
AutoKAD: Empowering KPI Anomaly Detection
with Label-Free Deployment

Zhaoyang Yu1, 5, Changhua Pei2∗, Shenglin Zhang3, 6, Xidao Wen4, Jianhui Li2, Gaogang Xie2, Dan Pei1, 5
1Tsinghua University, yu-zy20@mails.tsinghua.edu.cn, peidan@tsinghua.edu.cn

2Computer Network Information Center, Chinese Academy of Sciences, {chpei, lijh, xie}@cnic.cn
3Nankai University, zhangsl@nankai.edu.cn

4BizSeer Technology, China, mwen8103@gmail.com
5Beijing National Research Center for Information Science and Technology

6Haihe Laboratory of Information Technology Application Innovation

Abstract—Monitoring Key Performance Indicators (KPIs) and
detecting anomalies in online service systems is critical. How-
ever, choosing the right KPI anomaly detection algorithm and
appropriate hyperparameters presents a challenge. Conventional
Automated Machine Learning (AutoML) struggles to address this
because the hold-out dataset lacks labels and its loss doesn’t
reliably reflect anomaly detection accuracy. To address the
above challenges, this paper introduces AutoKAD, an AutoML
framework designed to solve the combined algorithm selection
and hyperparameter optimization problem for unsupervised
KPI Anomaly Detection. We propose a label-free universal
objective function, inspired by the Local Outlier Factor (LOF),
for evaluating AutoML trials. Additionally, we improve the
acquisition function and designs a cluster-based warm start
strategy to enhance exploration effectiveness and efficiency. The
experimental results on three real-world datasets show that our
approach outperforms the SOTA model selection algorithm by
11% in F1-score and achieves comparable performance (99%)
with theoretically optimal results. We believe that AutoKAD can
greatly improve the deployment feasibility of existing anomaly
detection algorithms in real-world systems. Our code is anony-
mously released at https://github.com/NetManAIOps/AutoKAD.

I. INTRODUCTION

In today’s digital world, online service systems, such as
search engines, e-commerce platforms, and social networks,
have become an integral part of our daily lives. To ensure
seamless service and maintain user satisfaction, IT operations
engineers in these companies closely monitor Key Perfor-
mance Indicators (KPIs) such as response time and success
rate, providing a comprehensive overview of the system’s
performance. KPI anomaly detection (KAD) plays a crucial
role in identifying potential issues by detecting anomalies in
KPIs, thereby accelerating the process of failure diagnosis and
mitigation.

Tremendous efforts have been devoted to KPI anomaly
detection in the literature. Existing work includes supervised
approaches based on ensemble learning (e.g., Opprentice [1],
EGADS [2]), semi-supervised approaches (e.g., ADS [3],
ATAD [4]), and unsupervised approaches, which involve tradi-
tional statistical methods (e.g., Holt-winters [5], ARIMA [6])
and deep learning-based methods (e.g., Donut [7], LSTM-
NDT [8], Buzz [9], OmniAnomaly [10], Interfusion [11],

∗Changhua Pei is the corresponding author.

AnomalyTrans [12]). Unfortunately, faced with various algo-
rithms and numerous KPIs in the real world, we encounter
a classic challenge for machine learning algorithms, a Com-
bined Algorithm Selection and Hyperparameter optimization
(CASH) problem [13]. More specifically, the first one is how
to select suitable algorithms. Although the superiority of each
algorithm has been illustrated in its paper, the performance on
different KPIs with various patterns (e.g., seasonal, variational,
and stationary) are unstable. For example, Donut is designed
only for seasonal KPIs and performs poorly on other KPIs. The
second one is hyperparameter tuning. Deep learning-based
algorithms have been widely applied to unsupervised KPI
anomaly detection to enhance performance in recent years.
However, some hyperparameters in neural networks should be
configured in advance. For example, the F1-score of Donut
could range from 0.2 to 0.9 even on the same KPI given dif-
ferent settings of the hyperparameters. In summary, algorithm
selection and hyperparameter selection could directly influence
anomaly detection accuracy.

In practice, selecting suitable algorithms and tuning pa-
rameters is difficult for operators for the following reasons.
First, most traditional operators are responsible for monitoring
rather than being machine learning experts. The selection of
algorithms and hyperparameters is a black-box task for them.
Second, the number of KPIs of a typical service in the real
world can be tremendous, often more than tens of thousands.
Manually selecting a satisfying algorithm and hyperparameter
for each KPI is time-consuming. Third, the search space
of hyperparameters is usually huge. Sometimes it is hard
for a human to find the best algorithm and hyperparameter
combination. The complexity of algorithm selection and hy-
perparameter optimization slows down the pace of algorithms’
deployment in the production environment. Consequently, de-
signing an automated framework to solve the CASH problem
for KAD for operators is in urgent demand.

AutoML (Automated machine learning) has been a pop-
ular method to deal with the CASH problem in the field
of machine learning [13]–[22]. However, directly applying
existing AutoML frameworks faces the following challenges.
1) Unattainable objective function. Considering it is difficult to
obtain sufficient anomaly labels, it is unfeasible to accurately

1

https://github.com/NetManAIOps/AutoKAD

evaluate the performance of a specific AutoML selection by
widely used evaluation metric (e.g., F1-score). In addition,
the performance of anomaly detection algorithms cannot be
effectively demonstrated using the validation loss on hold-out
datasets. This is because that existing popular KPI anomaly
detection methods [7]–[11] aim to model the pattern of input
KPI based on reconstruction or prediction loss. A smaller
loss on the hold-out dataset can not represent a better result
for anomaly detection as the input is noisy and may contain
anomalies. 2) High time complexity. As mentioned earlier, the
number of KPIs in practice is huge. The company is unwilling
to bear the cost of time and resources if the AutoML model
takes too long to search for algorithm and hyperparameter
combinations.

To address the above two challenges, in this paper, we
propose AutoKAD, an AutoML framework designed to solve
the CASH problem for unsupervised KPI Anomaly Detection.
AutoKAD consists of three phases: cluster-based warm start,
Bayesian Optimization (BO)-based configuration search, and
rule-based configuration recommendation as illustrated in
Fig. 1. In BO-based configuration search phase, AutoKAD
proposes a novel label-free objective function called MSE-
NF (Mean Squared Error with Normal Factor) to assess the
effectiveness of a specific trial given by AutoML. In the MSE
part, we measure the similarity between the output KPI and
the input KPI. However, since the input KPI is noisy and may
contain anomalies, relying completely on the MSE part will
lead to an overfitting of abnormalities in the input. Inspired
by the Local Outlier Factor (LOF) [23], we propose NF to
evaluate the normality of reconstructed KPIs.

To tackle the challenge of time efficiency, AutoKAD firstly
activates the clustering-based warm start mechanism to learn
the successful experience of similar KPIs tuned in the past
(shown as cluster-based warm start in Fig. 1). This phase
dramatically increases the time efficiency of AutoKAD. More-
over, we optimize the acquisition function of Bayesian Op-
timization, specifically by improving the original Expected
Improvement (EI) acquisition function to derive the Similarity
Weighted Expected Improvement (SW-EI), thereby enhancing
the effectiveness of configuration search. Finally, our rule-
based strategy recommends appropriate configurations re-
turned by AutoKAD according to the preferences of operators.

The contributions of this paper are summarized as follows:

• We propose AutoKAD, an AutoML framework for unsu-
pervised KPI Anomaly Detection, which assists operators
in choosing better algorithms and optimal parameters. The
comprehensive evaluation shows that AutoKAD achieves an
F1-score of 0.80 for each KPI on our datasets, which is up
to 40% higher than a widely used Donut model [7] with
carefully tuned hyperparameters.

• Through the well-designed evaluation objective function
MSE-NF and acquisition function SW-EI, for the first time,
we have successfully overcome the challenge of evaluating
unsupervised KPI anomaly detection tasks without the as-
sistance of labels.

• A cluster-based warm start strategy and a configuration rec-
ommendation strategy are proposed by AutoKAD to improve
the exploration efficiency and effectiveness. Our cluster-
based warm start mechanism reduces the searching time of
AutoKAD from one hour to 15 minutes. Our strategy of con-
figuration recommendation mechanism can give close-to-
optimal configurations, according to operators’ preferences.

• We have deployed AutoKAD in a real-world online service
system in a top commercial bank serving their KAD models.
Our code is anonymously released at https://github.com/
NetManAIOps/AutoKAD and we believe that AutoKAD
can greatly advance the deployment of anomaly detection
algorithms in practical systems.

II. BACKGROUND

A. KPI and KPI Anomaly Detection

Key Performance Indicators (KPIs) are time-series data
collected from a myriad of sources such as network traces, web
access logs, and data centers, among others. As a substantial
gauge of service quality, KPI data often provide crucial
information. A consistent KPI typically reflects the smooth
operation of a service. However, anomalies, such as spikes
or dips, within the KPIs may indicate potential service faults.
Fig. 2 shows three typical KPIs: seasonal, stable, and unstable,
with anomalies marked by red dots. Since most user behaviors
are cyclical, the seasonal type of KPI is usually the majority
in the real-world environment [7]. Anomalies within KPIs
could lead to a significant influence on the revenue of the
company. Therefore, it is essential for the company to closely
monitor KPIs and promptly detect anomalies in KPIs to reduce
unexpected economic losses.

In recent years, dozens of KPI anomaly detection algo-
rithms based on machine learning have been proposed to
help the operators identify the anomalies and achieve great
success [1], [2], [5]–[9], [12], [24]. Because of the difficulty
of obtaining high-quality labels of KPIs, unsupervised KPI
anomaly detection algorithms are more popular than super-
vised algorithms in this field. Most unsupervised KPI anomaly
detection algorithms are based on prediction or reconstruction.
The algorithms based on prediction or reconstruction take an
interval of data points from the KPI as input. The prediction
algorithms use the input to predict the next data point. The re-
construction algorithms use the input to reconstruct the whole
interval. The unsupervised KPI anomaly detection algorithms
are trained with normal KPI data and learn normal patterns.
In the testing phase, the algorithms attempt to predict or
reconstruct the normal KPI. If the prediction or reconstruction
KPI is very different from the original KPI, the algorithm
declares that an anomaly happens. Both prediction algorithms
and reconstruction algorithms can estimate the normal KPI
from the raw KPI data.

B. AutoML

Owing to the remarkable superiority in anomaly detection
performance that machine learning-based models offer com-
pared to traditional methods, there has been a growing trend

2

https://github.com/NetManAIOps/AutoKAD
https://github.com/NetManAIOps/AutoKAD

History KPIs

Input KPI

ROCKA

Cluster Centroid

H = {h*1 , ⋯, h*n }

1. Cluster-based Warm Start

Initial Configurations

MSE-NF 
Objective Function Observerd

Configurations

2. BO-based Configuration Search 3. Rule-based Configuration Recommendation

SW-EI

Acquisition Function

Gaussian Process

μ(h), σ(h)

Next

 Configuration

Engineers

 Rule3σ Selection

{h1, ⋯, hm}
Assign Unobserverd

Configurations

Select

Evaluate

Preference

Remove Outliers

Recommended Configurations

Fig. 1. Overall architecture of AutoKAD

(a) seasonal (b) stable (c) unstable

Fig. 2. Examples of three typical KPIs (seasonal, stable, unstable) from global
Internet companies. The red dots mark the obvious anomalies.

of deploying machine learning-based models in industrial
environments. However, it’s noteworthy that the majority of
operators in the industry, tasked with anomaly detection, are
non-experts. They often resort to utilizing these machine
learning-based models directly “out of the box”, bypassing
critical steps such as algorithm selection and hyperparameter
tuning.

In recent years, automated machine learning (AutoML)
methods have been introduced to address this Combined Al-
gorithm Selection and Hyperparameter optimization (CASH)
problem [13]–[22]. To apply a machine learning-based KAD
model, we need a pipeline which involves several components,
typically including algorithm selection, data preprocessing,
hyperparameter optimization, and network architecture search-
ing. The principal aim of AutoML methods is to automate
these facets of the machine learning pipeline, thereby mini-
mizing the human involvement required.

However, to our understanding, the existing AutoML meth-
ods addressing the CASH problem necessitate the target al-
gorithm to be supervised. These AutoML techniques require
ground truth labels to evaluate the performance of the target
algorithm, which influences the subsequent trial of the combi-
nation of the algorithm and corresponding hyper-parameters.
The absence of dataset labels significantly complicates the
performance evaluation process, rendering the current AutoML
frameworks unsuitable for practical use.

C. Problem Definition

To the best of our knowledge, there are no AutoML methods
designed for KAD to solve the CASH problem in the literature.
Our goal is to design an effective and efficient AutoML

framework for KPI anomaly detection working on unsuper-
vised anomaly detection algorithms. We define this problem as
follows. Given a KPI X = [(x1, y1), · · · , (xN , yN)], xi ∈ R
and yi ∈ {0, 1} denote the value at time i and the ground
truth of whether it is an anomaly, respectively. Given a set
of KAD algorithms G = {g1, g2, ..., gm}, gi : x 7→ y,
and for each algorithm gi a set of possible hyperparameters
Θi = {θi1, θi2, ..., θini

}, the goal of CASH for KAD is to find
the best gi and the corresponding configuration θj :

argmax
g∈G,h∈Θg

L(g, θ;X) (1)

L(g, θ;X) is a objective function measuring the anomaly
detection performance of algorithm g with hyperparameters θ
on the KPI X . For easy follow-up, we call a combination of
the g and θ a configuration h = ⟨g, θ⟩, h ∈ H. So the goal
can be equivalently defined as:

argmax
h∈H

L(h;X) (2)

III. METHODOLOGY

A. Framework Overview

Fig. 1 illustrates the overall architecture of AutoKAD, in-
cluding three main phases: cluster-based warm start, Bayesian
Optimization (BO)-based search, and rule-based configuration
recommendation. The whole workflow is shown in Algo-
rithm 1. We discuss the detail of these three phases in the
following sub-sections.

The core module of AutoKAD is the BO-based configuration
search. Generally, a BO-based AutoML framework has three
important components: surrogate model, objective function,
and acquisition function. The surrogate model aims to estimate
the performance of unobserved configurations according to
the observed configurations. Gaussian Process (GP) is an
efficient and effective surrogate model widely used in BO-
based AutoML. Therefore, In AutoKAD we adopt GP as our
surrogate model.

The role of the objective function is to evaluate the per-
formance of configurations. Thus, the most immediate goal
of AutoML is to search for valid configurations to maximize
(or minimize) the objective function (lower or bigger). For
datasets with ground truth, the final evaluation metric (e.g.,

3

Algorithm 1 The Workflow of AutoKAD
Input: giθ ∈ G, i ∈ {1, ..., n}: n different unsupervised KAD

algorithms hyper-parameterized by θ
Input: X: incoming KPI
Input: θ ∈ Θ: Hyperparameter space
Input: f : Our MSE-NF objective function
Input: SW-EI: Our acquisition function
Input: Dh: History tuned KPIs

Phase 1: Clustered-based warm start
1: apply ROCKA to Dh and get clusters C = {C1, C2, ...}
2: assign X to an existing cluster Ci

3: find the best configurations on cluster centroid KPI XCi

for n KAD algorithms
4: generate initial configuration set Hinit = {h∗

1, ..., h
∗
n}

Phase 2: BO-based configuration search
5: apply f to Hinit, f(Hinit) = {f(h∗

1), ..., f(h
∗
n)} on X

6: let H = Hinit

7: while under time and trial limit do
8: use GP to estimate the µ(h), σ(h) of all possible

configurations {h1, ..., hk} according to H
9: apply acquisition function SW-EI to {h1, ..., hk} →

{SW-EI(h1), ...,SW-EI(hk)}
10: find hnext = argmax SW-EI(hi)
11: H append hnext

12: train gθ under the configuration hnext, and observe the
performance f(hnext)

13: end while
Phase 3: Rule-based configuration recommendation

14: manually set the candidate number m
15: use 3σ rule to remove outliers in H according to MSE on

the validation set of X
16: sort H by the precision (MSE), recall (NF), or F1-

score (MSE-NF) preference in ascending order
Output: the first m configurations of sorted H

F1-score, accuracy, or AUC) is usually taken as the objective
function. Since high-quality labels are expensive in real-world
environments, faced with unlabeled KPI datasets, there is
no existing objective function. To solve this problem, we
propose the MSE-NF objective function, which, according to
experiments, is an excellent approximation of the F1-score.

The acquisition function is used to decide the next configu-
ration to observe and always needs to tackle the exploration-
exploitation trade-off [25]. For unsupervised KPI anomaly
detection, the gap between F1-score and our objective function
could affect the performance of the acquisition function. To
address this issue, we propose Similarity Weighted Expected
Improvement (SW-EI) to enhance the exploration process and
alleviate the impact brought by the gap.

B. Clustered-based Warm Start

Generally, an AutoML model needs to train many models
with different algorithms and parameters to find the best con-
figuration. This process is usually an exploration-exploitation
trade-off. In the beginning, the model tends to select the initial

algorithms and hyperparameters randomly due to the lack of
prior knowledge about the dataset. However, such a cold start
process is unstable and could consume too many computing
resources, making the searching process inefficient.

To tackle this problem, we design a warm start mech-
anism shown in Fig. 3 based on KPI clustering to save
search time. The core idea is that the best algorithms and
hyperparameters of similar KPIs are likely to be similar. Our
inspiration is derived from the process where humans try
out initial configurations in real-world environments. Faced
with incoming KPI data, human intuition seeks out similar
historical KPI instances and attempts to apply algorithms and
hyperparameters that were used on these similar KPIs in
the past. This approach is not only intuitive, but it has also
proven to be highly effective in practice. Therefore, we could
leverage the successful experience of similar historical KPIs
and adopt their best algorithms and hyperparameters as the
initial selection.

Try to Find Cluster

KAD Algorithms

Incoming KPI

History KPIs

Configurations
ROCKA

Clusters and
Corresponding Configs

Successfully
Find Cluster

Fail to
Find Cluster

Skip
Warm Start

Config Config

Config Config

Cluster Centroid and
Corresponding Configs

Select Config for Each Algorithm

Initial
Configs

Fig. 3. The workflow of our cluster-based warm start mechanism

Specifically, we first adopt ROCKA [26], a robust and rapid
time series clustering algorithm designed for large-scale read-
world KPI data, to cluster historical KPIs. For each cluster,
ROCKA finds a representative KPI as a centroid for a cluster.
Afterward, for a new KPI, ROCKA could assign it to the
corresponding cluster to use the best configurations of this
cluster centroid for different KAD algorithms as the initial
points of BO. In this way, compared with random selection,
cluster-based warm start could provide a better starting point,
to reduce the search time significantly. The effectiveness of the
warm start mechanism will be demonstrated in Section IV-E.

C. Objective Function

The goal of an objective function in the AutoML framework
is to evaluate the performance of the algorithms tuned by the
AutoML framework, which is a little different from that of the
objective functions in ML model training. We will introduce
our novel objective function, MSE-NF (Mean Squared Error
with Normal Factor), in the following.

4

After obtaining the initial configuration, AutoKAD will start
the search process. In general, AutoML models need objective
functions to evaluate current performance and determine the
next search direction. In the problem of KPI anomaly de-
tection, it is straightforward to define an objective function
for labeled data, for example, precision, recall, and F1-score.
However, as presented in Section I, it can be a daunting
task to obtain high-quality and sufficient labeled KPIs in the
real world. Thus, designing the objective function under an
unsupervised scenario is a significant challenge.

To tackle this challenge, we design a novel objective func-
tion named MSE-NF. Most unsupervised KAD algorithms
are based on prediction or reconstruction. Both prediction
algorithms and reconstruction algorithms can estimate the
normal KPI from the raw KPI data, which is the input of
MSE-NF. MSE-NF is a good way to evaluate the quality of
prediction or reconstruction. MSE-NF has two parts, namely
MSE and NF. MSE can evaluate the similarity between the
prediction or reconstruction and the raw KPI. We expect the
algorithms to get a low MSE, but the algorithms may overfit
if the MSE is too low, making the algorithms unable to find
abnormal data points. To solve this problem, we propose the
Normal Factor (NF), working like a regularization. NF can
evaluate the normal level of the prediction or reconstruction.
If the algorithms overfit, the NF will be large because the
estimated KPI probably has many anomalies.

MSE is a statistical estimator measuring the distance be-
tween the predicted values and the ground truth. Let vector
X represent the raw KPI and X̂ represent the estimated KPI
given by the unsupervised anomaly detection algorithms. N
is the number of points of the KPI, xi is the raw value of
the i-th point of the KPI, and the x̂i is the estimated value
given by the unsupervised KPI anomaly detection algorithm.
The definition of MSE is shown as follows:

MSE(X, X̂) =

N∑
i=1

(xi − x̂i)
2

N
(3)

In general, a lower MSE indicates that the algorithm can
estimate the KPI more accurately. However, if the MSE is too
low, the detection algorithm may overfit, making the estimated
KPI too similar to the real one. Under this condition, anomalies
cannot be found effectively. Therefore, MSE alone is not
sufficient for an objective function. If we can evaluate the
normality of the estimated KPI given by the KAD algorithm,
we may alleviate the overfitting problem. Thus, we propose
the Normal Factor. Inspired by the uniformity regularizer in
contrasting learning, NF is proposed based on Local Outlier
Factor (LOF) [23] and can evaluate the normality of KPIs.
LOF is a standard method for event detection based on k-
nearest neighbors (kNN). Eq. (4) shows the definition of LOF.

LOFk(x) =
1

|Nk(x)|
·

∑
x′∈Nk(x)

∑
x̂∈Nk(x)

rdk(x, x̂)∑
x∈Nk(x′) rdk(x

′, x)
(4)

rdk is the reachability-distance of two points x and x̂. We use
Euclidean distance d(·) to measure the distance in this paper.

Nk(x) is the set of x’s k-nearest neighbors. To adapt LOF
on KPI data, we use time-delay embedding. LOF is a useful
method to measure the normality of the data points. Intuitively,
we can evaluate the normality of KPIs by evaluating all the
normality of KPIs’ points. Time-delay embedding is necessary
for adapting LOF to KPI data [27], which could transform a
time series into a matrix for distance calculating.

In real-world scenarios, the majority of KPIs manifest sea-
sonal trends as a result of user behaviors. Identifying data from
the closest corresponding period is not only more efficient but
also holds greater significance than merely locating the nearest
neighbors. This is attributed to the fact that in the context of
time series, a straightforward distance metric between two time
points lacks tangible physical meaning. However, data points
within adjacent cycles are frequently indicative of potentially
similar patterns. Consequently, the NF methodology favors
the two periods immediately preceding and following point
x, as opposed to the conventional approach of utilizing the
k-nearest data points. Therefore, We propose Period Outlier
Factor (POF) inspired by LOF. The calculation of POF is
shown as follows:

POF(xt) =
1

2
· d(xt, xt−p) + d(xt, xt+p)

d(xt, xt−p) + d(xt−p, xt+p)
(5)

+
d(xt, xt−p) + d(xt, xt+p)

d(xt, xt+p) + d(xt−p, xt+p)

We apply Fast Fourier Transform (FFT) to estimate the
period p of a KPI [28]. If the p given by FFT is not valid,
we will set p = 1 for further computation of NF. NF is the
average POF of all data points embedded by time delay. Eq. (6)
shows the definition of NF. In this equation, X is the set of
all data points after time-delay embedding. From the equation,
we can see that a larger NF indicates fewer normal data points
in the KPI, meaning that the estimated KPI may have more
anomalies.

NF(X) =
1

|X|
·
∑
x∈X

POF(x) (6)

Usually in BO, we are used to maximizing the objective
function, so we use the negative of MSE-NF as our objective
function. The effectiveness of the objective function designed
by ourselves will be illustrated in Section IV-F.

MSE-NF = MSE + αNF (7)

The coefficient α > 0 is utilized to balance between MSE and
NF. According to our experimental results (see Section IV-F
for more details), we opt for α = 1.

D. Acquisition Function
In Bayesian optimization (BO), the acquisition function

guides the selection of the next query point, balancing the ex-
ploration of untested areas and the exploitation of known good
ones. It leverages the posterior predictive distribution from the
Gaussian Process to estimate the potential improvement at new
points, driving the efficient search for global optima.

Expected Improvement (EI) is an effective and widely used
acquisition function in BO-based AutoML. Given an unob-

5

served configuration h and a set of observed configurations
{h1, · · · , hk}, the EI function can be written as Eq. (8).

EI(h) = E[max(µ(h)− f(h+), 0) | {h1, · · · , hk}] (8)
where h+ = argmax

i=1,··· ,k
f(hi)

µ(h) is an estimated value of the unobserved configuration
h given by the surrogate model in BO. If we use Gaussian
Process (GP) as the surrogate model in BO, then the EI
function can be rewritten as follows.

EI(h) =

{ (
µ(h)− f

(
h+

))
Φ(z) + σ(h)ϕ(z) σ > 0

0 σ = 0
(9)

where z =
µ(h)− f (h+)

σ(h)

Φ(·) and ϕ(·) are the cumulative distribution function and
probability density function of the Gaussian distribution, re-
spectively. σ(h) denotes the standard deviation estimated by
the GP.

Although our proposed MSE-NF objective function is an
effective label-free way to evaluate the performance of KAD
algorithms. However, there is still a discrepancy between
MSE-NF and the real F1-score. The commonly used EI
acquisition function in the AutoML framework always uses
the minimum (or maximum) value of the observed points
given by the objective function as an essential measure.
The discrepancy between the objective function and the true
evaluation metric (i.e., F1 score) may affect the accuracy of
the EI function. Since we have no labels, the gap between F1
and our objective function cannot be completely eliminated, so
an intuitive solution is to be more inclined to explore different
configurations rather than obsessing over finding the maximal
value of the objective function.

To address this issue, we propose the Similarity Weighted
Expected Improvement (SW-EI). The “similarity” in SW-EI
denotes the similarity between two different configurations.
Since different KAD algorithms may have different configura-
tion spaces, it is infeasible to calculate the similarity between
two configurations from different algorithms. Therefore, we
define that the similarity of two different algorithms’ con-
figurations is 0. Then, we normalize the hyperparameters in
the configuration space to [0, 1] for each KAD algorithm. For
the configurations from the same algorithm, we use cosine
similarity:

simi(h1, h2) =
h1 · h2

|h1| × |h2|
(10)

Given a set of observed configurations {h1, · · · , hk}, let n
stand for the number of different algorithms in configuration
spaces. The SW-EI is defined as follows:

SW-EI(h) =
n∑

i=1

wi(h, h
+
i)(µ(h)− f(h+

i))Φ(zi) (11)

+

n∑
i=1

wiσ(h)ϕ(zi) + σ(h)ϕ(

n∑
i=1

zi
n
)

where zi =
µ(h)− f

(
h+
i

)
σ(h)

, wi =
simi(h, h+

i)∑n
j=1 simi(h, h+

j)

h+
i denotes the best configuration for the i-th algorithm.

The core design concept of SW-EI is to drive the model to
explore configurations that are different from those already
observed while guaranteeing the expected improvement. SW-
EI considers the best configuration of different algorithms
and the similarity of configurations, making the AutoML
model tend to explore the potential of different algorithms and
prevent the model from limiting itself to a particular algorithm
or similar hyperparameters.

E. Configuration Recommendation

The goal of configuration recommendation is to recommend
different configurations according to operators’ preferences.
For labeled data, the operators can utilize some evaluation
metrics like precision, recall, and F1-score to evaluate the
configurations and select satisfying ones. However, it is chal-
lenging for operators to pick satisfying configurations without
evaluation metrics based on labels. Besides, operators may
have different preferences regarding precision and recall for
different KPIs. For some KPIs, the operators expect a high
precision of the anomaly detection algorithm because the
anomalies of these KPIs are not crucial. Too many false alarms
influence the efficiency of the operation work. However, for
some crucial KPIs, the operators expect a high recall of the
anomaly detection algorithm because any anomaly in these
KPIs may lead to significant revenue loss, thus the anomaly
detection algorithm must report any potential anomaly.

We propose a rule-based strategy of configuration recom-
mendation to solve the above problems. The utility of MSE
lies in its ability to quantify the degree of similarity between
the original KPI and its estimated counterpart produced by
the unsupervised detector. A detection algorithm that results
in a low MSE value suggests that it can accurately estimate
the KPI, thus enabling it to detect only significant anomalies,
leading to enhanced precision. On the other hand, NF serves
as a measure of the normality of the estimated KPI. When
an algorithm delivers a low NF, it suggests effective learning
of the normal patterns within the KPI. Consequently, the
estimated KPI tends to mirror a normal KPI as closely as
possible, facilitating the detection of even minor anomalies and
thereby contributing to elevated recall. MSE-NF balances the
precision and the recall leading to a high F1-score. So MSE,
NF, and MSE-NF are good estimates for precision, recall, and
F1-score, respectively.

More specifically, our strategy first averages the MSE and
NF of all the configurations for the KPI. Subsequently, we
deploy the 3σ rule to discard any outlier configurations that
fall beyond three standard deviations from the calculated
means. The selection of the 3σ rule is motivated by our
experimental findings, wherein it is observed that the outlier
configurations typically exhibit extraordinarily high precision
or recall. However, significantly high precision or recall usu-
ally leads to a notably low F1-score. After removing the outlier

6

configuration, we sort the observed configurations in ascending
order. Then, our strategy selects top m configurations, and the
operators can set the m by themselves. The superiority of our
recommendation strategy will be presented in Section IV-G.

IV. EVALUATION

In this section, we evaluate AutoKAD using various real-
world KPIs, aiming to answer the following research ques-
tions:
• RQ1: How effective is AutoKAD in searching for suitable

configurations?
• RQ2: How much can the warm start mechanism accelerate

the searching process?
• RQ3: Is the MSE-NF objective function effective in esti-

mating the performance of the unsupervised KPI anomaly
detection algorithms?

• RQ4: Can the strategy of configuration recommendation
correctly recommend configurations?

A. Dataset

To demonstrate the effectiveness of AutoKAD, we conduct
experiments on three datasets. The first dataset is the 2018
international AIOps algorithm competition dataset, a public
dataset [29]. The second and third datasets are collected from
two core trading systems deployed in a large international
commercial bank.

In dataset A, there are 29 different KPIs collected from big
Internet companies. These KPI data are from the real-world
production environment and labeled by domain experts. There-
fore, these labeled data can effectively reflect the performance
of our approach in a real-world environment. Since these
KPIs have a diverse range of patterns and physical meanings,
this dataset has been used to evaluate the robustness of KPI
anomaly detection in many advanced work [30]–[33].

Dataset B and C contain 29 and 30 KPIs, respectively,
collected from the two most important trading systems of an
international commercial bank. There are dozens of operators
closely monitoring these KPIs to maintain service quality. All
the KPIs in these datasets are 3 months long at the minute
granularity and labeled by experienced operators.

Each KPI is divided into the training set and the test set.
The length and distribution of each KPI’s test set are similar to
the training set’s. Table I presents some statistical information
about three datasets, such as the number of KPIs, the number
of data points, and the anomaly rate. Though our approach
focuses on hyperparameter optimization of unsupervised KPI
anomaly detection algorithms, we still need labels for the
purpose of evaluation. The ground truth of all anomalies in
the dataset is only used to evaluate the performance of our
hyperparameter optimization model. Neither the training nor
testing phase of anomaly detection algorithms uses labels.

B. Candidate Algorithms and Hyperparameter Space

We choose three representative unsupervised KPI anomaly
detection algorithms in our experiments, including a traditional

TABLE I
DATASET STATISTIC

Dataset #KPI #Train/#Test Anomaly rate

A 29 3004066 / 2918847 2.648% / 1.869%
B 29 1642815 / 1642810 1.089% / 1.065%
C 30 2078848 / 2078854 0.781% / 0.817%

method and typical machine learning methods for AutoKAD.
Table II shows the space of algorithms and hyperparameters.

The Holt-Winters based on exponential smoothing is a
classic and successful method for unsupervised KPI anomaly
detection [5]. It is practical and efficient for seasonal KPIs
with obvious anomaly patterns. Besides, Holt-Winters has
good interpretability, making it popular in the industry. LSTM-
NDT [8] is a typical prediction-based unsupervised KPI
anomaly detection algorithm. LSTM-NDT can capture the
long-term dependency and information for the KPI data. Donut
is a representative reconstruction-based unsupervised KPI
anomaly detection algorithm designed for seasonal KPIs [7].
Due to the solid theoretical explanation of Donut, it is popular
in the industry and literature.

TABLE II
ALGORITHMS AND THEIR DIFFERENT TYPES OF HYPERPARAMETERS

INCLUDED IN THE EXPERIMENTS OF AutoKAD.

Algorithm Mechanism Hyperparameter Type

Holt-winters [5] Pred

trend category
seasonal category
damped rend boolean
seasonal periods integer
init method category

LSTM-NDT [8] Pred

window length integer
batch size integer
learning rate float
epoch number integer
hidden dimension integer

Donut [7] Recons

window length integer
batch size integer
learning rate float
epoch number integer
hidden dimension integer
latent dimension integer

C. Evaluation Metrics

ground truth

point-wise result

adjusted result

1 0 1 0 1 1 0 0 0 0

0 0 0 01 1 1 1 1 1

1 0 1 1 1 1 0 0 0 0

Fig. 4. An illustration of the adjustment strategy employed in the evaluation
metrics. Anomaly points within the ground truth are depicted as red rectangles,
while the points that have been adjusted are signified by blue rectangles.

7

TABLE III
PRECISION, RECALL, AND F1-SCORE COMPARISON BETWEEN AutoKAD AND THREE BASELINE METHODS UNDER THE LIMITATION OF 1 HOUR

SEARCHING TIME AND MAX ITERATION OF 100.

Methods A B C Avg.
Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Default Donut 0.881 0.380 0.531 0.457 0.689 0.550 0.707 0.638 0.671 0.682 0.569 0.620
Random Search 0.676 0.537 0.599 0.663 0.631 0.647 0.675 0.783 0.725 0.671 0.650 0.661

BayesOpt 0.876 0.525 0.657 0.763 0.672 0.715 0.875 0.681 0.766 0.838 0.626 0.717
BOAT 0.831 0.575 0.680 0.778 0.688 0.730 0.823 0.708 0.761 0.811 0.657 0.726

AutoKAD 0.861 0.694 0.769 0.920 0.723 0.810 0.916 0.781 0.843 0.899 0.733 0.807

Precision, recall, and F1-score are common metrics to eval-
uate the performance of anomaly detection [34]. However, in
the KAD area, the operators in the industry typically disregard
point-wise metrics. Since, we adopt an adjustment precision,
recall, and F1-score widely used in previous KAD works [7],
[10], [11], [30], [35], [36]. In the adjustment metrics, if any
point in an anomaly interval in the ground truth can be
detected, we consider this interval to be detected correctly, and
all points in this interval are treated as they can be detected.
The adjustment process is illustrated in Fig. 4.

D. RQ1: Overall Performance of AutoKAD

In order to demonstrate the effectiveness of AutoKAD, we
compare it with four baseline methods.
• Default configuration. We use a popular unsupervised KPI

anomaly detection algorithm (i.e., Donut [7]) as the default
algorithm, and adopt the default hyperparameters used in
the open-source project 1.

• Random search. Random search can randomly search the
space of combinations of algorithms and hyperparameters
and return one configuration in every iteration.

• Bayesian optimization (BayesOpt) [21]. In this experi-
ment, BayesOpt uses the MSE as the objective function and
the original EI as the acquisition function.

• BOAT [37]. The state-of-the-art auto-tuner is based on
structured Bayesian optimization. Like BayesOpt, BOAT
uses the MSE as the objective function.
In this experiment, we limit the max iteration to 100 and

the total searching time (including training machine learning
models) to 1 hour for each KPI. We record the best F1-score
of configurations returned by the models. It is noteworthy
that since BayesOpt and BOAT are designed for labeled
datasets, they cannot natively handle the CASH problem for
unsupervised KAD. MSE is usually the loss function of many
KAD methods [1], [2], [4], [8], [12], [35]. So we let BayesOpt
and BOAT use MSE as the objective function. The warm start
mechanism is specifically designed for AutoKAD, so it can
not easily adapt to other baseline methods in the experiments.
Therefore, to ensure the fairness of the evaluation, we do not
activate the warm start mechanism. Table III shows the overall
performance of AutoKAD and three baseline methods.

From Table III, we can see AutoKAD exhibits outstanding
performance on all three datasets and achieve the F1-score

1https://github.com/NetManAIOps/donut

of 0.807 on average. We further analyze the weakness of
compared methods and the superiority of AutoKAD in depth.
For default configuration, Donut is specifically designed for
seasonal KPIs, leading to an unsatisfying performance on
stable and unstable KPIs. Besides, due to the variety of KPIs,
it is unrealistic for an algorithm to perform well on all data
with the same hyperparameters. Thus, the overall performance
of Donut is far from satisfying. In terms of random search, as
the most straightforward method for hyperparameter tuning, it
can not capture the relationship between the configurations
and performance. Therefore, it can not focus on suitable
configurations, wasting time on inferior configurations.

In terms of the effectiveness of BayesOpt and BOAT, they
are deemed less efficient when compared with AutoKAD. We
believe that the reasons behind this discrepancy originate from
two aspects. Firstly, the fundamental EI metric overemphasizes
improving the maximum reward for the currently observed
points, while neglecting to explore varying KAD configura-
tions. In contrast, SW-EI not only focuses on enhancing the
current optimal solution but also encourages the exploration of
distinct configurations, thereby effectively preventing falling
into local optimum solutions. Secondly, both BayesOpt and
BOAT employ MSE as their objective function. However,
MSE does not serve as an effective performance evaluation
measure for KAD. This shortcoming hampers both methods’
capability in identifying the algorithm and hyperparameter
combinations that provide superior performance in KAD. In
contrast, AutoKAD’s MSE-NF proves to be a more effective
measure for evaluating KAD performance. A more detailed
analysis can be found in Section IV-F.

In summary, compared with baseline methods, the results
show that AutoKAD is indeed effective in the CASH problem
for unsupervised KAD models.

E. RQ2: Contribution of Warm Start to Time Efficiency

The warm start mechanism can reduce the time spent on
exploration at the beginning. To evaluate the performance of
our warm start mechanism, we divide all the KPIs in the three
datasets into two parts: one part is considered as a tuned part,
and the other part is to be tuned. AutoKAD has already tuned
the KPIs in the tuned part. We run ROCKA on this part,
obtaining four clusters. The other part includes 9 KPIs named
by numbers from 1 to 9, evenly from the three datasets.

To evaluate the performance of our warm start mechanism,
we run AutoKAD twice on these 9 KPIs with the limitation

8

15 30 45 60
Time(min)

0.6

0.7

0.8

0.9

F1
-s

co
re

KPI: 1

15 30 45 60
Time(min)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1
-s

co
re

KPI: 2

15 30 45 60
Time(min)

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

KPI: 3

15 30 45 60
Time(min)

0.5

0.6

0.7

0.8

F1
-s

co
re

KPI: 4

15 30 45 60
Time(min)

0.2

0.3

0.4

0.5

0.6

F1
-s

co
re

KPI: 5

15 30 45 60
Time(min)

0.5

0.6

0.7

0.8

0.9

F1
-s

co
re

KPI: 6

15 30 45 60
Time(min)

0.6

0.7

0.8

0.9

F1
-s

co
re

KPI: 7

15 30 45 60
Time(min)

0.4

0.5

0.6

0.7

0.8

F1
-s

co
re

KPI: 8

15 30 45 60
Time(min)

0.5

0.6

0.7

0.8

0.9

F1
-s

co
re

KPI: 9

cold start
warm start

Fig. 5. The best F1-score of AutoKAD under cold start and warm start on 9 KPIs at 15min, 30min, 45min, and 60min.

of 1 hour running time and max iteration of 100. The first
time we do not activate the warm start mechanism suffering
from the cold start. Moreover, the second time, we activate
the warm start replacing 5 initial points of AutoKAD. Fig. 5
shows the best F1-score of configurations at 15min, 30min,
45min, and 60min.

The results show that AutoKAD equipped with our warm
start mechanism can focus on good configurations much faster
than cold start. At 15min, the best F1-score of warm start is
164% higher than the best F1-score of cold start on average.
At 60min, the best F1-scores of all the KPIs with warm start
are no less than the cold start’s, indicating that the warm start
will not reduce the overall performance. Besides, for KPI
2, 5, and 6, the AutoKAD has already converged at 15min
indicating that the model thinks the best configuration has been
found. For most KPIs in this RQ, the best F1-scores of cold
start at 45min are close to warm start’s at 15min. It indicates
that our warm start can save about 30min with the limitation
of 1 hour running time. The results indicate that our warm
start mechanism can effectively learn successful experiences
from previous similar KPIs. With great initial configurations,
AutoKAD can accurately focus on the configurations deserving
investigation, reducing the search space.

F. RQ3: Effectiveness of the Objective Function

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.70
0.75
0.80
0.85

F1
-S

co
re

Fig. 6. The sensitivity analysis of the parameter, α in MSE-NF

MSE-NF objective function is an estimator of F1-score of
KPI anomaly detection. In the real world, most KPIs are
unlabeled, and F1-scores can not be computed without labels.
For evaluation purposes, we use labels to compute the F1-
score as the ideal objective function to acquire the optimal
configurations. To demonstrate the validation of MSE-NF, we
compare the MSE-NF’s performance with the best F1-score
and MSE. In this RQ, we use AutoKAD as the AutoML
framework and choose different objective functions. The ideal

group uses the best F1-score’s performance straightforwardly
as the objective function, and the MSE group uses MSE as the
objective function. All the groups have the limitation of 1 hour
of searching time and a max iteration of 100. Fig. 7 shows the
performance comparison of these three objective functions.

From the results, we can see that the performance of MSE-
NF is quite close to the performance of the ideal, demonstrat-
ing that MSE-NF is a suitable estimator of F1-score. MSE can
achieve the best precision compared with the other objective
functions, but the recall and F1 are much lower. MSE aims to
evaluate the similarity between the raw KPI and the estimated
KPI given by the unsupervised detector. However, too low
an MSE may indicate that the detection algorithm overfits
and exactly predicts or reconstructs the anomaly points in
the test data. In this situation, the detection algorithm learns
not only the normal pattern but also the abnormal pattern
from the training data, which fails to observe the original
intention of unsupervised KPI anomaly detection algorithms.
Therefore, only the extreme anomaly points are recognized
as anomalies making many anomalies undetected. So MSE
objective function can achieve pretty high precision (Fig. 7a),
but the F1-score (Fig. 7c) is not satisfying. In the MSE-
NF function, NF works like regularization. It can prevent
the detection algorithm from overfitting to anomalies. We
use Dataset C which most accurately reflects the real-world
environment to conduct a sensitivity analysis of the paramter
α in MSE-NF and the result is shown in Fig. 6. The result
demonstrates that when α is close to 1, the performance is
commendable. Therefore, in our method, we choose α = 1.

G. RQ4: Correctness of the Configuration Recommendation

Our strategy of configuration recommendation can recom-
mend configurations according to operators’ preferences. We
run AutoKAD with the same limitation in RQ1 and our strategy
recommended top 3 configurations. We compare the configu-
rations given by the strategy with the optimal configurations to
validate whether our strategy can recommend close-to-optimal
and even optimal configurations. It is noteworthy that in this
RQ, our strategy recommends the best precision configuration,
best recall configuration, and best F1-score configuration sep-

9

Total0.5

0.6

0.7

0.8

0.9

1.0

1.1
Pr

ec
isi

on

MSE-NF MSE Ideal (F1-score)

(a) Precision

Total0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
ca

ll

MSE-NF MSE Ideal (F1-score)

(b) Recall

Total0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1
-s

co
re

MSE-NF MSE Ideal (F1-score)

(c) F1-score

Fig. 7. Performance comparison of MSE-NF, MSE, and F1-score.

arately. Therefore, even for the same KPI, the best precision
configuration and the best recall configuration can be from
different algorithms and hyperparameters. Table IV shows the
comparison result.

The results show that our strategy can correctly recom-
mend configurations according to different precision, recall,
and F1-score preferences. For high precision preference, the
most significant difference between our strategy and optimal
configurations is at most 0.02. For high F1-score preference,
the difference is at most 0.05. For high recall preference, the
difference is at most 0.11. The recommended configurations
of high recall preference may differ a little from the optimal
configurations. It is because the NF guiding recommendation
of high recall preference is a regularization term computed
only based on the estimated KPI. Therefore NF can not capture
the relationship between the estimated KPI and raw KPI. In
our practice, we find that a low NF with a low recall is usually
an outlier of the configurations. So we use the 3σ rule to
eliminate the outlier, improving the performance of the high
recall preference recommendation.

TABLE IV
TOP 3 RECOMMENDED CONFIGURATIONS COMPARISON BETWEEN OUR

STRATEGY AND OPTIMAL CONFIGURATIONS

Top 3 Dataset A B C
Strategy P R F1 P R F1 P R F1

1st ideal 0.99 0.88 0.76 0.99 0.96 0.81 0.97 0.87 0.84
our 0.97 0.77 0.71 0.98 0.95 0.78 0.97 0.81 0.84

2nd ideal 0.99 0.77 0.73 0.98 0.95 0.80 0.97 0.83 0.83
our 0.98 0.71 0.71 0.97 0.88 0.78 0.97 0.81 0.83

3rd ideal 0.99 0.71 0.70 0.98 0.92 0.78 0.97 0.82 0.83
our 0.98 0.70 0.66 0.97 0.89 0.78 0.96 0.80 0.82

V. RELATED WORK

KPI anomaly detection is crucial for large-scale online
service systems, and many efforts have been devoted to this
field [1], [2], [5]–[9], [24], [38]–[40]. In practice, model se-
lection and hyperparameter tuning have a significant influence
on the performance of algorithms. However, it is challenging
for human operators lacking expert knowledge about algo-
rithms to select a proper model and tune the hyperparameters.
Some ensemble models such as [1], [2] aim to tackle this
problem. These models ensemble various supervised KPI
anomaly detection algorithms and use a machine learning
model like a random forest to select appropriate detectors and
hyperparameters. However, these ensemble models need labels
of KPI, but most KPIs in practice are unlabeled because of the

enormous number of KPIs and the time cost. Therefore, there
is a great limitation of these ensemble models in practice.

A more general way to solve CASH problem for KAD is
AutoML. Many AutoML approaches are proposed to solve the
hyperparameter optimization problem [13]–[22], [37]. These
methods can capture the relationship between the performance
and the hyperparameter settings. Therefore, the methods can
pay more attention to the hyperparameter settings deserving
investigation, reducing the time for searching for promising
settings. However, all these methods need labels, and none
of them is natively designed for unsupervised KPI anomaly
detection.

VI. CONCLUSION

KPI anomaly detection is critical for service quality and
user experience in large-scale online service systems. Due
to the overwhelming number of KPIs and the complexity of
detection algorithms, it is challenging for human operators to
select a promising algorithm and tune the hyperparameters
for each KPI. In this paper, we propose an automatic algo-
rithm selection and hyperparameter tuning framework called
AutoKAD for KPI anomaly detection. AutoKAD can effectively
and efficiently find a good configuration for a given KPI. Using
our carefully designed objective and acquisition function,
AutoKAD can tune unsupervised KPI anomaly detection algo-
rithms, which is a challenge for existing AutoML frameworks.
The warm start mechanism can significantly reduce the time
required for AutoML cold start. In addition, the configu-
ration recommendation strategy can accurately recommend
configurations according to operator preferences. We conduct
experiments on real-world data to evaluate the performance of
AutoKAD. The experiments show that AutoKAD is effective
and achieves an F1-score of 0.807 within 1 hour for each KPI
on our dataset. The F1-score of AutoKAD is up to 40% higher
than a widely used Donut model. Our cluster-based warm start
mechanism can help AutoKAD achieve a competitive F1-score
within 15 minutes compared to a 1 hour cold start search.

ACKNOWLEDGMENT

This work is supported by the National Key Research
and Development Program of China (No.2019YFE0105500),
the Research Council of Norway (No.309494), the National
Natural Science Foundation of China (Grant No.62072264 and
No.62202445), and the Beijing National Research Center for
Information Science and Technology (BNRist) key projects.

10

REFERENCES

[1] D. Liu, Y. Zhao, H. Xu, Y. Sun, D. Pei, J. Luo, X. Jing, and
M. Feng, “Opprentice: Towards practical and automatic anomaly de-
tection through machine learning,” in Proceedings of the 2015 Internet
Measurement Conference, 2015, pp. 211–224.

[2] N. Laptev, S. Amizadeh, and I. Flint, “Generic and scalable framework
for automated time-series anomaly detection,” in Proceedings of the 21th
ACM SIGKDD international conference on knowledge discovery and
data mining, 2015, pp. 1939–1947.

[3] J. Bu, Y. Liu, S. Zhang, W. Meng, Q. Liu, X. Zhu, and D. Pei,
“Rapid deployment of anomaly detection models for large number
of emerging KPI streams,” in 37th IEEE International Performance
Computing and Communications Conference, IPCCC 2018, Orlando,
FL, USA, November 17-19, 2018. IEEE, 2018, pp. 1–8.

[4] X. Zhang, Q. Lin, Y. Xu, S. Qin, H. Zhang, B. Qiao, Y. Dang, X. Yang,
Q. Cheng, M. Chintalapati, Y. Wu, K. Hsieh, K. Sui, X. Meng, Y. Xu,
W. Zhang, F. Shen, and D. Zhang, “Cross-dataset time series anomaly
detection for cloud systems,” in 2019 USENIX Annual Technical Con-
ference, USENIX ATC 2019, Renton, WA, USA, July 10-12, 2019,
D. Malkhi and D. Tsafrir, Eds. USENIX Association, 2019, pp. 1063–
1076.

[5] C. Chatfield and M. Yar, “Holt-winters forecasting: some practical
issues,” Journal of the Royal Statistical Society: Series D (The Statisti-
cian), vol. 37, no. 2, pp. 129–140, 1988.

[6] H. Zare Moayedi and M. Masnadi-Shirazi, “Arima model for network
traffic prediction and anomaly detection,” in 2008 International Sympo-
sium on Information Technology, vol. 4, 2008, pp. 1–6.

[7] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao, D. Pei,
Y. Feng et al., “Unsupervised anomaly detection via variational auto-
encoder for seasonal kpis in web applications,” in Proceedings of the
2018 World Wide Web Conference, 2018, pp. 187–196.

[8] K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and
T. Söderström, “Detecting spacecraft anomalies using lstms and non-
parametric dynamic thresholding,” in KDD. ACM, 2018, pp. 387–395.

[9] W. Chen, H. Xu, Z. Li, D. Pei, J. Chen, H. Qiao, Y. Feng, and Z. Wang,
“Unsupervised anomaly detection for intricate kpis via adversarial train-
ing of vae,” in IEEE INFOCOM 2019-IEEE Conference on Computer
Communications. IEEE, 2019, pp. 1891–1899.

[10] Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei, “Robust anomaly
detection for multivariate time series through stochastic recurrent neural
network,” in KDD. ACM, 2019, pp. 2828–2837.

[11] Z. Li, Y. Zhao, J. Han, Y. Su, R. Jiao, X. Wen, and D. Pei, “Multivariate
time series anomaly detection and interpretation using hierarchical inter-
metric and temporal embedding,” in KDD ’21: The 27th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, Virtual Event,
Singapore, August 14-18, 2021, F. Zhu, B. C. Ooi, and C. Miao, Eds.
ACM, 2021, pp. 3220–3230.

[12] J. Xu, H. Wu, J. Wang, and M. Long, “Anomaly transformer: Time series
anomaly detection with association discrepancy,” in ICLR. OpenRe-
view.net, 2022.

[13] M. Feurer, A. Klein, J. Eggensperger, Katharina Springenberg, M. Blum,
and F. Hutter, “Efficient and robust automated machine learning,” in
Advances in Neural Information Processing Systems 28 (2015), 2015,
pp. 2962–2970.

[14] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Hyperband: A novel bandit-based approach to hyperparameter opti-
mization,” The Journal of Machine Learning Research, vol. 18, no. 1,
pp. 6765–6816, 2017.

[15] E. Hazan, A. Klivans, and Y. Yuan, “Hyperparameter optimization: A
spectral approach,” arXiv preprint arXiv:1706.00764, 2017.

[16] V. Dalibard, M. Schaarschmidt, and E. Yoneki, “Boat: Building auto-
tuners with structured bayesian optimization,” in Proceedings of the 26th
International Conference on World Wide Web, 2017, pp. 479–488.

[17] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and
M. Zhang, “Cherrypick: Adaptively unearthing the best cloud con-
figurations for big data analytics,” in 14th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 17), 2017, pp.
469–482.

[18] T. Kathuria, A. Deshpande, and P. Kohli, “Batched gaussian process
bandit optimization via determinantal point processes,” Advances in
Neural Information Processing Systems, vol. 29, pp. 4206–4214, 2016.

[19] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-weka:
combined selection and hyperparameter optimization of classification
algorithms,” in KDD. ACM, 2013, pp. 847–855.

[20] J. Bergstra, D. Yamins, and D. D. Cox, “Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for
vision architectures,” in ICML (1), ser. JMLR Workshop and Conference
Proceedings, vol. 28. JMLR.org, 2013, pp. 115–123.

[21] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” in NIPS, 2012, pp. 2960–2968.

[22] C. Freeman, I. Beaver, and A. Mueen, “Improving univariate time series
anomaly detection through automatic algorithm selection and human-
in-the-loop false-positive removement,” in The International FLAIRS
Conference Proceedings, vol. 34, no. 1, 2021.

[23] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: identifying
density-based local outliers,” in Proceedings of the 2000 ACM SIGMOD
international conference on Management of data, 2000, pp. 93–104.

[24] H. Yan, A. Flavel, Z. Ge, A. Gerber, D. Massey, C. Papadopoulos,
H. Shah, and J. Yates, “Argus: End-to-end service anomaly detection
and localization from an isp’s point of view,” in 2012 Proceedings IEEE
INFOCOM. IEEE, 2012, pp. 2756–2760.

[25] R. Bardenet, M. Brendel, B. Kégl, and M. Sebag, “Collaborative hyper-
parameter tuning,” in ICML (2), ser. JMLR Workshop and Conference
Proceedings, vol. 28. JMLR.org, 2013, pp. 199–207.

[26] Z. Li, Y. Zhao, R. Liu, and D. Pei, “Robust and rapid clustering
of kpis for large-scale anomaly detection,” in 2018 IEEE/ACM 26th
International Symposium on Quality of Service (IWQoS). IEEE, 2018,
pp. 1–10.

[27] S. Oehmcke, O. Zielinski, and O. Kramer, “Event detection in marine
time series data,” in Joint German/Austrian Conference on Artificial
Intelligence (Künstliche Intelligenz). Springer, 2015, pp. 279–286.

[28] W. W. Wei, “Time series analysis,” in The Oxford Handbook of Quan-
titative Methods in Psychology: Vol. 2, 2006.

[29] Z. Li, N. Zhao, S. Zhang, Y. Sun, P. Chen, X. Wen, M. Ma, and
D. Pei, “Constructing large-scale real-world benchmark datasets for
aiops,” arXiv preprint arXiv:2208.03938, 2022.

[30] H. Ren, B. Xu, Y. Wang, C. Yi, C. Huang, X. Kou, T. Xing, M. Yang,
J. Tong, and Q. Zhang, “Time-series anomaly detection service at
microsoft,” in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2019, pp. 3009–
3017.

[31] T. Wu and J. Ortiz, “RLAD: time series anomaly detection through
reinforcement learning and active learning,” CoRR, vol. abs/2104.00543,
2021. [Online]. Available: https://arxiv.org/abs/2104.00543

[32] C. Wang, K. Wu, T. Zhou, G. Yu, and Z. Cai, “Tsagen: Synthetic
time series generation for kpi anomaly detection,” IEEE Transactions
on Network and Service Management, 2021.

[33] J. Li, S. Di, Y. Shen, and L. Chen, “Fluxev: a fast and effective unsu-
pervised framework for time-series anomaly detection,” in Proceedings
of the 14th ACM International Conference on Web Search and Data
Mining, 2021, pp. 824–832.

[34] N. Tatbul, T. J. Lee, S. Zdonik, M. Alam, and J. Gottschlich, “Precision
and recall for time series,” in NeurIPS, 2018, pp. 1924–1934.

[35] J. Li, S. Di, Y. Shen, and L. Chen, “Fluxev: A fast and effective
unsupervised framework for time-series anomaly detection,” in WSDM
’21, The Fourteenth ACM International Conference on Web Search and
Data Mining, Virtual Event, Israel, March 8-12, 2021, L. Lewin-Eytan,
D. Carmel, E. Yom-Tov, E. Agichtein, and E. Gabrilovich, Eds. ACM,
2021, pp. 824–832.

[36] J. Audibert, P. Michiardi, F. Guyard, S. Marti, and M. A. Zuluaga,
“USAD: unsupervised anomaly detection on multivariate time series,”
in KDD. ACM, 2020, pp. 3395–3404.

[37] V. Dalibard, M. Schaarschmidt, and E. Yoneki, “Boat: Building auto-
tuners with structured bayesian optimization,” in Proceedings of the 26th
International Conference on World Wide Web, 2017, pp. 479–488.

[38] J. Chen, N. Xu, P. Chen, and H. Zhang, “Efficient compiler autotuning
via bayesian optimization,” in ICSE. IEEE, 2021, pp. 1198–1209.

[39] C. Wu, N. Zhao, L. Wang, X. Yang, S. Li, M. Zhang, X. Jin, X. Wen,
X. Nie, W. Zhang, K. Sui, and D. Pei, “Identifying root-cause metrics
for incident diagnosis in online service systems,” in ISSRE. IEEE,
2021, pp. 91–102.

[40] X. Wang, K. Yin, Q. Ouyang, X. Wen, S. Zhang, W. Zhang, L. Cao,
J. Han, X. Jin, and D. Pei, “Identifying erroneous software changes
through self-supervised contrastive learning on time series data,” in
ISSRE. IEEE, 2022, pp. 366–377.

11

https://arxiv.org/abs/2104.00543

	Introduction
	Background
	KPI and KPI Anomaly Detection
	AutoML
	Problem Definition

	Methodology
	Framework Overview
	Clustered-based Warm Start
	Objective Function
	Acquisition Function
	Configuration Recommendation

	Evaluation
	Dataset
	Candidate Algorithms and Hyperparameter Space
	Evaluation Metrics
	RQ1: Overall Performance of AutoKAD
	RQ2: Contribution of Warm Start to Time Efficiency
	RQ3: Effectiveness of the Objective Function
	RQ4: Correctness of the Configuration Recommendation

	Related Work
	Conclusion
	References

