#KPI 368 34,944
KPI positive ratio 50% 13.6%
#Change case - 336
Change case positive ratio - 48.8%
Avg. #sample of KPI about 6,000 about 7,200

Dataset A is based on AIOps2018 Challenge [29], a public
dataset for anomaly detection that has been widely utilized in
the works analyzing time series [30]–[32]. Since the original
dataset only has an anomaly label (normal/anomaly) for each
time point without software change information, a preprocess-
ing step is required to apply it to our task. To generate positive
cases, we first extracted the consecutive normal segments
followed by an abnormal segment. Then, we randomly chose a
point as a “software change timepoint” in the tailing part of the
normal segment. The normal segment before the point is pre-
change period and both the normal and the abnormal segments
after the point belong to post-change period, simulating the
failure occurs sometime after the software change ends. This
is based on the observation that the pattern of anomalies in
dataset A are similar to those in erroneous software change
cases in Section V-A. For negative cases, we arranged software
change timepoints inside the normal segments and made sure
that there were no failures in the randomly-lengthed post-
change period. Note that the KPI time series segment pairs
in dataset A are individual; thus, there is no software change
case information in each case, and it is only used for KPI-level
experiments. The process of dataset generation is repeated for
3 times without manual intervention. Results of dataset A are
averaged to reduce the influence of randomness.

Dataset B is collected from hundreds of change deployment
experiments on a popular [33]–[35] microservice benchmark
system: Hipster Shop [36]. The microservice-based archi-
tecture allows us to inject erroneous software changes into
assorted microservices. Concerning the root causes of the er-
roneous software changes analyzed in our empirical study, we
implemented 32 different problematic microservice versions,
e.g., adding dead loops to the service source code, modifying
the network configurations of a service, attaching extra random
delay into the SQL query functions, etc. For each software
change case, a version switch on specific microservices based
on Kubernetes [37] was performed. Prometheus [15] continu-
ously collected KPI time series data related to the change.
For each software change case, an ongoing period with a
random length that follows the distribution in Fig. 1(b) exists.
The collected KPIs included CPU usage, memory utilization,
network flow rate, service success rate, transaction count,
and transaction reply time cost. Two authors independently
labeled the KPI segments as anomalous or not for evaluating
the performance of Kontrast in anomalous KPI identification.
Disagreements during labeling were solved by discussion.

Detailed information of the datasets is shown in Table I.
2) Metrics: Our experiment contains two tasks. One is to

classify whether a KPI is anomalous, and the other is to
predict whether a software change is erroneous, both of which

6

are binary classification tasks. The former is the basis of the
latter, thus experimented individually. We regard anomalous
KPI or erroneous software change case as a positive sample,
using precision, recall, and F1-score to report the performance.
Besides, we measure the training time and testing time of Kon-
trast and other compared approaches to evaluate the efficiency.
Note that since there is no change case information in dataset
A, we do not perform erroneous software change identification
on dataset A.

B. Compared Approaches

The compared approaches can be divided into three cate-
gories.

1) End-to-end erroneous software change identification ap-
proaches; take the software change information (i.e., software
change deploy time, related KPIs) as the input and identify
whether the software change is erroneous.

• SCWarn [8] State-of-the-art erroneous software change
identification algorithm based on multivariate LSTM.

• Gandalf [10] End-to-end safe deployment framework
using Holt-Winters [38].

2) Comparison approaches that directly compare time series
(i.e., DTW (Dynamic Time Warping) [39], Pearson Correla-
tion Coefficient, Lumos [40], TS-CP2 [41]); their core ideas
are to compute the similarity of two time series (before and
after a software change), which are similar to Kontrast. We
used them as the substitution for our Siamese network module
introduced in Section III-C, building a P model and an LS
model for these algorithms with an aggregation, respectively.

3) Anomaly detection approaches that are adapted to our
task with a conversion, following [8]; Change-point detection
approach Funnel [9], univariate time series anomaly detection
approach Donut [20] and multivariate time series anomaly
detection USAD [28]. We choose them because they are
representative and widely used in their corresponding tasks.
They use the whole KPI time series as the input and output a
value for each time point, indicating the anomaly scores. We
call these converted approaches Funnel*, Donut*, and USAD*.

C. Implementation & Parameters

We built a set of P and LS models of Kontrast and finally ag-
gregated the models’ results. According to our experiment, we
set the #noise intensity categories K as 5, and the thresholds
of classifying noise intensity are 0.005, 0.03, 0.1, 0.3, and 1.
Experiment results are shown not to be sensitive to the choice
of threshold values. Hence we do not present the experiment
result due to page limit. For every noise intensity category,
we generated 40,000 positive KPI time series segment pairs
and 40,000 negative ones. For the LSTM module, we used
Bidirectional LSTM (BiLSTM) [42], whose hidden size is
30. The fully connected (FC) module contains two layers to
convert the output of LSTM to a fixed-length vector. Their
hidden sizes are set to 30. The time intervals in data extraction
process are set as 1T, 2T, 3T, 7T, 14T, 21T . Adam optimizer
is utilized during training with a constant learning rate of
0.001. The batch size is 10,000, and the number of epochs is

100. For all the models including baselines, if the loss value
converges or the total calculation time exceeds 10 seconds
per one KPI, the training or testing is aborted. In result
aggregation, we set α = 2.5 based on our experiment results.

We used the parameter from [8], [9], [20], [28], [41]
and their open-source code for the compared approaches. To
improve our reproducibility, we open-sourced our code on
GitHub [14].

The experiments were conducted on Ubuntu 18.04.5 LTS
with Intel(R) Xeon(R) CPU (2.60GHz), a 64-bit operating
system, and an NVIDIA RTX 2080Ti GPU.

D. Results

To evaluate the performance of our model, we tested the
approaches on two tasks: Anomalous KPI identification and
erroneous software change identification. The following ex-
periments were conducted to answer the research questions:

1) RQ1: What is the performance of Kontrast?
Anomalous KPI Identification As shown in Table II, in

the first task, Kontrast outperforms baselines by a significant
margin (0.013, 0.084, respectively), achieving 0.932 and 0.648
F1-score on two datasets. Due to the data characteristic in
dataset A and the property of Holt-Winters algorithm, Gandalf
fails to converge within the time limit on dataset A. SCWarn
and USAD* are multivariate approaches and use multiple KPI
time series. Therefore, they have no result on this task.

Erroneous Software Change Identification Since we have
no case information on dataset A, we only performed the
erroneous software change identification task on dataset B.
Based on the observations from our empirical study and the
proposed approach, we judged the software change by the
derived predictions of its related KPI time series. We used the
95th percentile of the distance predictions from the KPIs to
distinguish the erroneous software changes. We see that Kon-
trast outperforms all other approaches. SCWarn fuses the rich
information of multiple KPIs, achieving reasonable results.
But it is based on prediction; therefore, it is influenced by the
fluctuations in ongoing period. Lumos is based on comparison,
but it ignores the sequential order of the data, thus performing
poorer. DTW fails to recognize the difference between KPIs
with diverse anomaly patterns. The data augmentation modules
of TS-CP2 are not designed for our task, so they performs
poorly on our datasets. The experiments above suggest that
Kontrast performs better than the compared approaches.

2) RQ2: What is the time efficiency of Kontrast?
Testing Time Time efficiency is a critical aspect for con-

siderations in real-world deployment to identify erroneous
software changes. As Kontrast is a generic model, it can batch
process different KPI time series using one single model. This
property highly improves the parallelism of the algorithm,
making it able to process data in a relatively large batch,
reducing per KPI time cost, as shown in Table III. Since TS-
CP2 utilizes contrastive learning, it is also efficient on this task.
For the models that take multivariate KPI time series as input
(USAD* and SCWarn), we calculated the average time cost
of one KPI time series. As the results show, Kontrast owns a

7

Table II: Performance of the Models of Two Tasks.

Task Anomalous KPI Erroneous Software Change

Category Approach Dataset A Dataset B Dataset B
F1 P R F1 P R F1 P R

End-to-end SCWarn - - - - - - 0.944 0.956 0.933
Gandalf - - - 0.537 0.549 0.526 0.790 0.711 0.890

Contrastive

DTW 0.919 0.910 0.929 0.559 0.600 0.523 0.913 0.894 0.933
Lumos 0.775 0.692 0.880 0.564 0.471 0.702 0.912 0.847 0.988
Pearson 0.757 0.641 0.923 0.246 0.143 0.899 0.687 0.552 0.908
TS-CP2 0.790 0.792 0.788 0.279 0.195 0.494 0.740 0.633 0.890

Anomaly detection
Funnel* 0.818 0.871 0.772 0.343 0.594 0.241 0.744 0.693 0.804
Donut* 0.874 0.927 0.826 0.483 0.626 0.393 0.874 0.927 0.826
USAD* - - - - - - 0.775 0.723 0.834

Cross-dataset Kontrast (A) - - - 0.593 0.585 0.601 - - -
Kontrast (B) 0.879 0.868 0.891 - - - - - -
Kontrast 0.932 0.934 0.929 0.648 0.626 0.672 0.948 0.945 0.951

Table III: Test and Training Time Cost.

Approach Dataset A Dataset B
Test (ms)1 Test (ms)1 Training (min)2

SCWarn - 15 254
Gandalf ∞ 5.8 >1,000
DTW 270 370 0
Lumos 34 24 0
Pearson 9.1 16.3 0
TS-CP2 0.22 0.18 240
Funnel* 7,900 1,400 0
Donut* 240 130 >1,000
USAD* - 2.7 40.7
Kontrast 0.20 0.14 45.0
1 Time cost per KPI time series
2 Time cost of the overall training process

millisecond-level speed in the testing phase of a KPI, which
is 100 (e.g., SCWarn, Lumos) to 1,000 (e.g., Donut*, DTW)
times faster than the state-of-the-art approaches excluding the
contrastive learning-based ones.

Training Time The training time cost is also a critical
evaluation metric for an approach because it determines the
detection delay of the approaches that require online training.
Since the training time of Kontrast highly depends on the
hyper-parameters, we compare the results in a specific context
(when running on dataset B). For the models with no need for
training, we regarded their training time as 0. For the models
that need training for each KPI time series, we summed up the
training time. For Kontrast, we summed up K training data
generation time cost and K model training time cost.

Through the last column of Table III, we find that in the case
where a considerable number (i.e., about 35,000) of KPI time
series are to be processed, the training time of KPI-specific
algorithms becomes unacceptable. On the contrary, the training
time of Kontrast is only related to some hyper-parameters
(the size of the generated dataset, K, ω, and training epochs),
which means the training time cost of Kontrast is insensitive
to the input size. TS-CP2 possesses a rather complex model
structure to extract detailed information from the KPI time
series, which leads to low efficiency in training.

3) RQ3: How does Kontrast adapt to different datasets?
Adaptability To demonstrate the adaptability of Kontrast,

we trained and tested it using different datasets. Using the ap-
proach from [43], we proved the dissimilarity of two datasets:

a DTW-based algorithm measured the inter-dataset similarity
between dataset A and A is 0.289, B and B is 0.274, while
between A and B is 1.357, which indicated that dataset A and
B were quite different on the shape of time series. Results can
be found in the “Cross-dataset” category of Table II.

The results show that although Kontrast might not have
learned the exact data patterns in the dataset, it achieves better
than most compared models. Holt-Winters in Gandalf does not
converge on dataset A, therefore omitted. Furthermore, we
have also conducted a five-fold cross validation on dataset B.
Experimental results are close to those in Table II. We do not
list them here due to the page limit. These results demonstrate
the adaptability of Kontrast, making it potentially capable of
being deployed on unfamiliar platforms even without knowing
their normal data patterns.

4) RQ4: How do the main components contribute to Kon-
trast’s performance?

Noise Pattern Injection Fig. 8 shows the F1-scores of
Kontrast without each of the noise pattern injection modules.
The original one with all components performs best in all
experiments on both datasets, while any deletion of the noise
pattern injection module degrades the overall performance.
The results show that our data augmentation modules are
beneficial to our contrastive-learning-based model.

With respect to the competitiveness of our data augmenta-
tion modules, we also found our data augmentation performs
better than the one in the latest work of self-supervised loss
for data augmentation [44]. In fact, if we replace the data
augmentation modules in Kontrast with the ones in [44],
F1-scores of anomalous KPI identification decrease by 0.12
and 0.17 on datasets A and B, and the one of erroneous
software change identification decreases by 0.14, according
to our experiment results. We conjecture this is because our
data augmentation is closer to realistic software change cases,
hence performs better than other approaches.
K - #Categories of the Noise Intensity Classifier To verify

the effectiveness of the noise intensity classifier, we explore
the relationship between K and the model performance. To
explore the influence of parameters on P model and LS model,
we used the raw prediction results of the models before aggre-
gation (4) in this experiment and in Section IV-D5. We find

8

Fig. 8: The F1-scores of models without one of the components of data
augmentation process. Note there is no software change case in dataset A.

(a) Dataset A. (b) Dataset B.

Fig. 9: The best F1-scores on two datasets with different K.

that a greater K leads to a better performance with the trade-
off of more data generating and training costs, according to the
results in Fig. 9. Thus, we should reach an empirical balance
between accuracy and time efficiency by trying multiple Ks
on different datasets. We can also ensure that when K = 1
(processing all the KPI time series using one P model and one
LS model), the performance on both datasets is the worst. This
observation demonstrates the necessity of the noise intensity
classification of Kontrast.

5) RQ5: What is the influence of the related hyper-
parameters?

ω - #Samples in the Inspecting Window Fig. 10 shows
the F1-scores with respect to the change of ω, where the larger
the ω is, the better the model performs, roughly. However, a
large ω introduces a significant detection time delay because
we need to wait until the data of the ωth time point has been
obtained. In dataset A, results are insensitive to ω when ω is
big enough, showing the positive case generation of dataset A
is robust enough for Kontrast.

(a) Dataset A. (b) Dataset B.

Fig. 10: The changing trend of F1-score along with the ω.

V. REAL-WORLD APPLICATIONS AND LIMITATIONS

To evaluate our approach in the practice conditions, we
applied Kontrast in practical software change cases. We show
several success stories and some limitations.

A. Success Stories

To evaluate and highlight the effectiveness of Kontrast in a
realistic setup, we collect several real software change cases
from the data center. Operators appreciate Kontrast in three-
fold. 1) Kontrast is highly efficient in identifying erroneous
software changes. The selected cases are tiny-scaled (#KPIs in
one case is about 1,000) cases for manual analysis. Kontrast
successfully identified all the erroneous software changes
within one second, which is much faster than current practices.
High efficiency helps the operators rapidly find the erroneous
software changes to take immediate actions (e.g., roll-back)
before a significant loss occurs. 2) Identification result is
accurate even if only a small amount of historical data is
available, thanks to the adaptability. Due to privilege issues in
the data center, training data is not easy to obtain. Thus, model
training is hard to carry out outside the data center, decreasing
the efficiency of parameter fine-tuning. When processing the
following software change cases, we found that even though
we train Kontrast on our dataset B, the overall performance
does not degrade much and can still identify the anomalous
KPIs and the erroneous software changes. The adaptability
primarily improves data security, making it possible to fine-
tune models without extensive sensitive data. 3) The accuracy
is satisfying, reducing false alarm cases and missing rates.
The analysis results conducted by Kontrast are closer to
the human labels than those conducted by current practices,
including FluxRank [12], k-sigma [13], and fixed threshold
anomaly detection approaches. Applying Kontrast, the false
alarm rate and the missing rate are lower, reducing operators’
unnecessary efforts and improving the service’s stability.

Some typical cases are listed as follows, and the figures of
corresponding KPIs are shown in Fig. 11.

Case 1: On a specific application, after a regular function
update, there was no anomaly except for a few transient spikes
in some of the KPI time series. The spikes were probably
caused by network service restart, which was self-healable
and should not be considered abnormal. Compared approaches
falsely alerted this pattern, causing a waste of operator’s time,
while Kontrast successfully recognized it as a false anomaly
thanks to the Transient Noise module (Section III-B2). The
module injects this sort of spikes into the negative cases,
making the model be tolerant of this pattern.

Case 2: A newly deployed software change modified the
log file saving function, causing a large increase in the output

(a) Case 1 (Negative). (b) Case 2 (Positive).

Fig. 11: KPIs from typical software change cases. Red shadow shows the
ongoing period.

9

file size. The average transaction time had not significantly
increased until the disk system was nearly full. Kontrast
detected this incident after the software change by transaction
time usage. It found that there were more frequent spikes in
this KPI after deployment, while the compared approaches
failed to detect it.

B. Limitations

There are some limitations with Kontrast. First, it is hard to
detect silent incidents caused by erroneous software changes.
Another limitation is that Kontrast currently processes each
KPI time series separately, ignoring the inter-dependency [45]
in the multivariate data. Due to the architecture of our model,
multivariate and adaptability are exclusive. We leave these to
our future improvements to tackle these issues.

VI. RELATED WORKS

A. Software Change

Software change has been a popular research domain in
academia and industry for several years [46]–[48]. To improve
the reliability of software changes, erroneous software change
identification is critical. Existing erroneous software change
identification approaches [8]–[10], [40] majorly regard this
problem as an anomaly detection task, utilizing anomaly
detection (or change point detection [49]–[51]) algorithms
to apply to this problem directly. For instance, multimodal
LSTM in [8], improved Singular Spectrum Transform (iSST)
in [9], Holt-Winters in [10] and A/B Test in [40]. However,
these approaches are not efficient and effective enough in our
scenario. The computation cost of Funnel [9] is too high, and
the accuracy of Lumos [40] is far from satisfactory. Other
approaches are KPI-specific, requiring training models for
every KPI, leading to low efficiency and high overhead, proved
in Section IV.

B. Anomaly Detection

In the literature, anomaly detection approaches are also
applied in identifying erroneous software changes [8], [9].
Donut [20] first used Variational Autoencoder (VAE) [52]
to reconstruct the KPI time series, detecting anomalies in
seasonal KPI time series. OmniAnomaly [53] used Stochastic
Recurrent Neural Network (Stochastic RNN) to handle multi-
variate time series, performing anomaly detection. FluxRank
[12] used KDE [16] to check if an anomaly exists. USAD [28],
a multivariate anomaly detection approach, applied adversely
trained autoencoders to train the network rapidly in an unsu-
pervised way. However, these anomaly detection approaches
are not sensitive to the vital information and properties of
software changes (e.g., KPI fluctuations in ongoing period,
comparison between pre-change and post-change period). An-
other fatal drawback of them is that they need to train a specific
model for each KPI time series or software system, thus
requiring massive calculation resources and leading to high
overhead. Therefore, anomaly detection-based approaches are
not suitable for directly applying to erroneous software change
identification. Kontrast focus on the critical tenet of software

changes, ignoring the unrelated parts of the KPI time series,
thus achieving high efficiency and superior performance.

C. Contrastive Learning & Self-Supervised Learning

Contrastive learning is prevalent in CV and NLP domains
[54], [55]. It helps models to better distinguish different data
samples by learning a representation, maximizing similarity
over samples from the same category, and dissimilarity over
samples from different categories [56]. Contrastive loss [27]
and Triplet loss [57] are two major loss functions used to train
contrastive learning models. Siamese network [26] is a classi-
cal model in contrastive learning. Its twin-tower architecture
is capable of handling homogenous or heterogenous data [58],
[59].

Contrastive learning requires a fully labeled dataset, while
the labels are costly in our scenario. Fortunately, data augmen-
tation based on self-supervised learning is a valuable tool for
generating training data [60], [61]. SimCLRv2 [54] applies
it on image (cropping, resizing, etc.), and ConSERT [55]
applies on text (cutoff, shuffing, etc.). In this way, we can
generate pseudo-labeled pairs from unlabeled data for training
contrastive learning models.

Applying self-supervised learning approaches on time series
data is becoming increasingly popular [41], [44], [62]–[65].
These works typically apply data augmentation technique to
generate time series segment pairs to train the model for
various downstream tasks, i.e., time series classification in
SimCLR-TS [63] and TimeCLR [65], representation learning
in TS-TCC [64], change point detection in TS-CP2 [41],
and anomaly detection in TimeAutoAD [44]. Though their
data augmentation approaches are effective in some datasets,
they are not designed for erroneous change identification
tasks, omitting the periodicity and local stability properties
introduced in Section III-A that normal KPIs follow.

VII. CONCLUSION

To better understand software changes, we conducted a
comprehensive empirical study from a global data center and
revealed several key observations that motivate us to propose
Kontrast. Kontrast is a novel self-supervised contrastive learn-
ing approach aiming to identify erroneous software changes
rapidly and accurately. Its comparison-based architecture al-
lows operators to process time series from different KPIs
simultaneously in a batch, thus dramatically increasing effi-
ciency. Kontrast possesses cross-dataset adaptability, making
training and testing on different datasets possible. An extensive
study including various erroneous software changes verified
the effectiveness and efficiency of Kontrast, outperforming all
the compared approaches.

ACKNOWLEDGMENT

This work is supported by the National Key R&D Program
of China 2019YFB1802504, and the State Key Program of
National Natural Science of China under Grant 62072264 and
61902200.

10

REFERENCES

[1] B. Beyer, C. Jones, J. Petoff, and N. R. Murphy, Site reliability
engineering: How Google runs production systems. ” O’Reilly Media,
Inc.”, 2016.

[2] “2021 Facebook Outage,” https://en.wikipedia.org/wiki/2021 Face-
book outage, [Online; accessed 13-May-2022].

[3] S. Mehta, R. Bhagwan, R. Kumar, C. Bansal, C. Maddila, B. Ashok,
S. Asthana, C. Bird, and A. Kumar, “Rex: Preventing bugs and miscon-
figuration in large services using correlated change analysis,” in 17th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 20), 2020, pp. 435–448.

[4] S. Lehnert, “A review of software change impact analysis,” 2011.
[5] E. Zhai, A. Chen, R. Piskac, M. Balakrishnan, B. Tian, B. Song, and

H. Zhang, “Check before you change: Preventing correlated failures in
service updates,” in 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20), 2020, pp. 575–589.

[6] G. Schermann, D. Schöni, P. Leitner, and H. C. Gall, “Bifrost: Sup-
porting continuous deployment with automated enactment of multi-
phase live testing strategies,” in Proceedings of the 17th International
Middleware Conference, 2016, pp. 1–14.

[7] C. Parnin, E. Helms, C. Atlee, H. Boughton, M. Ghattas, A. Glover,
J. Holman, J. Micco, B. Murphy, T. Savor et al., “The top 10 adages
in continuous deployment,” IEEE Software, vol. 34, no. 3, pp. 86–95,
2017.

[8] N. Zhao, J. Chen, Z. Yu, H. Wang, J. Li, B. Qiu, H. Xu, W. Zhang,
K. Sui, and D. Pei, “Identifying bad software changes via multimodal
anomaly detection for online service systems,” in Proceedings of the
29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2021, pp.
527–539.

[9] S. Zhang, Y. Liu, D. Pei, Y. Chen, X. Qu, S. Tao, Z. Zang, X. Jing, and
M. Feng, “Funnel: Assessing software changes in web-based services,”
IEEE Transactions on Services Computing, vol. 11, no. 1, pp. 34–48,
2016.

[10] Z. Li, Q. Cheng, K. Hsieh, Y. Dang, P. Huang, P. Singh, X. Yang,
Q. Lin, Y. Wu, S. Levy et al., “Gandalf: An intelligent,{End-To-
End} analytics service for safe deployment in {Large-Scale} cloud
infrastructure,” in 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20), 2020, pp. 389–402.

[11] D. Liu, Y. Zhao, H. Xu, Y. Sun, D. Pei, J. Luo, X. Jing, and
M. Feng, “Opprentice: Towards practical and automatic anomaly de-
tection through machine learning,” in Proceedings of the 2015 internet
measurement conference, 2015, pp. 211–224.

[12] P. Liu, Y. Chen, X. Nie, J. Zhu, S. Zhang, K. Sui, M. Zhang, and D. Pei,
“Fluxrank: A widely-deployable framework to automatically localizing
root cause machines for software service failure mitigation,” in 2019
IEEE 30th International Symposium on Software Reliability Engineering
(ISSRE). IEEE, 2019, pp. 35–46.

[13] F. Pukelsheim, “The three sigma rule,” The American Statistician,
vol. 48, no. 2, pp. 88–91, 1994.

[14] “Kontrast,” https://github.com/WXR1998/kontrast, [Online; accessed
25-Aug-2022].

[15] “Promtheus,” https://prometheus.io/, [Online; accessed 08-May-2022].
[16] R. A. Davis, K.-S. Lii, and D. N. Politis, “Remarks on some nonpara-

metric estimates of a density function,” in Selected Works of Murray
Rosenblatt. Springer, 2011, pp. 95–100.

[17] A. F. Siegel, “Testing for periodicity in a time series,” Journal of the
American Statistical Association, vol. 75, no. 370, pp. 345–348, 1980.

[18] M. G. Elfeky, W. G. Aref, and A. K. Elmagarmid, “Periodicity detection
in time series databases,” IEEE Transactions on Knowledge and Data
Engineering, vol. 17, no. 7, pp. 875–887, 2005.

[19] T. M. Chilimbi and V. Ganapathy, “Heapmd: Identifying heap-based
bugs using anomaly detection,” ACM SIGOPS Operating Systems Re-
view, vol. 40, no. 5, pp. 219–228, 2006.

[20] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao, D. Pei,
Y. Feng et al., “Unsupervised anomaly detection via variational auto-
encoder for seasonal kpis in web applications,” in Proceedings of the
2018 world wide web conference, 2018, pp. 187–196.

[21] W. Chen, H. Xu, Z. Li, D. Pei, J. Chen, H. Qiao, Y. Feng, and Z. Wang,
“Unsupervised anomaly detection for intricate kpis via adversarial train-
ing of vae,” in IEEE INFOCOM 2019-IEEE Conference on Computer
Communications. IEEE, 2019, pp. 1891–1899.

[22] Y. Su, Y. Zhao, W. Xia, R. Liu, J. Bu, J. Zhu, Y. Cao, H. Li, C. Niu,
Y. Zhang et al., “Coflux: Robustly correlating kpis by fluctuations for
service troubleshooting,” in Proceedings of the International Symposium
on Quality of Service, 2019, pp. 1–10.

[23] L. Jing and Y. Tian, “Self-supervised visual feature learning with deep
neural networks: A survey,” IEEE transactions on pattern analysis and
machine intelligence, vol. 43, no. 11, pp. 4037–4058, 2020.

[24] C. Wu, N. Zhao, L. Wang, X. Yang, S. Li, M. Zhang, X. Jin, X. Wen,
X. Nie, W. Zhang et al., “Identifying root-cause metrics for incident
diagnosis in online service systems,” in 2021 IEEE 32nd International
Symposium on Software Reliability Engineering (ISSRE). IEEE, 2021,
pp. 91–102.

[25] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, pp. 1735–80, 12 1997.

[26] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Icml, 2010.

[27] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric
discriminatively, with application to face verification,” in 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recog-
nition (CVPR’05), vol. 1. IEEE, 2005, pp. 539–546.

[28] J. Audibert, P. Michiardi, F. Guyard, S. Marti, and M. A. Zuluaga,
“USAD: UnSupervised Anomaly Detection on Multivariate Time Se-
ries,” in Proceedings of the 26th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining. Virtual Event CA USA:
ACM, Aug. 2020, pp. 3395–3404.

[29] “AIOps2018 Challenge,” https://github.com/NetManAIOps/KPI-
Anomaly-Detection, [Online; accessed 08-May-2022].

[30] J. Qiu, Q. Du, and C. Qian, “Kpi-tsad: A time-series anomaly detector
for kpi monitoring in cloud applications,” Symmetry, vol. 11, no. 11, p.
1350, 2019.

[31] J. Qian, F. Liu, D. Li, X. Jin, and F. Li, “Large-scale kpi anomaly
detection based on ensemble learning and clustering,” Journal of Cy-
bersecurity, vol. 2, no. 4, p. 157, 2020.

[32] Y. Xia, J. Lu, Y. Li, B. Zhang, H. Li, F. Xie, S. Liu, and C. Xu, “Anomaly
detection and processing in artificial intelligence for it operations of
power system,” in 2019 IEEE 8th International Conference on Advanced
Power System Automation and Protection (APAP), 2019, pp. 1099–1104.

[33] G. Yu, P. Chen, H. Chen, Z. Guan, Z. Huang, L. Jing, T. Weng,
X. Sun, and X. Li, “Microrank: End-to-end latency issue localization
with extended spectrum analysis in microservice environments,” in
Proceedings of the Web Conference 2021, 2021, pp. 3087–3098.

[34] J. Paul Martin, A. Kandasamy, and K. Chandrasekaran, “Crew: Cost and
reliability aware eagle-whale optimiser for service placement in fog,”
Software: Practice and Experience, vol. 50, no. 12, pp. 2337–2360,
2020.

[35] L. Larsson, W. Tärneberg, C. Klein, M. Kihl, and E. Elmroth, “Adaptive
and application-agnostic caching in service meshes for resilient cloud
applications,” in 2021 IEEE 7th International Conference on Network
Softwarization (NetSoft). IEEE, 2021, pp. 176–180.

[36] “Hipster Shop,” https://github.com/lightstep/hipster-shop, [Online; ac-
cessed 08-May-2022].

[37] “Kubernetes,” https://kubernetes.io/, [Online; accessed 08-May-2022].
[38] C. Chatfield, “The holt-winters forecasting procedure,” Journal of the

Royal Statistical Society: Series C (Applied Statistics), vol. 27, no. 3,
pp. 264–279, 1978.

[39] R. Bellman and R. Kalaba, “On adaptive control processes,” IRE
Transactions on Automatic Control, vol. 4, no. 2, pp. 1–9, 1959.

[40] J. Pool, E. Beyrami, V. Gopal, A. Aazami, J. Gupchup, J. Rowland, B. Li,
P. Kanani, R. Cutler, and J. Gehrke, “Lumos: A library for diagnosing
metric regressions in web-scale applications,” in Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, 2020, pp. 2562–2570.

[41] S. Deldari, D. V. Smith, H. Xue, and F. D. Salim, “Time series change
point detection with self-supervised contrastive predictive coding,” in
Proceedings of the Web Conference 2021, 2021, pp. 3124–3135.

[42] Z. Huang, W. Xu, and K. Yu, “Bidirectional lstm-crf models for
sequence tagging,” arXiv preprint arXiv:1508.01991, 2015.

[43] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A.
Muller, “Transfer learning for time series classification,” in 2018 IEEE
International Conference on Big Data (Big Data), 2018, pp. 1367–1376.

[44] Y. Jiao, K. Yang, D. Song, and D. Tao, “Timeautoad: Autonomous
anomaly detection with self-supervised contrastive loss for multivariate
time series,” IEEE Transactions on Network Science and Engineering,
2022.

11

[45] Z. Li, Y. Zhao, R. Liu, and D. Pei, “Robust and rapid clustering
of kpis for large-scale anomaly detection,” in 2018 IEEE/ACM 26th
International Symposium on Quality of Service (IWQoS). IEEE, 2018,
pp. 1–10.

[46] X. Zhang, C. Du, Y. Li, Y. Xu, H. Zhang, S. Qin, Z. Li, Q. Lin,
Y. Dang, A. Zhou, S. Rajmohan, and D. Zhang, “HALO: Hierarchy-
aware fault localization for cloud systems,” in Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining.
ACM, pp. 3948–3958.

[47] Y. Xu, X. Zhang, C. Luo, S. Qin, R. Pandey, C. Du, Q. Lin, Y. Dang,
and A. Zhou, “CARE: Infusing causal aware thinking to root cause
analysis in cloud system,” in Proceedings of the 1st Workshop on High
Availability and Observability of Cloud Systems. ACM, pp. 1–3.

[48] A. Mahimkar, C. E. de Andrade, R. Sinha, and G. Rana, “A composition
framework for change management,” in Proceedings of the 2021 ACM
SIGCOMM 2021 Conference. ACM, pp. 788–806.

[49] A. Mahimkar, H. H. Song, Z. Ge, A. Shaikh, J. Wang, J. Yates, Y. Zhang,
and J. Emmons, “Detecting the performance impact of upgrades in large
operational networks,” p. 12.

[50] A. Mahimkar, Z. Ge, J. Wang, J. Yates, Y. Zhang, J. Emmons, B. Hunt-
ley, and M. Stockert, “Rapid detection of maintenance induced changes
in service performance,” in Proceedings of the Seventh COnference on
emerging Networking EXperiments and Technologies on - CoNEXT ’11.
ACM Press, pp. 1–12.

[51] A. Mahimkar, Z. Ge, J. Yates, C. Hristov, V. Cordaro, S. Smith, J. Xu,
and M. Stockert, “Robust assessment of changes in cellular networks,”
in Proceedings of the ninth ACM conference on Emerging networking
experiments and technologies. ACM, pp. 175–186.

[52] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[53] Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei, “Robust anomaly
detection for multivariate time series through stochastic recurrent neural
network,” in Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining, 2019, pp. 2828–
2837.

[54] T. Chen, S. Kornblith, K. Swersky, M. Norouzi, and G. E. Hinton, “Big
self-supervised models are strong semi-supervised learners,” Advances
in neural information processing systems, vol. 33, pp. 22 243–22 255,

2020.
[55] Y. Yan, R. Li, S. Wang, F. Zhang, W. Wu, and W. Xu, “Consert:

A contrastive framework for self-supervised sentence representation
transfer,” arXiv preprint arXiv:2105.11741, 2021.

[56] T. Xiao, X. Wang, A. A. Efros, and T. Darrell, “What should not be
contrastive in contrastive learning,” arXiv preprint arXiv:2008.05659,
2020.

[57] K. Q. Weinberger and L. K. Saul, “Distance metric learning for large
margin nearest neighbor classification.” Journal of machine learning
research, vol. 10, no. 2, 2009.

[58] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. Torr,
“Fully-convolutional siamese networks for object tracking,” in European
conference on computer vision. Springer, 2016, pp. 850–865.

[59] B. Li, J. Yan, W. Wu, Z. Zhu, and X. Hu, “High performance visual
tracking with siamese region proposal network,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2018, pp.
8971–8980.

[60] T. Yao, X. Yi, D. Z. Cheng, F. Yu, T. Chen, A. Menon, L. Hong, E. H.
Chi, S. Tjoa, J. Kang et al., “Self-supervised learning for large-scale
item recommendations,” in Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, 2021, pp. 4321–
4330.

[61] J. Ma, C. Zhou, H. Yang, P. Cui, X. Wang, and W. Zhu, “Disentangled
self-supervision in sequential recommenders,” in Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, 2020, pp. 483–491.

[62] K. Wickstrøm, M. Kampffmeyer, K. Ø. Mikalsen, and R. Jenssen,
“Mixing up contrastive learning: Self-supervised representation learning
for time series,” Pattern Recognition Letters, vol. 155, pp. 54–61, 2022.

[63] J. Pöppelbaum, G. S. Chadha, and A. Schwung, “Contrastive learning
based self-supervised time-series analysis,” Applied Soft Computing, p.
108397, 2022.

[64] E. Eldele, M. Ragab, Z. Chen, M. Wu, C. K. Kwoh, X. Li, and C. Guan,
“Time-series representation learning via temporal and contextual con-
trasting,” arXiv preprint arXiv:2106.14112, 2021.

[65] X. Yang, Z. Zhang, and R. Cui, “Timeclr: A self-supervised con-
trastive learning framework for univariate time series representation,”
Knowledge-Based Systems, vol. 245, p. 108606, 2022.

12

	Introduction
	Empirical Study
	Data Collection
	Software Changes in the Online Service System
	Erroneous Software Change Identification Approaches in Current Practice

	Approach
	Data Extraction Specifications
	X
	XP
	XLS

	Training Data Generation
	Noise Intensity Classifier
	Pair Selection & Noise Pattern Injection

	Model Design
	Erroneous Software Change Identification

	Evaluation
	Experiment Setup
	Dataset
	Metrics

	Compared Approaches
	Implementation & Parameters
	Results
	RQ1
	RQ2
	RQ3
	RQ4
	RQ5

	Real-World Applications and Limitations
	Success Stories
	Limitations

	Related Works
	Software Change
	Anomaly Detection
	Contrastive Learning & Self-Supervised Learning

	Conclusion
	References

