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ABSTRACT
As Internet applications continue to scale up, microservice archi-
tecture has become increasingly popular due to its flexibility and
logical structure. Anomaly detection in traces that record inter-
microservice invocations is essential for diagnosing system fail-
ures. Deep learning-based approaches allow for accurate modeling
of structural features (i.e., call paths) and latency features (i.e., call
response time), which can determine the anomaly of a particular
trace sample. However, the point-wise manner employed by these
methods results in substantial system detection overhead and im-
practicality, given the massive volume of traces (billion-level). Fur-
thermore, the point-wise approach lacks high-level information,
as identical sub-structures across multiple traces may be encoded
differently. In this paper, we introduce the first Group-wise Trace
anomaly detection algorithm, named GTrace. This method cate-
gorizes the traces into distinct groups based on their shared sub-
structure, such as the entire tree or sub-tree structure. A group-
wise Variational AutoEncoder (VAE) is then employed to obtain
structural representations. Moreover, the innovative “predicting la-
tency with structure” learning paradigm facilitates the association
between the grouped structure and the latency distribution within
each group. With the group-wise design, representation caching,
and batched inference strategies can be implemented, which signif-
icantly reduces the burden of detection on the system. Our compre-
hensive evaluation reveals that GTrace outperforms state-of-the-
art methods in both performances (2.64% to 195.45% improvement
in AUC metrics and 2.31% to 40.92% improvement in best F-Score)
and efficiency (21.9x to 28.2x speedup). We have deployed and as-
sessed the proposed algorithm on eBay’smicroservices cluster, and
our code is available at https://github.com/NetManAIOps/GTrace.git.

CCS CONCEPTS
• Networks → Network services; • Computing methodolo-
gies → Artificial intelligence.
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1 INTRODUCTION
Nowadays, with the expansion of Internet applications and the
number of users, there is an urgent need for software services to be
developed rapidly and scaled dynamically. Microservice architec-
ture, with the advantages of fast development, easy deployment,
and scalability, has been widely used in the development of In-
ternet systems [7, 12, 15, 17]. In spite of this, the microservice ar-
chitecture also poses great challenges for failure diagnosis due to
the huge number of candidates and complicated dependencies be-
tween them.The first step for failure diagnosis is to accurately and
efficiently detect the anomalies. A common way to detect anom-
alies in large microservices systems is to detect anomalous traces.
A microservice trace is a tree structure that consists of a number of
spans representing the invocation relationships between the APIs
of the microservices, which records the execution process of an ex-
ternal request [12]. Since the traces contain detailed information
about the requests such as the invocation paths and the internal la-
tency of the spans, anomaly detection on microservice traces has
become a hot topic in industrial companies [19, 29, 30], which is
also the focus of this paper.

However, there are a number of challenges in trace anomaly
detection in microservices systems:

• Large number of services and complex trace structures. Large
microservice systems usually consist of many services, and
the number of trace structures may even be much larger [29].
This poses a great challenge for structural modeling.

• Large variation in latency distributions. Due to the flexibility
of the microservice system, the same service may have a large
difference in their downstream tree structures, resulting in
different latency distributions [19].

• In eBay, millions of traces are produced everyminute. In order
to detect anomalies in this volume of traces, the trace anomaly
detection algorithm must be efficient.

https://doi.org/10.1145/3611643.3613861
https://doi.org/10.1145/3611643.3613861
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Figure 1: A motivation example of the group-wise model.
Traces with the same tree structure can be grouped together.
The sub-tree of traces with the same structure can also be
grouped together. Grouped items share the same structure
but with different latency values.

• A failure tends to result in a large number of anomalous traces
with different structures. Trace-level anomaly outputs may
not conducive to efficiently helping the operators deal with
the failures [14].

Limited by the huge cost ofmanual labeling, existing trace anom-
aly detection approaches are mostly unsupervised. Existing trace
anomaly detection approaches can be divided into two categories:
statistic-based and model-based. Statistic-based approaches [9,
12, 17, 21] group a set of trace nodes with the same structural fea-
tures and model their distributions of latency features using statis-
tical methods. These statistics-based methods run efficiently, but
they have difficulties detecting new trace structures. Some coarse-
grained grouping strategies will make them less accurate in mod-
eling latency [5, 19].Model-based approaches [19, 25, 27, 29, 30]
employ deep learning to model the trace features. The use of deep
learning enables accurate modeling of complex trace features. But
it significantly increases the detection overhead since a model in-
ference is required for each trace.

Therefore, neither statistic-based approaches nor model-based
approaches can satisfy the above-mentioned four challenges (re-
fer to Sec. 2.2). We point out the main culprit of the high detec-
tion burden is the point-wise detection manner. Though there are
shared structures between different traces, as illustrated in Fig. 1,
the point-wise trace detection model has to conduct the complete
forwarding process trace-by-trace without reusing. Moreover, the
point-wise manner may encode the same structure shard by traces
into different representations. This unstable encoding mechanism
of trace structure makes it hard to learn high-level structural in-
formation and the intrinsic latency correlation, which has been
confirmed through statistics: the latency of traces from the same
structure or sub-tree can be similar.

In this paper, we propose GTrace, a Group-wise Trace anom-
aly detection algorithm. As illustrated in Fig. 1, the main idea be-
hind GTrace is as follows: For a batch of traces, we first catego-
rize the traces into distinct groups based on their shared struc-
ture, such as the entire tree or sub-tree structure. By carefully de-
signed grouping strategy (Sec. 3.1), we obtain the underlying struc-
ture of these traces. For each group, we use a group-wise VAE
(Sec. 3.2) to reassemble the sub-structures together to get the node-
wise and graph-wise representations, which are used in the fol-
lowing detection and visualization. On the one hand, the computa-
tional overhead can be significantly reduced by encoding sharing

(Sec. 3.3). Combined with the dynamic programming strategy and
graph merging in batched trace inference (Sec. 3.4), the computa-
tional overhead is further reduced. On the other hand, detection
accuracy can be enhanced with group-wise VAE, which models
trace latency at a higher level by learning the relationship between
underlying structure and latency distribution across traces within
the group, effectively mitigating the issue of overfitting latency for
specific traces commonly found in point-wise models.

However, an important fact is ignored in the above process. Ex-
cept for structure features, there are also latency features, which
can not be decoupled and reassembled for the existingmodel-based
methods. To address this problem, we exploit the relationship be-
tween structural and latency features in traces and propose a novel
group-wise VAE model which “predicts latency with structure”.
At last, to make our model more actionable for failure diagnosis,
we develop a novel visualization tool to present the anomalies in
visualized graphs. Both the visualization tool and detection algo-
rithm of GTrace have been deployed on eBay’s real-world system.
Our evaluation of the real-world dataset reveals that GTrace out-
performs state-of-the-art methods in both performances (2.64% to
195.45% improvement inAUCmetrics and 2.31% to 40.92% improve-
ment in best F-Score) and efficiency (21.9x to 28.2x speedup). The
main contributions of this paper are as follows:

• We propose GTrace, the first Group-wise Trace anomaly de-
tection approach. The novel “predicting latency with struc-
ture” learning paradigm facilitates trace grouping, group-wise
VAEmodeling, and ultimately, inference acceleration.This ap-
proach results in a method that is both fast and accurate.

• A batch of caching and reusing techniques (refer to Sec. 3.4),
including a dynamic programming strategy, a node&graph
caching algorithm, and a merged graph, are proposed to re-
duce the computational overhead of anomaly detection sig-
nificantly.

• To provide understandable feedback on detection results, we
develop a novel visualization tool for the trace anomalies based
on the detection results and graph encodings. GTrace is de-
ployed on eBay’s cluster and visualizations are demonstrated
through case studies.

2 PRELIMINARY AND MOTIVATION
2.1 Traces and Anomalies
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Figure 2: Example of a trace, its tree, and a sub-tree. APIs are
mapped to their IDs in tree nodes.

2.1.1 Microservice and API. Amicroservice system consists of sev-
eral microservices that communicatewith each other by calling the
microservice’s API. A microservice usually contains multiple APIs
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(operations). In this paper, we use a unique numeric ID (API ID) to
represent each API in the system.

2.1.2 Trace and Span. A trace records a set of spans representing
the invocation relationships between theAPIs of themicroservices,
which are produced by a single external request of a microservices
system (see Fig. 2). A span refers to an API (A) invoking another
API (B) under this external request, with corresponding API ID,
status code, and performance metric such as call latency.

2.1.3 Tree and Sub-tree. Traces can be modeled as trees (see Fig.
2), where each node represents a span (labeled with its API ID),
and each edge represents a call between spans. A tree contains
structural features and latency features. Structural features include
the structural information in a trace, such as call relationships and
status codes. Latency features include the call latency of each span.
The tree structure is an abstraction of traces. A tree structure can
be shared by multiple traces. For each node (span), itself and its
downstream calls form a sub-tree (see Fig. 1).

2.1.4 Node Sequence. By sorting the tree according to certain rules,
we can get the node sequence corresponding to the tree [19, 22].
We use DFS (depth-first-search) to obtain the node sequence and
sort the child nodes using the call timestamp in DFS.
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Figure 3: Anomaly Types

2.1.5 Anomaly Types. As previously defined, trace features can
be categorized into structural features and latency features. Ac-
cordingly, trace anomalies can be classified into structural anom-
alies and latency anomalies, following existing work [5, 19]. La-
tency anomalies are the anomalies of latency features that are usu-
ally caused by network latency or service saturation, etc. Latency
anomalies can be defined at node level or trace level, referring to
latency anomalies that occur on a span or in an entire trace, respec-
tively. Structural anomalies are trace-level anomalies of structural
features, such as missing spans in a trace or an abnormal return
status code, which may be caused by network packet loss, bad soft-
ware updates, etc.

2.2 Limitation of Existing Trace Anomaly
Detection

As previousmentions, existing trace anomaly detection can be clas-
sified into statistic-based andmodel-based. Statistics-based approaches
have been reported in the literature to have limitations in detection
accuracy and scalability for dynamic systems [5, 19, 25].

Therefore, quite a number of recent studies employmodel-based
approaches. Fig. 4 illustrates the general process in model-based
trace anomaly detection.Model-based approaches first encode both
structural and latency features from traces into node sequences,
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Figure 4: General process of model-based approaches. The
anomaly detection is usually point-wise.

graphs, trace vectors, etc, which are then input to a certain model.
By comparing the model reconstructions with the inputs, it is pos-
sible to determine whether a trace is abnormal or not. However,
existing model-based approaches have the following limitations:

• Limitation 1: Low Scalability: Existing approaches encode
each trace individually, leading to a substantial computational
cost. Group strategiesmay not be applicable in this context be-
cause each trace’s structural and latency information is com-
bined into a single encoding. As demonstrated in Figure 1, al-
though structures can be shared across different traces, the
latency information remains unique and cannot be grouped.

• Limitation 2: Ignoring High-Level Information: Current
approaches do not take into account the shared high-level
information between different traces. Although some traces
possess identical sub-trees, their shared sub-trees are encoded
differently. This prevents the model from fully leveraging the
commonalities between various traces.

2.3 Key Designs of GTrace
To address the limitations in model-based approaches, we propose
GTrace featuring three key designs:

• Design 1:We propose the “predict latencywith structure” strat-
egy to predict latency distribution using structural features as
input. Decoupling latency features from structural features al-
lows for the implementation of a grouping strategy and fur-
ther supports the design of group-wisemodels (refer toGroup-
wise VAE in Section 3.2).

• Design 2: We select the most suitable grouping strategy to
obtain grouped structures as input, enabling shared encoding
between traces. The grouped structure retains high-level in-
formation among traces that exhibit similar behaviors, such
as trace latency (refer toGrouping Strategy in Section 3.1).

• Design 3: Utilizing the group-wise model and an appropri-
ate grouping strategy, we also incorporate dynamic program-
ming with cache and merged graph inference techniques to
further enhance the inference efficiency of our proposedmodel,
GTrace (refer to Inference Acceleration in Section 3.4).

3 METHODOLOGY
Figure 5 illustrates the training process of GTrace. Firstly, it re-
ceives the grouped structure as input through the grouping strat-
egy. Following this step, a Group-wise VAE (Variational Autoen-
coder) is used for trace modeling. The Group-wise VAE is divided
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into two parts: Graph-wise and Node-wise, where each part con-
tains an encoder and a decoder. In the sections below, we will
provide a detailed breakdown of each component, including the
grouping strategy, group-wise VAE, encoder & decoder, as well as
the inference acceleration.

3.1 Grouping Strategy
The purpose of the grouping strategy is to obtain a grouped struc-
ture from a set of traces to be used as input to the group-wisemodel.
As previouslymentioned, the grouping strategy plays a vital role in
both detection accuracy and resource overhead reduction, which
is crucial for addressing the aforementioned limitations. A more
effective group strategy should fulfill the following requirements:

• It should aim to minimize the training and inference cost as
much as possible.

• It should identify the most appropriate granularity, allowing
traces within a group to exhibit similar behavior. In our sce-
nario, this means that grouped sub-structures should ideally
share the same key performance, i.e., latency distribution.

• The grouping strategy should also take into account the avail-
able data for training purposes.

Clearly, if the grouping strategy is too coarse-grained, it may
satisfy efficiency requirements but compromise performance. This
issue arises because traces classified into the same group do not
share the same performance (latency) distribution, making learn-
ing patternswithin the group difficult. Additionally, an overly coarse-
grained approach results in insufficient training samples for the
model, hindering convergence. On the other hand, a too-fine-grained
strategy cannot achieve a reduction in training and inference com-
putational costs.

Table 1: Empirical Study on Grouping Strategies

Group Strategy Description Count 𝜎 (log(𝑙𝑎𝑡))
None No group 1 1.96
API Group by API ID 413 0.48
STV Group by stv [19] 51373 0.20
Tree Group by tree [12] 40370 0.24

Sub-tree Group by sub-tree 3311 0.18

To this end, we empirically study different group strategies with
traces collected from an online large-scale microservices system.
Following [6], we assume that the latency in traces follows amixed
Log-Normal distribution. In Tab. 1, we demonstrate several candi-
dates of group strategies along with their count and 𝜎 (log(𝑙𝑎𝑡)),
where 𝜎 denotes the standard deviation.The smaller 𝜎 implies that
there is less deviation in modeling latency with a shared structure.
Thus, the group-wise model will be more accurate. The count is
used to denote the number of groups under different strategies. A
large number of groups will result in an augmented training and
inference overhead of the model. In Tab. 1, grouping by sub-tree
has the smallest average 𝜎 value with a reasonable count, which
shows its feasibility in our grouped inference task. Therefore, we
design the group-wise VAE model based on sub-tree grouping.
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Figure 5: Training process of GTrace. Latency 𝑍s are in-
ferred through the “predict latency with structure” para-
digm. Structural anomalies are detected through input node
sequence and reconstructed sequence. Latency anomalies
are detected through input latency and predicted latency.

3.2 Group-wise VAE
3.2.1 Overview. As depicted in Fig. 5, the proposed group-wise
approach employs a Variational Autoencoder (VAE)-based model.
VAE is widely used in modeling feature distributions, which infers
a latent variable 𝑧 by the inference model (the encoder) with the
input features. The latent variable 𝑧 is then decoded by the genera-
tive model (the decoder) to reconstruct the normal patterns of the
features. To realize group-wise trace modeling, the grouped struc-
tures are used asmodel input. Structural features are reconstructed
in the form of node sequence (Sec. 2.1.4) through the graph-wise
model. Latency features are output by the node-wise model in a
novel “predict latency with structure” manner.

3.2.2 Model Details. Considering the different nature of structural
and latency features, the model is divided into two parts, graph-
wise andnode-wise, respectivelymodeling the structural features
of the full graph (a trace tree) and the latency features of a node
(root node of a sub-tree).

(1)Thenode-wisemodel encodes a grouped structure into node-
level latency 𝒁s through a node encoder and then decodes them
into node-level latency distribution through a decoder. To realize
“predict latency with structure”, we employ Tree-LSTM (TL) [1] in
node encoder and decoder, which is suitable for sub-tree modeling
in traces and encoding sharing between sub-trees (see Sec. 3.3).

(2) The graph-wise model encodes a grouped structure into a
graph-level structure 𝒁 through the graph encoder and decodes
it into a node sequence. Since the node sequence has a fixed order
(Sec. 2.1.4), reconstructing the node sequence avoids complicated
graph matching in [20]. Structural anomalies can be found by com-
paring the input node sequences with the decoded sequence. We
use another TL to encode the grouped structure and a graph pool-
ing layer as the graph encoder. To decode a node sequence from
the graph-level 𝒁 , we employ a Multi-Layer Perceptron (MLP) as
the decoder. Tree-LSTM is not used here because the input to the
decoder is not node-level.
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Before the VAEmodel, we encode the trace features into vectors.
Tree edges are encoded as adjacencymatrices. Other structural fea-
tures (including API IDs and status codes) are encoded into a fea-
ture matrix and then embedded with an embedding layer. For the
latency features, we use the z-score standardization to normalize
the latency values according to the API IDs of nodes.

3.3 Tree-LSTM Based Encoder and Decoder
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Figure 6: Message passing in Tree-LSTM used in graph en-
coder, node encoder, and node decoder. The sub-trees with
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In group-wise VAE, we build the graph encoder, node encoder,
and node decoder upon the foundation on Tree-LSTM (TL) [1],
which is a special variant of LSTM that can be applied on trees
or DAGs. We choose to utilize TL for several reasons:

• TL supports the sharing of encodings for identical sub-tree
structures, enabling grouping at the sub-tree level. Since mes-
sages pass from the leaf nodes (Fig. 6), the encoding of two
sub-trees will be the same if they have the same structure.

• Tree-LSTM is highly suitable for sub-tree representation and
modeling. This allows efficient and effective capturing of the
hierarchical structure within grouped structures. In TL, mes-
sages are passed from leaf nodes level-by-level and aggregated
to the root node. In this way, node-level latency distributions
are predicted through the information passed from the sub-
tree nodes.

• The unique message-passing mechanism enables the encod-
ing of different sub-trees to be reused through dynamic pro-
gramming (Sec. 3.4.1), significantly reducing the computational
overhead while maintaining the model’s accuracy.

Thus, thanks to TL, sub-trees in the same group can share their
encoding. Furthermore, the encodings between different groups can
also be shared during model inference with this unique message-
passing mechanism. We will detail this process in Sec. 3.4.
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3.4 Inference Acceleration with Cache
In GTrace, we propose two techniques, dynamic programming in-
ference andmerged graph, to further reduce the overhead in model
inference. The overall process of inference acceleration is depicted
in Fig. 7.

3.4.1 Dynamic Programming Inference with Cache. With group-
wise modeling, many repeated model inferences have already been
avoided. However, the problem of group number inflation and time-
consuming model inference still exists. Based on the previously
mentioned message-passing strategy in Tree-LSTM, we design dy-
namic programming (DP)-based inference for the node-wisemodel.
The DP inference works with a node cache and a graph cache.

The node cache stores the node-wise encodings in group-wise
VAE. The messages are passed in topological order from the leaves
to the root in the TL model. This means we can reuse the node rep-
resentations with the same sub-tree structure with the DP strat-
egy, i.e. use the sub-tree information in the cache to reduce dupli-
cate computations further. To store the enormous amount of node
data and the associations between these nodes (to implement DP),
we propose a cache named Trace Cache Tree (TCT) to dynami-
cally and flexibly store the node representations with reasonable
resources. TCT is a tree with nodes managed by an LRU cache,
which stores node representations belonging to several traces. Like
the general cache, TCT supports insert and query operations. An
example of TCT is depicted in Fig. 8.

Insert operation:
• For each node in a trace, encode its sub-tree and create a new

TCT node with this encoding 𝑛𝑜𝑑𝑒_𝑘𝑒𝑦.
• Insert the created TCT nodes that are not in the cache to TCT

in an LRU manner.
• Add edges between the created TCT nodes according to their

relationship in the original traces.
Query operation returns a subgraph 𝑮′

𝑖 for a trace 𝑮𝑖 , which
includes the missed nodes 𝑉𝑚𝑖𝑠𝑠 and data nodes 𝑉𝑑𝑎𝑡𝑎 :

• Encode sub-trees for each node in 𝑮𝑖 and their𝑛𝑜𝑑𝑒_𝑘𝑒𝑦. Add
the missed nodes to 𝑉 (𝑮′

𝑖 ).
• Add the children ofmissed nodes to𝑉 (𝑮′

𝑖 ) as data nodes𝑉𝑑𝑎𝑡𝑎 ,
whose encodings are needed to be loaded from the cache to
the subgraph 𝑮′

𝑖 before dynamic programming inference.
• Add edges between the nodes in 𝑮′

𝑖 according to their edges
in TCT.

We use graph cache to store the graph-level structural encod-
ings (e.g., structure 𝒁 ). The graph cache is a standard LRU cache,
which uses the tree structure of awhole trace as the key (𝑔𝑟𝑎𝑝ℎ_𝑘𝑒𝑦).

3.4.2 Batched Inference with Merged Graph. DP achieves acceler-
ation for a single group through encoding sharing. In fact, we can
merge a batch of groups together as a merged graph for batched in-
ference, which can take full advantage of the parallel performance
of hardware. In the group-wise model, we propose the merged
graph further to accelerate the node-wisemodel inference for batch
traces. Amerged graph 𝑮𝑚𝑒𝑟𝑔𝑒 is essentially a graph containing all
the missed nodes and data nodes in a batch of traces (see Fig. 8),
which is also a subgraph of TCT. The results of performing node-
wise model inference on the merged graph are equivalent to the
results on the original traces. Therefore, we only need to perform
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Figure 8: Example of Trace Cache Tree (TCT) and merged
graph. Data nodes are cached nodes, but they contain encod-
ings that are used in dynamic programming.

model inference on this merged graph with much less computa-
tional effort, which enables further speed improvement in model
inference. With these two LRU caches and the merged graph, the
group-wise representations can be effectively inferredwith reason-
able memory usage without any changes to the model in Fig. 5.

3.5 Loss Function and Anomaly Score
3.5.1 Loss Function. The Evidence Lower-Bound (ELBO)L𝜙,𝜃 (𝐺)
is a widely used optimization objective in the VAE model [16]. It
is also used as the optimization objective in GTrace. Its ELBO is
derived as follows:
log𝑝𝜃 (𝐺) ≥ L𝜙,𝜃 (𝐺)

= E𝒁∼𝑞𝜙 (𝒁 |𝐺 ) [log𝑝𝜃 (𝐺 |𝒁 )] − KL(𝑞𝜙 (𝒁 |𝐺) | |𝑝 (𝒁 ))
(1)

where 𝑝𝜃 (𝒁 ) = N(0, 𝑰 ) is the prior distributions of the latent vari-
ables 𝒁 . During training, sampling and backpropagation of the la-
tent variables are performed using the reparameterization trick.
The parameters 𝜃 and 𝜙 are optimized by maximizing the optimiza-
tion objectiveL𝜙,𝜃 (𝐺) defined in Eq. (1). The first term ofL𝜙,𝜃 (𝐺)
contains the structural and latency loss in Fig. 5, and the second
term is the KL divergence term of the latent variables in VAE.

3.5.2 Anomaly Score. Thegroup-wise VAEmodels the normal pat-
terns of trace structure and latency features, with the input struc-
tural features. The anomaly score reflects the degree of the anom-
aly of the test sample [4]. It can be obtained by calculating the
probability of a trace 𝑮 with the features under the distribution in
its normal pattern (with group-wise VAE). A common practice of
calculating 𝑝 (𝑮) is Monte Carlo importance sampling [23]. An ap-
proximate estimate of the likelihood value can be computed with:

𝑝𝜃 (𝐺) ≈
1
𝑛𝑍

𝑛𝑍∑
𝑖=1

𝑝𝜃 (𝐺 |𝒁 (𝑖 ) )𝑝𝜃 (𝒁 (𝑖 ) )
𝑞𝜙 (𝒁 (𝑖 ) |𝐺)

(2)

where 𝑛𝑧 is the number of sampled latent variables, and 𝒁 (𝑖 ) de-
note the 𝑖-th sample of 𝒁 . In GTrace, we use the negative log-
likelihood (NLL) − log 𝑝𝜃 (𝐺) as the anomaly score. The test sam-
ple is considered anomalous when the NLL value is significantly
higher than the normal NLL value.

In general, latency anomalies occur only in some of the trace
nodes. In order to provide more accurate detection results, we de-
tect node-level latency anomalies.We calculate the likelihood𝐿𝑇,𝑘,𝜃
for the latency𝑇𝑘 of node𝑘 and the trace-level structural likelihood
𝐿𝑆,𝜃 separately as follows:

𝑝𝜃 (𝑿 ) ≈ 1
𝑛𝑍

𝑛𝑍∑
𝑖=1

𝑝𝜃 (𝑿 |𝒁 (𝑖 )
𝑆 )𝑝𝜃 (𝒁

(𝑖 )
𝑆 )

𝑞𝜙 (𝒁
(𝑖 )
𝑆 |𝑿 , 𝑬)

def
= 𝐿𝑆,𝜃 (3)

𝑝𝜃 (𝑇𝑘 ) ≈
1
𝑛𝑍

𝑛𝑍∑
𝑖=1

𝑝𝜃 (𝑇𝑘 |𝒁
(𝑖 )
𝑇 )𝑝𝜃 (𝒁

(𝑖 )
𝑇 )

𝑞𝜙 (𝒁
(𝑖 )
𝑇 |𝑿 , 𝑬)

def
= 𝐿𝑇,𝑘,𝜃 (4)

where 𝒁𝑆 and 𝒁𝑇 denotes the structure 𝒁 and latency 𝒁 respec-
tively. 𝑿 denotes the node sequence and 𝑬 denotes the adjacency
matrix of the tree.

4 EVALUATION
In this section, we focus on the evaluation to answer the following
research questions:
RQ1: How does GTrace perform on accurately detect anomalies?
RQ2: Do “predicting latency with structure” and “splitting node-
wise and graph-wise models” prove to be effective in accurately
detecting trace anomalies?
RQ3: How does the group-wise model work in modeling the la-
tency?
RQ4: Does GTrace really time efficient? How much do the cache
and merged graph accelerate anomaly detection?

4.1 Datasets
To comprehensively evaluate the performance of the proposed al-
gorithm, 2 datasets are collected and produced, including one read-
world dataset collected from eBay’s microservices system and one
dataset collected from a testbed with fault injection. Basic infor-
mation about these 2 datasets is shown in Tab. 2.

Table 2: Basic Information about Datasets

Dataset #Traces P99 Latency P99 #Spans P99 Depth
A 125k 7580ms 90 10
B 140k 263ms 96 4

4.1.1 Real-world Dataset from eBay. To evaluate the performance
of the proposed GTrace algorithm for detecting real anomalies in a
real microservice system, the datasetA, which contains real anom-
alies, is collected from eBay’s microservices system. The system
contains a total of 314 microservices and 1487 APIs. The dataset
contains 5 hours of trace data at the normal time and 2 hours of
test data at the time of failure. We manually label the traces during
the failure, which include 253 traces with structure anomalies and
1417 traces with latency anomalies.

4.1.2 Dataset from Testbed with Fault Injection. Dataset B is col-
lected from a testbed built based on the open-source microservices
system microservice-demo1. We use Kubernetes to manage the mi-
croservices system, which contains 11 microservices and 65 APIs.
1https://github.com/GoogleCloudPlatform/microservices-demo.git



From Point-wise to Group-wise: A Fast and Accurate Microservice Trace Anomaly Detection Approach ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

In order to obtain anomalous trace data, several services are ran-
domly selected and injected into different types of faults.The types
of injected faults include network latency, network packet loss,
and CPU stress of pods.

4.2 Baselines
In order to comprehensively evaluate the anomaly detection per-
formance of the model, the proposed model is compared with var-
ious existing baseline models that can be used for trace anomaly
detection.2
(1) CFG [21]. CFG models the latency distribution of each node
and its children in the program control flow and uses it to deter-
mine anomalies in program execution.
(2) FSA [9]. Use FSA (finite-state automaton) to model for method
invocation in the program execution flow. When the automaton
cannot accept a program execution flow or its latency exceeds the
threshold, this execution flow is considered to be anomalous.
(3) TraceAnomaly (TA) [19]. TA takes the preceding call path of
each span as one dimension of its input service trace vector (stv)
and encodes the span latency as its feature. TraceAnomaly models
the service trace vector with VAE.
(4) LSTM [22]. The multimodal LSTM model encodes the traces
into sequences of vectors according to the order of spans in the
traces and reconstructs them with an LSTM model.
(5) CRISP [30]. CRISP computes the critical paths for traces and
presents them in the form of critical calling context trees (CCCT).
Anomalies are detected based on TraceAnomaly [19] with the ser-
vice critical path vectors (SCPV), which are obtainedwith the CCCT.
(6) TraceCRL [29]. TraceCRL employs graph contrastive learning
inmodeling trace graphs and detects anomalies with classifiers (e.g.
OC-SVM).

4.3 Experiment Settings
4.3.1 Evaluation Metrics. To evaluate the accuracy of anomaly de-
tection, following the common practice in anomaly detection [11,
18], we choose the best F-Score and AUC as the accuracy evalu-
ation metrics. These metrics are both widely used threshold-free
metrics, which do not require threshold selection.

4.3.2 Experimental Details. We use PyTorch and the DGL to im-
plement the GTrace model. The training batch size is set to 128,
the learning rate is set to 0.001, the weight decay rate is set to 0.01,
and the AdamW optimizer is used. The cache size is set to 218 for
both caches, to ensure that the cached content does not cause over-
flows of the GPU memory. During model training, we do not use
inference acceleration techniques in order to ensure the number
of training samples and the distribution of samples with different
structures during training. In terms of baseline model implementa-
tion, for TraceAnomaly and CRISP, we use the open-source code
repository34 of the original papers and modify some parts of them

2DeepTraLog [28] and TraceLingo [27] are not compared since they require extra data
or labels. TraceVAE [25] is not compared since it does not support node-level latency
detection.
3https://github.com/NetManAIOps/TraceAnomaly.git
4https://github.com/uber-research/CRISP

for data loading and evaluation. For CFG, FSA, LSTM, and Trace-
CRL, we implement the algorithms based on the algorithm descrip-
tions andmodel settings in the original paperwith Python. Some of
the baselines are modified to detect node-level latency anomalies,
in whichwe use the latency reconstruction results of each node are
used for the anomaly scores. We add classifiers after the node em-
beddings to detect node-level anomalies in TraceCRL. In order to
perform detection for trace-level latency anomalies in GTrace, we
take the maximal value of node latency anomaly scores. We use
RTX 3060 GPU in model inference for all deep learning models,
which are accelerated by CUDA.

4.4 RQ1: Baseline Comparison
The comparison of the model GTrace proposed in this paper with
the baseline model is shown in Tab. 3. Our proposed GTrace model
outperforms the other models in all evaluation indexes of the four
datasets. Among all the evaluation metrics, GTrace leads the most
in the structure-related metrics. Compared to the baseline models,
GTrace models the overall structure of the traces by separating la-
tency and structural features in a graph-based approach.This mod-
eling approach helps fully learn the structural features of the traces,
which results in more accurate structural anomaly detection.

GTrace also shows advantages in latency anomaly detection, es-
pecially in node-level metrics. Compared with the statistic-based
methods like CFG and FSA, GTrace utilizes group-wise VAE to
model node latency distribution, which enables more accurate la-
tency anomaly modeling for different trace structures. Compared
with model-based methods like TraceAnomaly, LSTM, CRISP, and
TraceCRL, we innovatively propose the latency modeling method
of “predicting latency with structure”. This essentially avoids the
dependence of the model on the input of latency features, which
further helpsmitigate the overfitting of latency features. It is worth
noting that TraceCRL also uses aGNN-basedmodel to obtain graph-
level representations. However, TraceCRL can hardly be used for
node-level anomaly detection due to its lack of targeted design for
node-level representation learning.

4.5 RQ2: Effectiveness of Group-wise VAE
In this paper, we propose to use the “predicting latency with struc-
ture” approachwith group-wise VAE tomodel the latency in traces.
To investigate the effectiveness of the group-wise modeling ap-
proach proposed in this paper, we perform ablation studies on the
VAE model in GTrace. The results are shown in Tab. 4. The first ab-
lation study (+ input 𝑻 ) add latency features 𝑻 to the model input.
It can be found that GTrace performs better in most of the evalu-
ation metrics even without the latency input. This shows that the
proposed group-wise VAEmodel can infer the latency information
with the structural input and “predicting latency with structure”
effectively mitigate the overfitting of latency features. The second
one (- split 𝒁 ) studies the effectiveness of the “splitting node-wise
and graph-wise model” design in the group-wise VAE. In this ab-
lation study, we remove the node-wise model and only employ a
graph-wise model with a single 𝒁 as the VAE structure.The results
suggest that the splitting of node-wise and graph-wise models ef-
fectively enhances the learning ability of the VAE model for trace
features.
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Table 3: Evaluation of accuracy, where “A” denotes AUC and “F” denotes F-Score. The best results are marked in bold and the
second best results are underlined.

Node Latency Trace Latency Trace Structure
Dataset Model A ⇑A F ⇑F A ⇑A F ⇑F A ⇑A F ⇑F

A

CFG 0.795 9.1% 0.757 14.8% 0.880 6.3% 0.803 11.6% 0.192 340.1% 0.314 174.2%
FSA 0.277 213.0% 0.446 94.8% 0.303 208.6% 0.472 89.8% 0.050 1590.0% 0.105 720.0%
TA 0.250 246.8% 0.305 184.9% 0.337 177.5% 0.504 77.7% 0.286 195.5% 0.611 40.9%
LSTM 0.052 1567.3% 0.121 618.2% 0.398 134.9% 0.394 127.4% 0.163 418.4% 0.254 239.0%
CRISP 0.183 373.8% 0.278 212.6% 0.294 218.0% 0.318 181.8% 0.011 7581.8% 0.054 1494.4%
TraceCRL 0.022 3840.9% 0.077 1028.6% 0.089 950.6% 0.277 237.6% 0.065 1200.0% 0.221 289.6%
GTrace 0.867 - 0.869 - 0.935 - 0.896 - 0.845 - 0.861 -

B

CFG 0.698 12.2% 0.663 10.4% 0.671 16.1% 0.717 5.0% 0.206 306.3% 0.501 60.7%
FSA 0.392 99.7% 0.616 18.8% 0.384 102.9% 0.569 32.3% 0.124 575.0% 0.221 264.3%
TA 0.275 184.7% 0.446 64.1% 0.337 131.2% 0.504 49.4% 0.286 192.7% 0.611 31.8%
LSTM 0.147 432.7% 0.244 200.0% 0.759 2.6% 0.736 2.3% 0.123 580.5% 0.342 135.4%
CRISP 0.143 447.6% 0.261 180.5% 0.336 131.9% 0.482 56.2% 0.295 183.7% 0.611 31.8%
TraceCRL 0.023 3304.4% 0.072 916.7% 0.437 78.3% 0.552 36.4% 0.072 1062.5% 0.227 254.6%
GTrace 0.783 - 0.732 - 0.779 - 0.753 - 0.837 - 0.805 -

Table 4: Ablation Study of GTrace

Node Lat. Trace Lat. Trace Struct.
Data Model A F A F A F

A
+ input 𝑻 0.439 0.407 0.498 0.453 0.795 0.850
- split 𝒁 0.208 0.290 0.297 0.359 0.277 0.424
GTrace 0.867 0.869 0.935 0.896 0.845 0.861

B
+ input 𝑻 0.668 0.659 0.746 0.750 0.559 0.830
- split 𝒁 0.551 0.601 0.644 0.684 0.219 0.385
GTrace 0.783 0.732 0.779 0.753 0.837 0.805

4.6 RQ3: Effectiveness of Latency Modeling in
GTrace
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Figure 9: Real and reconstructed latency distributions for
the same API in different sub-trees. “Real” shows the real
latency distribution for the API in the current tree structure.
“Prediction” shows the predicted latency distribution for the
API in the current tree structure.

To further investigate the accuracy of the node-wise model in
“prediction latency with structure”, we visualize the prediction re-
sults of VAE in GTrace. Fig. 9 shows the real and predicted latency

distributions for a certain API in different sub-trees. It can be found
that the predicted latency of GTrace is different for different sub-
trees, which also fits the real distribution well. This suggests that
the group-wise VAE effectively models the latency propagation
from the sub-tree structures.
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Figure 10: Speed Comparison on A and B

4.7 RQ4: Evaluation of Time Efficiency
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Figure 11: Cache Hit Rate on A and B

To evaluate the time efficiency of GTrace, we implement and
deploy the detection pipeline in Fig. 7. We also implement other
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Table 5: Time consumption breakdown for 30,000 traces in
A. Note that graph building and anomaly detection are exe-
cuted in parallel in different threads. “Other” period denotes
other necessary codes in the program (e.g. logger, garbage
collection. data format conversion, and some other func-
tional logic codes).

GTrace w/o Cache
Period Time (s) Percent Time (s) Percent

Graph Build (P.)* 0.144 4.7% 0.140 0.4%
Cache R & W 0.419 13.7% 0.000 0.0%

Model Inference 0.937 30.6% 20.110 56.2%
Other* 1.704 55.7% 15.713 43.8%
Total 3.060 100% 35.823 100%

DL-based algorithms in this pipeline for evaluation. To ensure fair-
ness, the same graph building code is used for all methods. We set
a cold start time of 10s for all methods and calculated the mean
value of their detection speed, as shown in Fig. 10. It can be found
that GTrace runs significantly faster than the other model-based
baselines, achieving a 28.2x speedup in A and a 21.9x speedup in
B. This suggests that the group-wise model effectively improves
time efficiency compared to other deep learning models.

To further investigate the effectiveness of cache and merged
graph, we remove the cache and merged graph modules and com-
pare its speed with the original GTrace model, shown as GTrace
(w/o Cache) in Fig. 10 and Tab. 5. It can be found that the cache and
merged graphs utilize very little time (Cache R & W) in exchange
for a significant reduction in inference time. Fig. 11 also shows the
cache hit rate in GTrace with the detected traces. It demonstrates
that the hit rates of both the node cache and the graph cache get
higher and eventually stabilize at over 95%, as the number of de-
tected traces increases. This suggests that GTrace effectively takes
advantage of the cache andmerged graph and significantly reduces
the running overhead in trace anomaly detection.

5 VISUALIZATION TOOL
5.1 Motivation and Design
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Figure 12: Overall Process of Visualization Tool

In large microservices systems, each failure can generate nu-
merous anomalous traces with varying structures. Current anom-
aly detection algorithms typically present these traces individually,
complicating operators’ ability to quickly understand the anom-
alies. As a result, we believe it’s crucial to provide operators with
a summary of detected anomalies. To achieve this, we develop
a visualization tool and deploy it on eBay’s microservices cluster.
The main features of the visualization tool are:

• Automatically reconstructs missing nodes and provides visu-
alization for both latency and structural anomalies.

• Displays upstream and downstream APIs of the selected API,
facilitating an easy understanding of fault propagation paths.

The overall process of the visualization tool is illustrated in Fig.
12. Displaying structural anomalies is challenging due to missing
nodes in anomalous traces.We employ a KD-Tree constructed from
structure 𝒁 of normal traces and queried by anomalous trace vec-
tors to restore normal patterns. APIs from all restored anomalous
traces within a specific time range are then ranked using the JI-
score (following [17]) and displayed as a list for operators. Opera-
tors can select an API from the list, and a subgraph containing all
APIs within a distance of 𝑘 from the chosen API will be shown, pre-
senting a failure summary instead of a single trace. More informa-
tion about this visualization tool can be found in the source code.
To illustrate the efficacy of the visualization tool on failure cases,
we deploy GTrace on eBay’s microservices cluster and present two
case studies to demonstrate the visualization results.

5.2 Case 1: Structural Anomalies
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Figure 13: Visualization on Case 1

Fig. 13 shows the output of the visualization in a failure which is
caused by network packet loss between “API 32” and “API 2” (Fig.
13c). In this case, “API 2” are lost in abnormal traces due to the
failure5. Therefore, if the anomalous traces are output one by one,
operators may not be able to notice the anomalies in API 2.

However, as depicted in Fig. 13c, the visualization tool success-
fully reconstructs API 2. The operators can obtain this as follows:
First, select an API from the abnormal ranking in Fig. 13c. In this
5Some tracing tools are able to record the “caller” span, with which there will be an
error span of API 2 from the server side. But in this paper, we consider all spans as
the “callee” span. In this case, all of the spans in the sub-tree of API 2 are lost.
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case, “API 32” is selected and the visualization tool shows Fig. 13c,
where the red border of API 2 indicates the structural anomalies in
this failure. Moreover, we can find that the loss of API 2 causes
latency anomalies in API 32. Therefore, even if ”API 2” is miss-
ing from the traces, operators can still find the anomaly in “API
2” and understand the anomaly propagation through the visualiza-
tion tool.

5.3 Case 2: Latency Anomalies
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Figure 14: Visualization on Case 2

In Fig. 14, we demonstrate a failure case with latency anomalies,
where the API 60 and API 61 are both experiencing network delay.
Similarly, both API 60 and API 61 are filled with red in the visual-
ization tool (Fig. 14c), which indicates that the proposed visualiza-
tion tool successfully shows the anomalies in this case. API 40 is
also filled with light red color, which indicates that its downstream
anomalies cause its own latency anomalies with a weaker degree.
In this case, the visualization tool avoids the need for operators to
manually examine each trace and instead displays the anomalous
API along with the fault propagation.

6 THREATS TO VALIDITY
The threat to the internal validity mainly lying in this paper is
the implementation of the anomaly detection systems. We imple-
mented LSTM, CFG, FSA, and TraceCRL by ourselves as there are
no publicly available implementations. We implement these algo-
rithms following their papers.

The threat to external validity mainly lies in this paper in the
evaluation datasets. Our experimental study is based on two datasets,
but the results might not represent the performance in other sys-
tems. To reduce this threat, we collect these datasets from several
different microservices systems or different business components.
In addition, the time efficiency of the algorithm is also highly de-
pendent on the CPU model and architecture on which the detec-
tion pods run. In the future, we will evaluate the performance of
GTrace on more microservices systems.

7 RELATEDWORKS
In microservice systems, the objects of anomaly detection mainly
include time series [24, 26], logs [8, 13] and traces [2, 19]. Com-
pared with them, traces have flexible graph structures, thus bring-
ing more challenges to anomaly detection. Numerous statistics-
based approaches [2, 9, 10, 17, 21] derive associations between la-
tencies and structures by employing grouping statistical methods.

In recent years, many studies have leveraged model-based frame-
works in conjunction with deep learning to achieve more accurate
trace modeling. TraceAnomaly [19] encodes latency features into
a dimension of the stv (Service Trace Vector) and employs a VAE
model to reconstruct it. In CRISP [30], the critical path of a trace is
computed and presented in the form of critical calling context trees
(CCCT). CRISP detects the anomalies based on TraceAnomaly [19]
with the stv of CCCT.Themultimodal LSTM [22] and MSP [3] con-
vert the trace to a sequence and use the LSTM and the attention
model, respectively, to capture the sequential pattern. Recently,
GNN-based methods have been used. TraceLingo [27] employs the
Tree-LSTMmodel to capture the dependencies, but it is still a point-
wise model, which is very different from the proposed GTrace.
DeepTraLog [28] proposed to combine traces and logs for anomaly
detection with GNN. TraceCRL [29] introduces graph contrastive
learning to trace anomaly detection and sampling. TraceVAE [25]
further introduces graphVAE in tracemodeling.Thesemodel-based
approaches have better learning ability for trace structures but
tend to have a larger runtime overhead. Therefore, we present the
first group-wise trace anomaly detection algorithm GTrace, which
leverages group-wise modeling and inference acceleration to sig-
nificantly improve time efficiency while attaining accurate detec-
tion through deep learning.

8 CONCLUSION
In failure diagnosis of largemicroservices systems, the anomaly de-
tection algorithm needs not only accuracy but also time efficiency.
This paper presents GTrace, the first group-wise trace anomaly de-
tection method. We first conduct an empirical study to select the
sub-tree as the grouping strategy. Based on this grouping strategy,
we propose a novel group-wise VAE model, which takes group-
wise structural features as input, and models latency in a novel
“predicting latency with structure” way. We also propose a tree-
structured node-level cache and a graph cache, combined with dy-
namic programming and merged graph strategy, to enable accu-
rate and efficient anomaly detection with a reasonable resource.
We evaluate GTrace on two datasets, including a real-world dataset,
and the results show that the proposed group-wise anomaly detec-
tion approach is effective in both accuracy (2.64%-195.45% AUC im-
provement) and time efficiency (21.9x to 28.2x speedup). Besides,
we present a visualization tool to show a summary of detected
trace anomalies in the form of a graph. We deployed GTrace on
eBay’s microservices system and analyzed the effectiveness of the
visualization tool.
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