ATER L hERER

H AN, - O s e ~
2. HEHL RSB
(\Q\%(‘v ke, :S, ﬂ Compu!crNchorkInfo.rmanon Center,

1911~ & Tsinghua University =~ ™ ChineseAcademy of Sciences

From Point-wise to Group-wise: A Fast and Accurate Microservice
Trace Anomaly Detection Approach

Zhe Xie!, Changhua Pei, Wanxue Li, Huai Jiang, Liangfei Su, Jianhui Li,
Gaogang Xie, Dan Pei

1. Presenter. Email: xiez22(@mails.tsinghua.edu.cn

Anomaly Detection in Microservices

Time-Series Based

—~60000 -50000 —~40000 ~30000 ~20000 —lobf;) 494000000'369 On |y in foer _tion
about
a single service
[O(zi:OtO:Ol] [Info] checking if there are any or a single colling
updates... . .
[00:00:11] [Error] Connection Timeout. Log Based relationship

[00:00:12] [Info] Time cost: 10.00s
[00:00:15] [Info] Time cost: 0.02s

(200) Records the
Trace Based complete call

Traces record all these requests along with some additional information,
such as the return code and response time of each invocation.

Types of Trace Anomalies

l

Checkout 1220ms

N

CheckPrice Payment 1212ms éms

\
ReadDB {\ Writelog 2ms 1207ms

Structural Anomaly Latency Anomaly

(API, invocation relationship, return code) (Response time)

« 2 major types of anomalies in traces

Challenges

- The vast quantity of traces produced by the system requires highly
efficient detection methods.

- The diverse structures require our approach to be adaptable to them.

- The variability in response latency for the same APl across different

downstream call structures also presents significant modeling

challenges.

* PR

I //\\,%/*‘N
ll\y/lllll

ﬂ N ..UM

Trace Structures

Response Time
For API in Red

Existing Approaches

Zo T
Arimm Y
\
Speed G (A A
A \\ R
vy vy ‘v
Y Y v
C
21m 3ms 10ms
1820ms Sms 12ms
ms 6ms 18ms

Avg.
Latency

Latency

Cdller Cadllee Std.

Statistic Based

Count Latency

»

Efficient
Loss of Accuracy

Distribution

v

Accuracy

O
Model Based
— Modd T~ Precise Modeling of Traces
Tateney One-by-One Inference
I Recomstnuet

Grouping of Traces

Trace 3

G E) G

wexlle) & o NS RO

Structure a 6 Structure
(4) &

« Many traces share the same tree/sub-tree structure.
- Feature distributions in shared structures are usually similar.

« Can traces or sub-trees of traces be grouped according to their
structures?

Selection of Grouping Strategy

Table 1: Empirical Study on Grouping Strategies

Group Strategy Description Count o (log(lat))
None No group 1 1.96 Count - #Groups (Small is better)
API Group by API ID 413 0.48
STV Group by stv [19] 51373 0.20 o(log(lat)) - Variance of features (Small is better)
Tree Group by tree [12] 40370 0.24
Sub-tree Group by sub-tree 3311 0.18

(~1M trace nodes before grouping)
« Requirements for Grouping Strategy:
« With the right granularity and quantity

« Samples within the group share a similar feature distribution (latency distribution
for traces)

Selection of Grouping Strategy

Table 1: Empirical Study on Grouping Strategies

Group Strategy Description Count o(log(lat))
None No group 1 1.96 Count - #Groups (Small is better)
API Group by APIID 413 0.48
STV Group by stv [19] 51373 0.20 o(log(lat)) - Variance of features (Small is better)
Tree Group by tree [12] 40370 0.24
Sub-tree Group by sub-tree 3311 0.18

(~1M trace nodes before grouping)
« Requirements for Grouping Strategy:
« With the right granularity and quantity

« Samples within the group share a similar feature distribution (latency distribution
for traces)

« We use sub-tree as the grouping strategy. i.e., we divide each trace into sub-
trees and group the sub-trees with the same structure into a group.

Modeling for Grouped Sub-trees

/’/ —— Generative
e i ! €« — - - 5
lt’// o Tt > Inference | ‘!Z S) X
Z V\\ ___________ g i i ///, I'/
RN . ! , /
| ZF—= X,T RN
\\\\ i i \\\ //
: ! .)
i = ZT o T

TraceVAE (WWW’ 23)i1 | TraceAnomaly (ISSRE’ 20)! GTrace Model (Ours)

- Latency feature (T) is coupled with structural features | -
(X, E) while inference

Predict latency with structure

« Can be usedin grouped trace
modeling

« Cannot be used in grouped trace modeling

[1] Xie, Z., Xu, H., Chen, W, et al. Unsupervised Anomaly Detection on Microservice Traces through Graph VAE. In Proceedings of the ACM Web Conference 2023
(pp. 2874-2884).

[2] Liu P, Xu H, Ouyang Q, et al. Unsupervised detection of microservice trace anomalies through service-level deep Bayesian networks. 2020 IEEE 31st
International Symposium on Software Reliability Engineering (ISSRE). IEEE, 2020: 48-58.

Modeling for Grouped Sub-trees

—> Node Sequence (D @ @ @ @ —> Structural Loss

—> Node Sequence (D @ @ @ @ —> Structural Loss
Structure Z
Graph Graph
Encoder Decoder o @ 9 9 @
G q Reconstructed
roupe Node Sequence
Trace 1 Structure Graph-wise Model a
Trace 2 2 Node-wise Model AU G
9 6 Latency
Latency Z Distribution
O] @26ms
- @ . 13ms
ode ode
Encoder - @ Decoder @ St
Ims
(Predict Latency with Structure) @l_l—l—= @ 2ms
» Trace Latency 99ms 12ms 4ms 1ms 2ms —> Latency Loss ::|
—> Trace Latency 92ms 65ms 6ms 1ms 3ms —p» Latency Loss

Based on Tree-LSTM

Encoder & Decoder Structure

Predict latency with structure
Produce reusable encoding for each

sub-tree group
Still many groups for model inference

Further acceleration with reusable

encoding?

10

Dynamic Programming Inference

Tree-LSTM

Message Passing / \

Iden‘ucal Sub- trees

\ Share the Same / \

Encoding

Trace 1 Trace 2

« Messages are passed from bottom to top, producing the same
encoding for identical sub-trees
- Dynamic Programming (DP) can be used in the inference

« Encoding can be used by the subsequent inferences (How to store the
encoding?)

Inference Acceleration with Cache

Node Merged Graph DP-Enhanced

> Node-wise
Cache Model
Hit Cached
Input Grouped | J Anomaly
Traces Structure 1 L Score
S0 | Cached
Graph ., Graph-wise
Cache Missed Graphs Model

« A tree-like cache to store sub-tree encodings.

« The core ideais to store the information through a Trace Cache Tree (TCT) and maintain the
nodes in an LRU way.

- A batch of traces is input into the cache for querying. The cache will return a merged graph,

including the missed sub-trees for model inference.

12

Trace Cache Tree (TCT)

% How to store the reusable
@ & OROEENORNO encodings for different sub-trees?
Sub-tree 1 Sub-tree 2 Sub-tree 3

___,

P Trace Cache Tree (TCT)
@ c « A merged graph from many sub-trees
« Encodings are shared among different sub-
2 @ ©
trees
@

Trace Cache Tree TCT can be queried with a batch of traces

and returns a sub-graph of it

13

Inference with Node Cache (TCT)

@ Cached Node 1 © Missed Node @ Data Node [Merged Graph]

—————————————————————————————————————

-
4

| TCT (Before) | .'/

(@ o)

ORO NORO, Batch of Traces
@ © 4) (&

~ _

= — — e o L o o o o o —

- Step 1: Query a batch of traces.

Inference with Node Cache (TCT)

@ Cached Node 1 © Missed Node @ Data Node [Merged Graph]

———————————

[TCT (Before) fQuery Result 1 \\I :’ Query Result2)

o L
i :R. Query Results
' (4) &)

9
n 1 g

‘\ Query Trace 1 /" Query Trace 2

_

- Step 2: Query each sub-tree in the traces in the Trace Cache Tree (TCT).

Inference with No

de Cache (TCT)

@ Cached Node

1 © Missed Node @ Data Node [Merged Graph]

seoTTEETEEETEES
V4 7
I

TCT (Before) 1 |

|
I
1
ioxoa'_"'
I
a B

I
1
I
I
1
1
I
1
I
I
1
1
I
1
\

- -

Query Result 1 N Query Result 2 N (Merged Graph R

S

J

1 ! 1 i
AN AR
OROIE EENCRONE |
t ! t !
(D ! 0 o
BRI NGROE
ool BCACIN

-’ ~_

N e e ———————

——— T —————— ~ -

-

—— - —————

Merged graph

- Step 3: Output the subgraph composed of missed sub-trees (nodes) and data nodes as a

merged graph.

« The merged graph contains all the nodes in this batch to be inferred. Only one model

inference is required for th

is graph.

« For an entire batch of traces, we only need to run model inference once for the missed sub-
trees, thereby further reducing the inference overhead.

16

Inference with Node Cache (TCT)

@ Cached Node 1 © Missed Node @ Data Node [Merged Graph]

[/’TCT (Before)\‘. ,’/é)_u_e_rgl_lie;s;l‘g_l\\l ,'/Query Result 2 \\I ,’/ Merged Graph ™
| R 1 I 1 o
I O — | — A
& | 2 R e
T @ i @B
i 1 ii 1 i :(Nodt—wise
W I (D ; Model
HORONEE ENGRONE |
i a 6 :i a 6 | 1 2 .16 Inferre

————————————— -

AN Query Trace 2 - k DP Inference

-’ ~_

N e e ——————— ——— T ——————

- Step 4: Perform DP-Enhanced model inference.

DP-Enhanced
Model Inference

17

Inference with Node Cache (TCT)

@ Cached Node 1 © Missed Node @ Data Node [Merged Graph]

—————————— e - = ———— - -

[/’TCT (Before)\‘. ’ Query Result 1 \\\I " Query Result 2 \\I ,’/ Merged Graph \\\I
| o I ! 1 o |
|) L :: _, P 4 i
& 2@ 1 ©Q o ool
Sy & 3 !o EENORCIE ;
(TCT (After) Y | $! $ S dl o
: a :: i ! oae-wise !
UpdateTcT | 0 | A D e
inCache |[©@ & @] e HNORON. P A
@,]] @ © nferred
- L/ “. Query Trace 1 /" b

/% Query Trace2 /. DPInference -

N e e ——————— S e ———— N - ——— -

- Step 5:Insert new nodes into TCT to update the node cache.

18

Anomaly Detection

. Detecting anomalies by calculating £6(G) with Monte Carlo importance sampling:

1 2z G|z 7(i)
16(G) ~ - Z po (Gl ()_1;)9()
nz =1 q¢(Zl |G)

« Use negative log-likelihood (NLL) as anomaly score

« Detecting structural anomalies and latency anomalies respectively:

)~ L & Pe(XIngi))Pe(Zéi)) def
p@() ~ E L (i) = LSo
i=1 q¢(ZS |X’ E)

1~ L ¥ Po(TlZ)p0(Z1”) aer |
Polik) = ny L 0 x £ = LT.k0
= (271X, E)

19

Datasets

Dataset #Traces P99 Latency P99 #Spans P99 Depth

A 125k 7580ms 90 10
B 140k 263ms 96 4

« Dataset A:
« Collected from eBay

« Including 314 microservices and 1487 APIs

« DatasetB:
« Collected from Testbed (Online Boutiquel')

« Including 11 microservices and 65 APIs

[1] https://github.com/GoogleCloudPlatform/microservices-demo

20

Evaluation of Accuracy

A: AUC F: F1-Score
Node Latency Trace Latency Trace Structure
Dataset Model A TA F NF A TA F NF A TA F NIF

CFG 0.795 9.06% 0.757 14.80% 0.880 6.25% 0.803 11.58% 0.192 340.10% 0.314 174.20%
FSA 0.277 213.00% 0.446 94.84% 0.303 208.58% 0.472 89.83% 0.050 1590.00% 0.105 720.00%

A TA 0.250 246.80% 0.305 184.92% 0.337 177.45% 0504 77.78% 0.286 195.45% 0.611 40.92%
LSTM 0.052 1567.31% 0.121 618.18% 0.398 134.92% 0.394 127.41% 0.163 418.40% 0.254 238.98%
CRISP 0.183 373.77% 0.278 212.59% 0.294 218.03% 0.318 181.76% 0.011 7581.82% 0.054 1494.44%
TraceCRL 0.022 3840.91% 0.077 1028.57% 0.074 1163.51% 0.114 685.96% 0.062 1262.90% 0.176 389.20%
GTrace 0.867 - 0.869 - 0.935 - 0.896 - 0.845 - 0.861 -
CFG 0.698 12.18% 0.663 10.41% 0.671 16.10% 0.717 5.02% 0.206 306.31% 0.501 60.68%
FSA 0392 99.74% 0.616 18.83% 0.384 102.86% 0.569 32.34% 0.124 575.00% 0.221 264.25%

B TA 0.275 184.73% 0.446 64.13% 0.337 131.16% 0.504 49.40% 0.286 192.66% 0.611 31.75%
LSTM 0.147 432.65% 0.244 200.00% 0.759 2.64% 0.736 2.31% 0.123 580.49% 0.342 135.38%
CRISP 0.143 447.55% 0.261 180.46% 0.336 131.85% 0.482 56.22% 0.295 183.73% 0.611 31.75%
TraceCRL 0.023 3304.35% 0.072 916.67% 0.437 78.26% 0.552 36.41% 0.072 1062.50% 0.227 254.63%
GTrace 0.783 - 0.732 - 0.779 - 0.753 - 0.837 - 0.805 -

« Improvements were achieved in all evaluation metrics

"Predicting latency with structure" brings better generalization performance to the model

21

Evaluation of Time Efficiency

Dataset

Glrace
I GTrace (w/o Cache)
B LST™
P TraceAnomaly

I TraceCRL
| CRISP

I GTrace
BN GTrace (w/o Cache)
B LST™M

P TraceAnomaly
B TraceCRL
| CRISP

0 2000 4000 6000 8000 10000 12000 14000 16000
Speed (#Traces / s)

- Full process evaluation: from span data to anomaly detection results

« Glrace achieves a large advantage in time efficiency over other model-based methods

22

Visualization Tool

« How can the results be clearly understood by operators?

(Input)
Batch of traces ? W
¢ ‘III Buildl
Anomaly Detection Noémal
;IZ KD
0TI T m T . W " Quey Tree
': 108ms 105ms 32ms J Anomalous Latent Graph Result i
0 — 26 — 32 Anomalous traces | 5o e Vectors o
o wm o Onebyoneoutput | P | | Lmme L sy
0 — 30 — 32 Where is the failure? | estore
‘\\ //' T‘ Scores I
__ - - g O
ey ° Sub-_ Node Oﬁ_ht
.32]« The network failure of API 2 \Oueet] srerh ROl P
| resulted in many traces with
SI‘_;‘r“Ct“ra' c/:A\r;)?rQnahes t deg A visualization tool to help operators
o owevel was hotrecorde get an overview of the failure
Loss in these anomalous traces

23

Visualization Tool

Case 1: Structural Anomaly Case 2: Latency Anomaly

i e N
1 40
108ms 105ms 32ms , 94ms 89ms 16ms 13ms ;

Kbnormal 0(2) —>9%6 —»> 32 : 950 —>9216 —-»> 13;2 —>162 Normal E . Abnormal 224ms 128ms 75ms 69ms 189ms 89ms 38ms 27ms Normal
Traces 'O-ms °oms 28ms | 9ms Slms Dms 1oms Traces . Traces 29 40> 61 > 60 @ 29 > 40 > 61 > 60
0+>30>32 0 —>30>32->2 § | HESEES (60)
Network NS‘:IV:’k
eoe @M~ < ® webviewer ® Loss eoe M+ < @ webviewer ¢ @ » .
Visualization Tool Pt Fioep Structural
. |:] Stractiil . Visualization Tool 7 ﬁ Ao
_ |{aP132:077 9 | APIO | Anomalies API 60:15.55 | API29 | | API28 | API30 iy
: : : |
= :0.51 s 5 | | API61:7.68 Anomalies
|| i | API26 | | API30 | Anomalies &
24 API16:0.27 2] AP140:0.84 -
o 7]
é API 18:0.24 Selected AP — | API 32* Normal E API 30:0.21 IR m
5 - * Selection % * Selection
API 38:0.20 i:: API 38:0.20

API 2 is lost in abnormal traces but can be

Efficient analysis of fault propagation

reconstructed by the tool

« Provide operators with a summary of detected anomalies.

« Reconstruct lost nodes in structural anomalies.
24

Conclusion

« We propose GIlrace, the first group-wise trace anomaly detection method

« A group-wise VAE model which models trace latency in a novel “predicting
latency with structure” way

« Inference acceleration through DP inference, TCT and merged graph

« A visuadlization tool to show a summary of detected trace anomalies in the
form of a graph

25

=2 “P.ﬂ-?—ﬁ . &

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
Tsinghua University

eeeeeeeeeeeeeeeeeeeeeeee

Thank you !

From Point-wise to Group-wise: A Fast and Accurate Microservice Trace
Anomaly Detection Approach

Paper: https://doi.org/10.1145/3611643.3613861

Source Code & Dataset & Demo: https://github.com/NetManAlOps/Glrace.git

