

Unsupervised Anomaly Detection on Microservice Traces through Graph VAE

Zhe Xie¹, Haowen Xu, Wenxiao Chen, Wanxue Li, Huai Jiang, Liangfei Su, Hanzhang Wang, Dan Pei

1. Presenter. Email: xiez22@mails.tsinghua.edu.cn

What is a Trace

https://example.com/checkout

External Request

What is a Trace

What is a Trace

Example of a Trace Record

ID	Parent	API	Time	Code
0	_	Checkout	23	200
1	0	CheckPrice	12	200
2	1	ReadDB	2	200
3	1	WriteLog	6	200
4	0	Payment	6	200

A trace records all these invocations along with some additional information.

Anomalies in Traces

Anomalies in Traces

Anomalies in Traces

Trace records the **path** of fault propagation.

Types of Trace Features

Structure Features

Time Features

Types of Trace Anomalies

Structure Anomaly

Time Anomaly

Trace anomaly detection is not that easy!

Single Downstream Invocation

Multiple Downstream Invocations

Trace anomaly detection is not that easy!

Single Downstream Invocation

Multiple Downstream Invocations

Trace anomaly detection is not that easy!

Single Downstream Invocation

Multiple Downstream Invocations

Trace Graph

Model a Trace as a Graph Reconstructed with VAE

Dual-Variable Graph VAE

TraceVAE

A Adjacency Matrix X Time Features Y Structure Features

TraceVAE - GNN Layers

Y Structure Features A Adjacency Matrix X Time Features

 $q_{\phi}(\mathbf{z}|\mathbf{A},\mathbf{Y})$ $p_{\theta}(N, \mathbf{A}, \mathbf{Y}|\mathbf{z})$ $p_{\theta}(N|\mathbf{z})$ Structure VAE Α $p_{\lambda}(\mathbf{z})$ MLP Pooling $N \times N$ $p(\mathbf{A}|\hat{\mathbf{H}}^{(0)})$ ⇒ \mathbf{Z} Α GNN 気 $1 \times K$ \mathbf{Y} $N \times N$ Inner-Product $\hat{\mathbf{H}}^{(0)}$ MLP $N \times F$ $p_{ heta}(\mathbf{Y}|\mathbf{A}, \hat{\mathbf{H}}^{(0)})$ **GNN** $N \times 1$ $q_{\phi}(\mathbf{z}_2|\mathbf{A},\mathbf{X},\mathbf{Y})$ $p_{\theta}(\mathbf{X}|\mathbf{A},\mathbf{Y},\mathbf{z}_2)$ \mathbf{A} $N \times \Lambda$ Time VAE $p_{\lambda}(\mathbf{\dot{z}}_2|\mathbf{z})$ Dispatching Pooling \mathbf{Z}_{2} $p_{\theta}(\mathbf{X}|\mathbf{A},\mathbf{Y},\mathbf{Z}_{2})$ \mathbf{X} $\hat{\mathbf{X}}$ \mathbf{Z}_{2} 1 × K₂ GNN $N\times 1$ **GNN** $N \times 1$ \mathbf{Y} ŤΨ, $N \times$

GNN Layers

Capture the correlations in trace graphs with Graph Neural Network (GNN)

 $\hat{\mathbf{Y}}$

TraceVAE - Dispatching Layer

A Adjacency Matrix X Time Features Y Structure Features

Dispatching Layer

Enhance the generalizability of time VAE

z₂ as a shared context for all nodes in a trace

TraceVAE - Anomaly Score

$$NLL_G = -\log p_{\text{model}}(G)$$
$$= -\log \mathbb{E}_{q_{\phi}(\mathbf{z}, \mathbf{z}_2 | G, N)} \left[\frac{p_{\theta, \lambda}(G, N, \mathbf{z}, \mathbf{z}_2)}{q_{\phi}(\mathbf{z}, \mathbf{z}_2 | G, N)} \right]$$

Negative Log-Likelihood (NLL) as Anomaly Score

TraceVAE - Anomaly Score

$$NLL_G = -\log p_{\text{model}}(G)$$
$$= -\log \mathbb{E}_{q_{\phi}(\mathbf{z}, \mathbf{z}_2 | G, N)} \left[\frac{p_{\theta, \lambda}(G, N, \mathbf{z}, \mathbf{z}_2)}{q_{\phi}(\mathbf{z}, \mathbf{z}_2 | G, N)} \right]$$

Negative Log-Likelihood (NLL) as Anomaly Score

- Traces have different numbers of nodes
 - Is NLL suitable for trace anomalies?

Inversion of NLL

Normal: Normal traces with structure-matched TraceVAE reconstructions

Mismatched: TraceVAE reconstructions are structured differently from the inputs

Large Intersection Area!

NLLs of many mismatched traces are even smaller than many normal traces.

Go further with NLL

Difference between real and model distributions

Inversion of NLL

Go further with NLL

Traces with different sizes may have a large difference in their entropy.

Traces with different sizes may have a large difference in their entropy.

Techniques to Reduce the Impact of Entropy Gap

Bernoulli & Categorical Scaling

• Scaling the NLLs of anomalous nodes

Node Count Normalization

• Normalize the entropy of traces with different #nodes

Gaussian Std-Limit

• Further enlarge the NLLs of anomalous nodes

• 5 datasets collected from eBay' s microservices system

• 1 dataset containing real online anomalies

• 4 datasets containing synthetic anomalies injection

Collected from different business domains

Comparison with Baselines

		Я			\mathcal{B}			С			D			3		
		Total	Struct	Time	Total	Struct	Time	Total	Struct	Time	Total	Struct	Time	Total	Struct	Time
Baselines	FSA	0.664	0.497	0.497	0.737	0.583	0.583	0.813	0.685	0.685	0.527	0.358	0.358	0.199	0.090	0.134
	LSTM-AD	0.745	0.470	0.872	0.710	0.420	0.820	0.565	0.184	0.881	0.758	0.558	0.927	0.442	0.213	0.513
	TraceAnomaly	0.560	0.091	0.832	0.570	0.105	0.812	0.528	0.182	0.717	0.530	0.090	0.775	0.410	0.048	0.565
	CRISP	0.438	0.164	0.502	0.416	0.179	0.520	0.526	0.092	0.769	0.334	0.090	0.382	0.344	0.041	0.422
	VGAE	0.275	N/A	0.454	0.261	N/A	0.408	0.631	N/A	0.682	0.387	N/A	0.625	0.450	N/A	0.529
TraceVAE Ablation Study	TraceVAE	0.954	0.935	0.945	0.944	0.903	0.940	0.923	0.911	0.911	0.980	0.988	0.965	0.791	0.813	0.772
	TraceVAE-FC	0.936	0.889	0.938	0.925	0.877	0.936	0.915	0.903	0.907	0.975	0.983	0.959	0.729	0.742	0.677
	TraceVAE-SingleZ	0.854	0.849	0.829	0.888	0.921	0.816	0.919	0.881	0.894	0.946	0.943	0.931	0.632	0.702	0.507
	TraceVAE-DimEx	0.789	0.768	0.777	0.818	0.705	0.863	0.841	0.892	0.762	0.897	0.901	0.882	0.579	0.268	0.692
Techniques to Reduce Entropy Gap	TraceVAE-NLL	0.918	0.930	0.867	0.928	0.954	0.879	0.927	0.902	0.885	0.957	0.969	0.937	0.645	0.769	0.561
	TraceVAE-BCScale	0.925	0.967	0.868	0.931	0.971	0.878	0.925	0.925	0.883	0.965	0.990	0.935	0.662	0.813	0.558
	TraceVAE-NCNorm	0.918	0.877	0.916	0.904	0.891	0.882	0.873	0.798	0.880	0.965	0.964	0.955	0.687	0.731	0.627
	TraceVAE-StdLimit	0.940	0.910	0.928	0.947	0.924	0.934	0.930	0.892	0.904	0.963	0.957	0.957	0.732	0.769	0.680

Table 1: Best F-Scores of TraceVAE and the Baselines

TraceVAE achieves the best results on all these datasets.

Ablation Study

Т

		Я			${\mathcal B}$			С			D			3		
		Total	Struct	Time	Total	Struct	Time	Total	Struct	Time	Total	Struct	Time	Total	Struct	Time
Baselines	FSA	0.664	0.497	0.497	0.737	0.583	0.583	0.813	0.685	0.685	0.527	0.358	0.358	0.199	0.090	0.134
	LSTM-AD	0.745	0.470	0.872	0.710	0.420	0.820	0.565	0.184	0.881	0.758	0.558	0.927	0.442	0.213	0.513
	TraceAnomaly	0.560	0.091	0.832	0.570	0.105	0.812	0.528	0.182	0.717	0.530	0.090	0.775	0.410	0.048	0.565
	CRISP	0.438	0.164	0.502	0.416	0.179	0.520	0.526	0.092	0.769	0.334	0.090	0.382	0.344	0.041	0.422
	VGAE	0.275	N/A	0.454	0.261	N/A	0.408	0.631	N/A	0.682	0.387	N/A	0.625	0.450	N/A	0.529
TraceVAE Ablation Study	TraceVAE	0.954	0.935	0.945	0.944	0.903	0.940	0.923	0.911	0.911	0.980	0.988	0.965	0.791	0.813	0.772
	TraceVAE-FC	0.936	0.889	0.938	0.925	0.877	0.936	0.915	0.903	0.907	0.975	0.983	0.959	0.729	0.742	0.677
	TraceVAE-SingleZ	0.854	0.849	0.829	0.888	0.921	0.816	0.919	0.881	0.894	0.946	0.943	0.931	0.632	0.702	0.507
	TraceVAE-DimEx	0.789	0.768	0.777	0.818	0.705	0.863	0.841	0.892	0.762	0.897	0.901	0.882	0.579	0.268	0.692
echniques to Reduce Entropy Gap	TraceVAE-NLL	0.918	0.930	0.867	0.928	0.954	0.879	0.927	0.902	0.885	0.957	0.969	0.937	0.645	0.769	0.561
	TraceVAE-BCScale	0.925	0.967	0.868	0.931	0.971	0.878	0.925	0.925	0.883	0.965	0.990	0.935	0.662	0.813	0.558
	TraceVAE-NCNorm	0.918	0.877	0.916	0.904	0.891	0.882	0.873	0.798	0.880	0.965	0.964	0.955	0.687	0.731	0.627
	TraceVAE-StdLimit	0.940	0.910	0.928	0.947	0.924	0.934	0.930	0.892	0.904	0.963	0.957	0.957	0.732	0.769	0.680

Table 1: Best F-Scores of TraceVAE and the Baselines

• 2.6% - 23.6% improvement on time anomalies

• 0.5% - 5.7% improvement on structure anomalies

NLL Distribution with Different Techniques

Intersection area becomes smaller

The proposed techniques effectively reduce the impact of the entropy gap.

Contributions

TraceVAE: Dual-Variable Graph VAE for Trace Modeling

NLL Inversion and Entropy Gap in Trace Anomaly
Detection

• Techniques to Reduce the Impact of Entropy Gap

Thank you!

Code (https://github.com/NetManAlOps/TraceVAE.git)