ATER L hERER

H AN, - O s e ~
2. HEHL RSB
(\Q\%(‘v ke, :S, ﬂ Compu!crNchorkInfo.rmanon Center,

1911~ & Tsinghua University =~ ™ ChineseAcademy of Sciences

From Point-wise to Group-wise: A Fast and Accurate Microservice
Trace Anomaly Detection Approach

Zhe Xie!, Changhua Pei, Wanxue Li, Huai Jiang, Liangfei Su, Jianhui Li,
Gaogang Xie, Dan Pei

1. Presenter. Email: xiez22(@mails.tsinghua.edu.cn



Anomaly Detection in Microservices

Time-Series Based

—~60000 -50000 —~40000 ~30000 ~20000 —lobf;) 494000000'369 On |y in foer _tion
about
a single service
[O(zi:OtO:Ol] [Info] checking if there are any or a single colling
updates... . .
[00:00:11] [Error] Connection Timeout. Log Based relationship

[00:00:12] [Info] Time cost: 10.00s
[00:00:15] [Info] Time cost: 0.02s

(200) Records the
Trace Based complete call

Traces record all these requests along with some additional information,
such as the return code and response time of each invocation.



Types of Trace Anomalies

l

Checkout 1220ms

N

CheckPrice Payment 1212ms éms

\
ReadDB {\ Writelog 2ms 1207ms

Structural Anomaly Latency Anomaly

(API, invocation relationship, return code) (Response time)

« 2 major types of anomalies in traces



Challenges

- The vast quantity of traces produced by the system requires highly
efficient detection methods.

- The diverse structures require our approach to be adaptable to them.

- The variability in response latency for the same APl across different

downstream call structures also presents significant modeling

challenges.
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Existing Approaches
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Grouping of Traces

Trace 3
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wexlle) & o NS RO

Structure a 6 Structure
(4) &

« Many traces share the same tree/sub-tree structure.
- Feature distributions in shared structures are usually similar.

« Can traces or sub-trees of traces be grouped according to their
structures?



Selection of Grouping Strategy

Table 1: Empirical Study on Grouping Strategies

Group Strategy Description Count o (log(lat))
None No group 1 1.96 Count - #Groups (Small is better)
API Group by API ID 413 0.48
STV Group by stv [19] 51373 0.20 o(log(lat)) - Variance of features (Small is better)
Tree Group by tree [12] 40370 0.24
Sub-tree Group by sub-tree 3311 0.18

(~1M trace nodes before grouping)
« Requirements for Grouping Strategy:
« With the right granularity and quantity

« Samples within the group share a similar feature distribution (latency distribution
for traces)



Selection of Grouping Strategy

Table 1: Empirical Study on Grouping Strategies

Group Strategy Description Count o(log(lat))
None No group 1 1.96 Count - #Groups (Small is better)
API Group by APIID 413 0.48
STV Group by stv [19] 51373 0.20 o(log(lat)) - Variance of features (Small is better)
Tree Group by tree [12] 40370 0.24
Sub-tree Group by sub-tree 3311 0.18

(~1M trace nodes before grouping)
« Requirements for Grouping Strategy:
« With the right granularity and quantity

« Samples within the group share a similar feature distribution (latency distribution
for traces)

« We use sub-tree as the grouping strategy. i.e., we divide each trace into sub-
trees and group the sub-trees with the same structure into a group.



Modeling for Grouped Sub-trees

/’/ ——  Generative
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- Latency feature (T) is coupled with structural features | -
(X, E) while inference

Predict latency with structure

« Can be usedin grouped trace
modeling

« Cannot be used in grouped trace modeling

[1] Xie, Z., Xu, H., Chen, W, et al. Unsupervised Anomaly Detection on Microservice Traces through Graph VAE. In Proceedings of the ACM Web Conference 2023
(pp. 2874-2884).

[2] Liu P, Xu H, Ouyang Q, et al. Unsupervised detection of microservice trace anomalies through service-level deep Bayesian networks. 2020 IEEE 31st
International Symposium on Software Reliability Engineering (ISSRE). IEEE, 2020: 48-58.



Modeling for Grouped Sub-trees

—> Node Sequence (D @ @ @ @ —> Structural Loss
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» Trace Latency 99ms 12ms 4ms 1ms 2ms —> Latency Loss ::|
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Based on Tree-LSTM

Encoder & Decoder Structure

Predict latency with structure
Produce reusable encoding for each

sub-tree group
Still many groups for model inference

Further acceleration with reusable

encoding?
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Dynamic Programming Inference

Tree-LSTM

Message Passing / \

Iden‘ucal Sub- trees

\ Share the Same / \

Encoding

__________________________________

Trace 1 Trace 2

« Messages are passed from bottom to top, producing the same
encoding for identical sub-trees
- Dynamic Programming (DP) can be used in the inference

« Encoding can be used by the subsequent inferences (How to store the
encoding?)



Inference Acceleration with Cache

Node Merged Graph DP-Enhanced

> Node-wise
Cache Model
Hit Cached
Input Grouped | J Anomaly
Traces Structure 1 L Score
S0 | Cached
Graph ., Graph-wise
Cache  Missed Graphs Model

« A tree-like cache to store sub-tree encodings.

« The core ideais to store the information through a Trace Cache Tree (TCT) and maintain the
nodes in an LRU way.

- A batch of traces is input into the cache for querying. The cache will return a merged graph,

including the missed sub-trees for model inference.

12



Trace Cache Tree (TCT)

% How to store the reusable
@ & OROEENORNO encodings for different sub-trees?
Sub-tree 1 Sub-tree 2 Sub-tree 3

\_________________________________________,

P Trace Cache Tree (TCT)
@ c « A merged graph from many sub-trees
« Encodings are shared among different sub-
2 @ ©
trees
@

Trace Cache Tree TCT can be queried with a batch of traces

and returns a sub-graph of it

13



Inference with Node Cache (TCT)
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- Step 1: Query a batch of traces.



Inference with Node Cache (TCT)

@ Cached Node 1 © Missed Node @ Data Node [ Merged Graph ]
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- Step 2: Query each sub-tree in the traces in the Trace Cache Tree (TCT).



Inference with No

de Cache (TCT)
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Merged graph

- Step 3: Output the subgraph composed of missed sub-trees (nodes) and data nodes as a

merged graph.

« The merged graph contains all the nodes in this batch to be inferred. Only one model

inference is required for th

is graph.

« For an entire batch of traces, we only need to run model inference once for the missed sub-
trees, thereby further reducing the inference overhead.
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Inference with Node Cache (TCT)
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- Step 4: Perform DP-Enhanced model inference.

DP-Enhanced
Model Inference
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Inference with Node Cache (TCT)
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- Step 5:Insert new nodes into TCT to update the node cache.
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Anomaly Detection

. Detecting anomalies by calculating £6(G) with Monte Carlo importance sampling:

1 2z G|z 7(i)
16(G) ~ - Z po (Gl ()_1;)9( )
nz =1 q¢(Zl |G)

« Use negative log-likelihood (NLL) as anomaly score

« Detecting structural anomalies and latency anomalies respectively:

)~ L & Pe(XIngi))Pe(Zéi)) def
p@( ) ~ E L (i) = LSo
i=1 q¢(ZS |X’ E)

1~ L ¥ Po(TlZ)p0(Z1”) aer |
Polik) = ny L 0 x £ = LT.k0
= (271X, E)
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Datasets

Dataset #Traces P99 Latency P99 #Spans P99 Depth

A 125k 7580ms 90 10
B 140k 263ms 96 4

« Dataset A:
« Collected from eBay

« Including 314 microservices and 1487 APIs

« DatasetB:
« Collected from Testbed (Online Boutiquel')

« Including 11 microservices and 65 APIs

[1] https://github.com/GoogleCloudPlatform/microservices-demo
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Evaluation of Accuracy

A: AUC F: F1-Score
Node Latency Trace Latency Trace Structure
Dataset Model A TA F NF A TA F NF A TA F NIF

CFG 0.795 9.06% 0.757  14.80%  0.880 6.25% 0.803 11.58%  0.192  340.10% 0.314 174.20%
FSA 0.277  213.00%  0.446 94.84% 0.303  208.58% 0.472 89.83% 0.050 1590.00% 0.105  720.00%

A TA 0.250  246.80% 0.305 184.92% 0.337 177.45% 0504 77.78%  0.286 195.45% 0.611 40.92%
LSTM 0.052 1567.31% 0.121 618.18% 0.398  134.92% 0.394 127.41% 0.163 418.40% 0.254  238.98%
CRISP 0.183 373.77%  0.278 212.59% 0.294 218.03% 0.318 181.76% 0.011 7581.82% 0.054 1494.44%
TraceCRL  0.022 3840.91% 0.077 1028.57% 0.074 1163.51% 0.114 685.96% 0.062 1262.90% 0.176  389.20%
GTrace 0.867 - 0.869 - 0.935 - 0.896 - 0.845 - 0.861 -
CFG 0.698 12.18%  0.663  10.41%  0.671  16.10%  0.717  5.02%  0.206 306.31% 0.501  60.68%
FSA 0392  99.74%  0.616  18.83%  0.384 102.86% 0.569 32.34% 0.124 575.00% 0.221  264.25%

B TA 0.275 184.73% 0.446  64.13%  0.337 131.16% 0.504 49.40% 0.286 192.66% 0.611  31.75%
LSTM 0.147  432.65% 0.244  200.00%  0.759 2.64% 0.736  2.31%  0.123  580.49% 0.342  135.38%
CRISP 0.143  447.55% 0.261 180.46% 0.336 131.85% 0.482 56.22%  0.295 183.73% 0.611  31.75%
TraceCRL 0.023 3304.35% 0.072  916.67%  0.437 78.26% 0.552 36.41% 0.072 1062.50% 0.227  254.63%
GTrace 0.783 - 0.732 - 0.779 - 0.753 - 0.837 - 0.805 -

« Improvements were achieved in all evaluation metrics

"Predicting latency with structure" brings better generalization performance to the model
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Evaluation of Time Efficiency

Dataset

Glrace
I GTrace (w/o Cache)
B LST™
P TraceAnomaly

I TraceCRL
| CRISP

I GTrace
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P TraceAnomaly
B TraceCRL
| CRISP

0 2000 4000 6000 8000 10000 12000 14000 16000
Speed (#Traces / s)

- Full process evaluation: from span data to anomaly detection results

« Glrace achieves a large advantage in time efficiency over other model-based methods

22



Visualization Tool

« How can the results be clearly understood by operators?
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Visualization Tool

Case 1: Structural Anomaly Case 2: Latency Anomaly

i e N
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API 2 is lost in abnormal traces but can be

Efficient analysis of fault propagation

reconstructed by the tool

« Provide operators with a summary of detected anomalies.

« Reconstruct lost nodes in structural anomalies.
24



Conclusion

« We propose GIlrace, the first group-wise trace anomaly detection method

« A group-wise VAE model which models trace latency in a novel “predicting
latency with structure” way

« Inference acceleration through DP inference, TCT and merged graph

« A visuadlization tool to show a summary of detected trace anomalies in the
form of a graph

25
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Thank you !

From Point-wise to Group-wise: A Fast and Accurate Microservice Trace
Anomaly Detection Approach

Paper: https://doi.org/10.1145/3611643.3613861

Source Code & Dataset & Demo: https://github.com/NetManAlOps/Glrace.git



