Check for
Updates

Lindorm TSDB: A Cloud-native Time-series Database for
Large-scale Monitoring Systems

Chunhui Shen*3*, Qianyu Ouyang*'*, Feibo Li, Zhipeng Liu, Longcheng Zhu, Yujie Zou, Qing Su,
Tianhuan Yu, Yi Yi, Jianhong Hu, Cen Zheng, Bo Wen, Hanbang Zheng, Lunfan Xu, Sicheng Pan,
Bin Wu, Xiao He, Ye Li, Jian Tan, Sheng Wang, Dan Pei’, Wei Zhang, Feifei Li

Alibaba Group*

Zhejiang University®

Tsinghua University

{tianwu.sch,ouyangqianyu.oyqy,lizi,qingzhi.lzp,longcheng.zlc, yunxing.zyj,suqing.sq}@alibaba-inc.com
{yutianhuan.yth,claude.yy,jianhong.hjh,mingyan.zc,wenbo.wb,zhenghanbang.zhb,xulunfan xlf}@alibaba-inc.com
{zhikuan.psc,binwu.wb,xiao.hx,liye li,j.tan,sh.wang}@alibaba-inc.com
peidan@tsinghua.edu.cn,{zwei,lifeifei}@alibaba-inc.com

ABSTRACT

Internet services supported by large-scale distributed systems have
become essential for our daily life. To ensure the stability and high
quality of services, diverse metric data are constantly collected and
managed in a time-series database to monitor the service status.
However, when the number of metrics becomes massive, existing
time-series databases are inefficient in handling high-rate data
ingestion and queries hitting multiple metrics. Besides, they all lack
the support of machine learning functions, which are crucial for
sophisticated analysis of large-scale time series. In this paper, we
present Lindorm TSDB, a distributed time-series database designed
for handling monitoring metrics at scale. It sustains high write
throughput and low query latency with massive active metrics. It
also allows users to analyze data with anomaly detection and time
series forecasting algorithms directly through SQL. Furthermore,
Lindorm TSDB retains stable performance even during node scaling.
We evaluate Lindorm TSDB under different data scales, and the
results show that it outperforms two popular open-source time-
series databases on both writing and query, while executing time-
series machine learning tasks efficiently.

PVLDB Reference Format:

Chunhui Shen, Qianyu Ouyang, Feibo Li, Zhipeng Liu, Longcheng Zhu,
Yujie Zou, Qing Su, Tianhuan Yu, Yi Yi, Jianhong Hu, Cen Zheng, Bo Wen,
Hanbang Zheng, Lunfan Xu, Sicheng Pan, Bin Wu, Xiao He, Ye Li, Jian Tan,
Sheng Wang, Dan Pei, Wei Zhang, Feifei Li. Lindorm TSDB: A
Cloud-native Time-series Database for Large-scale Monitoring Systems.
PVLDB, 16(12): 3715 - 3727, 2023.

doi:10.14778/3611540.3611559

1 INTRODUCTION

Nowadays, a large-scale service is usually built atop tens of thou-
sands of micro-service applications and physical machines, such

*These authors contributed equally to this work.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
doi:10.14778/3611540.3611559

3715

Table 1: Performance indicator monitoring workloads in two
real-world monitoring systems

Sys-A Sys-B
No. of tags per timeseries 14 13
No. of total timeseries > 1 billion 0.5 billion
No. of daily active timeseries 0.6 billion 0.4 billion
data point sampling interval ~ 15s ~ 2h 15s ~ 2h

200 million
80% in [1h, 6h]
0.1 ~ 6 million

150 million
80% in [1h, 3h]
1 ~ 20 thousand

No. of data points per second
time range in a query
No. of timeseries a query hits

that sustaining the reliability of the service becomes extremely
challenging. To address this issue, monitoring systems play an
indispensable role, which constantly collect massive and diverse
metric data to monitor the status of the entire service. They pro-
vide real-time analysis on the metric data to identify performance
issues (e.g., via diagnosis and alerting) or to prevent such issues by
triggering actions in advance (e.g., resource scale-up).

The metric data handled by monitoring systems is inherently a
type of time-series data, where a metric (e.g., a machine’s CPU us-
age) is modeled as a timeseries. A timeseries consists of a sequence
of data points collected over time, and each data point contains a
timestamp and a field value. Each timeseries is attached a set of
tags, which collectively describe different attributes of a metric.
For example, a CPU usage metric usually contains three tags —
datacenter, region, hostname. In a large-scale service, massive time-
series are generated from a variety of data sources: performance
indicator metrics (e.g., CPU, memory and network usage) are from
each host or container; applications-oriented metrics (e.g., request
rate and response time) are from each micro-service. Typically, an
e-commerce service contains billions of timeseries and generates
hundreds of millions of data points every second. At such a scale,
it is extremely challenging both to write the data points into the
monitoring system and to analyze them in real time.

To help characterize the traits of metric data and understand
the difficulty of handling them, we study two application perfor-
mance monitoring systems from our real-world businesses. Table 1
lists the timeseries workload statistics from these systems, namely
Sys-A and Sys-B. Both systems collect metric data at very high
rates, 200M and 150M points per second, respectively. Meanwhile,
tag cardinalities are large in both systems, while some tags have

https://doi.org/10.14778/3611540.3611559
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611540.3611559
http://crossmark.crossref.org/dialog/?doi=10.14778%2F3611540.3611559&domain=pdf&date_stamp=2023-08-01

thousands of distinct values. The combination of the tags (e.g., more
than ten tags per timeseries in Table 1) results in billion-scale time-
series. More than 60% of timeseries are daily active (i.e., have newly
arrived data points). Consequently, it requires high data ingestion
capacity of underlying monitoring system, especially when active
timeseries are massive. In addition to data ingestion, the large scale
of timeseries also complicates the query processing. For example, in
Sys-B, a single query hits more than a thousand timeseries, whose
data points are retrieved for aggregative analysis. Even worse, this
number reaches a million in Sys-A.

In practice, time-series database (TSDB) is used as the backbone
of above monitoring systems to manage metric data and support
queries [9]. However, we observe that it is highly inefficient for
existing TSDBs to handle data ingestion and queries over massive
timeseries. Besides, they all lack the support of machine learning
(ML) functions, requiring prohibitive efforts to implement complex
ML algorithms on time series (e.g., anomaly detection) and maintain
corresponding services externally. In a nutshell, existing TSDBs are
unable to fully meet the needs of monitoring systems in large-scale
Internet services, facing four major challenges as follows:

C1: Low write throughput for massive timeseries. When writing
data points into a TSDB, the set of tags for the target timeseries
is given to the database as well. A common approach to dealing
with these tags is to create a forward index, whose index entry
maps the tag set to a timeseries id, i.e., a unique identifier internally
used by the TSDB to distinguish timeseries. Since each index entry
contains many tags (e.g., over ten in Table 1), the footprint of the
forward index will easily be overwhelming when a large number
of timeseries are managed. This causes a high-cardinality problem,
which makes TSDB unable to accommodate the entire index in
memory due to cost constraints, leading to low write throughput
from memory swapping during index lookups. Existing TSDBs,
such as InfluxDB [18] and TimeUnion [40], use conventional cache
mechanisms (e.g., Block Cache, MMap) to accelerate on-disk index
accesses. However, these mechanisms do not exploit the traits of
time series, hence still achieve unsatisfactory efficiency.

C2: High latency for queries that hit massive timeseries. A TSDB
usually processes a query in two steps: first, given tags and time
ranges, qualified data points from target timeseries are retrieved
from the storage; second, computations are performed on these
data points. In a large monitoring system, the first step usually
hits a huge number of timeseries (e.g., reaches a million in Table 1).
We notice that hit timeseries are usually further grouped by a
certain tag for subsequent computation. However, existing TSDBs
can not efficiently obtain tags of the hit timeseries from a large
number of index entries. For the second step, the computational
frameworks in existing TSDBs are not well parallelized. For example,
TimescaleDB [23] cannot process data points in different partitions
in parallel when asked to group data by a non-primary tag.

C3: Lack of advanced time series analysis capability. In a real-
world service, its workload may vary dynamically over time. Hence,
for the underlying monitoring system, rule-based analysis on met-
ric data usually fails to recognize performance issues precisely.
As a solution, practitioners have turned to machine learning algo-
rithms for time series analysis in order to improve the precision

3716

of detecting and localizing performance issues. However, existing
TSDBs haven’t fully integrated ML-based time series analysis. Con-
sequently, users have to employ an external Al platform to handle
tasks such as algorithm development, model training and infer-
ence. This not only complicates the overall architecture, but also
introduces additional latency and data synchronization problems.
Although some databases have supported ML-based data analy-
sis [16, 28, 30], they do not optimize the execution process of ML
algorithms for time series data, leading to poor performance.

C4: Inefficient adaptability to scale time series management. The
number of timeseries in the monitoring system is continuously
increasing as the business grows, where the quantities of both
micro-services and machines expand along with more fine-grained
metrics being monitored [35]. The underlying TSDB is required
to continuously scale up to cope with such demands. However,
existing TSDBs usually need to redistribute data when scaling out
a new node, which is prohibitive on the consumption of both re-
sources and time. One major reason behind this is that the compute
and storage resources are tightly coupled. Currently, distributed
TSDBs [4, 37] often have a shared-nothing architecture, where each
node excursively manages its own memory and disk space. When
adding nodes to the cluster, they all suffer from high I/O pressure
due to massive data migration. Although some TSDBs [15, 40] de-
ploy a shared storage, this shared storage acts more as a cold storage
layer to reduce storage costs, rather than improve scaling efficiency.

To address above challenges, we present Lindorm TSDB, a dis-
tributed time-series database that is designed as a powerful back-
bone for large-scale monitoring systems with massive monitoring
metrics. It sustains high write throughput when massive active
timeseries exist. It also supports fast queries and ML-based analy-
sis over massive timeseries. In addition, Lindorm TSDB is able to
retain stable performance even when it encounters node failures or
scaling. Our major contributions are summarized as follows:

o We design Lindorm TSDB, a distributed TSDB combining shared-
nothing architecture and shared storage. It contains a cluster of
compute nodes and a reliable shared storage, which are logically
separated from each other. It partitions data into shards according
to their time and tags, facilitating parallel data query and write. In
a single shard, the optimized index structure and cache strategy
further improves performance. (Target challenges C1/C2/C4;
detailed in Section 4.)

We design an efficient pipelined execution engine for Lindorm

TSDB to support common and important types of queries on

time series data. The execution engine not only parallelizes the

computation into different shards, but also optimizes the com-
putation across multiple timeseries within one shard. On top of
that, users can directly use SQL to perform a variety of queries.

(Target challenge C2; detailed in Section 4.4.)

e We design Lindorm ML, an integrated machine learning com-
ponent inside Lindorm TSDB. It enables users to analyze data
with anomaly detection and time series forecasting algorithms
through SQL, eliminating the effort of operating data and mod-
els externally. More importantly, it takes advantage of Lindorm
TSDB’s data processing capability to achieve higher performance.
(Target challenge C3; detailed in Section 5.)

Table 2: Example of Lindorm TSDB’s data model

Tags Fields
hostname | region | datacenter | timestamp | cpu_user | cpu_sys
host-a ap-1 ap-la 1670398200 10 4
host-b ap-1 ap-la 1670398200 20 11
host-a ap-1 ap-la 1670398210 11 5
host-b ap-1 ap-la 1670398210 21 12

e We conduct extensive experiments on a popular benchmark to
verify the effectiveness of Lindorm TSDB and its major compo-
nents. We compare it with two widely-used open-source TSDBs,
InfluxDB and TimescaleDB. The results show that Lindorm TSDB
is able to achieve higher write throughput as well as lower query
latency compared to these baselines. (Detailed in Section 6.)

2 PRELIMINARIES
2.1 Data Model

Lindorm TSDB models metric data as time-series data in schema-
tized tables. We make the data model consistent with the relational
data model so that users can easily understand it and fit it into
existing systems. There are three types of columns in each table:
tags, fields and timestamp, as illustrated in Table 2. Tags describe
different attributes of the data source that generates the metric
data. A tag is a key-value pair (e.g., (hostname, host-a)). At each
timestamp (e.g., 1670398200), a data source produces various types
of metric data (e.g., cpu_user and cpu_sys), and we refer them as
fields. A timeseries is uniquely identified by one field and all asso-
ciated tags, i.e., cpu_user and cpu_sys above are two timeseries.
A timeseries contains a sequence of data points from the same
field, where each data point is a pair of (timestamp, field value).
For example, in Table 2, the cpu_user values, timestamps and tags
from the first and third row form a timeseries. Here cpu_user is the
field, [(hostname, host-a), (region, ap-1), (datacenter, ap-1a)] is the
tag list, and data points contain (1670398200, 10) and (1670398210,
11). When writing data to Lindorm TSDB, the field, tags and the
target table name are required. If the combination of the given field
and tags is not present in the table, Lindorm TSDB creates a new
timeseries.

2.2 Query Patterns

When querying Lindorm TSDB, filtering conditions that consist of
target fields, tag selectors and a timerange should be provided:

SELECT max(cpu_user), sum(cpu_sys)
WHERE hostname="'host-a' AND timestamp >= '2023-1-1 12:00'

All timeseries that match the tag selectors will be selected, and the
data points in specified time ranges are retrieved for subsequent
computations.

In monitoring systems, the vast majority of queries can be di-
vided into three categories according to their computation patterns:
latest-value query, downsampling query, and inter-timeseries ag-
gregate query. Figure 1 depicts how these three types of queries
are performed, where four timeseries are hit by these queries. For
brevity, the figure shows only a subset of results in downsampling
query and inter-timeseries aggregate query. A latest-value query
refers to retrieving the data point with the latest timestamp for

3717

Inter-timeseries aggregation Latest value

Timeseries 1 @@ @@ @00 00— @
Timeseries 2 @@ @@ 0@ 00— 00— @
Timeseriess 3 @@ @@ @ 0 @® @0 0 @
Down Sample
Timeseries 4 @@ @@ @ 00— 00O
Timestamp: 1 2 3 4 5 6 7 8 9 10

Figure 1: Time series query type

each timeseries, which is important for real-time status monitoring
of systems. A downsampling query groups the data points by a
given time window in each timeseries, e.g., every three data points
in Figure 1, and then the aggregated value such as sum and average
for each window is returned. An inter-timeseries aggregate query
groups and aggregates data points in all hit timeseries by specified
columns, e.g., hostname and timestamp in Table 2, which is similar
to the “group by” operation in relational databases.

In practice, downsampling queries and inter-timeseries aggre-
gate queries are often used in combination. Take Table 2 as an ex-
ample, we may be interested in querying the averages of cpu_user
in each region for every 10 minutes within the last 24 hours.

3 LINDORM TSDB OVERVIEW

Recall that Lindorm TSDB is designed to address the four challenges
discussed in Section 1. Figure 2 shows Lindorm TSDB’s overall
architecture, which contains four major components, i.e., TSProxy,
TSCore, Lindorm ML and Lindorm DFS. Among them, both TSProxy
and TSCore can be scaled horizontally.

Lindorm ML
TSProxy TSProxy
Lindorm SQL Lindorm SQL > Lindorm SQL
Cluster B Cluster Training
Manager o Manager o Driver Model
. " . . . Algorithm ~ Manager
Pipelined Execution Engine Pipelined Execution Engine i

TSCore TSCore
Pipelined Execution Engine Pipelined Execution Engine
TSM TSM TSM TSM
Storage "' Storage Storage " Storage
Engine Engine Engine Engine

$

Lindorm Distributed File System

Figure 2: Lindorm TSDB Overview

Lindorm TSDB partitions data on TSProxy into different shards
according to two dimensions: timeseries identifier and time. Each
shard can be viewed as an independent storage engine exclusively
managed by a single TSCore. A TSCore manages multiple shards
and is responsible for executing data ingestion and query requests
on these shards. Data that belongs to the same timeseries within
a period is stored on the same shard, which facilities query push-
down optimization (Section 4.4). In a shard, data and corresponding

indexes (e.g., Table 3) are first maintained in the memory of the
TSCore they belong to, and later persisted to the shared Lindorm
DFS for storage. Lindorm DFS is a distributed file system that pro-
vides an HDFS-compatible interface. It leverages Alibaba Cloud’s
storage infrastructure, i.e., ESSD [12] cloud disk and Object Storage
Service [13]. This overall architecture (Section 4.1) combines both
shared-nothing and shared-storage designs. It can therefore sustain
both horizontal scalability and the ability for each TSCore to access
any data, ensuring elasticity and high availability at the same time.
In addition, multidimensional sharding strategy (on timeseries iden-
tifier and time) avoids data migration when shards change dynami-
cally, which effectively mitigates system performance degradation
during node scaling (addressing Challenge C4).

In a shard, indexes need to be updated whenever a new timeseries
is created. For fast lookups and maintenance, keeping all indexes in
memory is an ideal choice. However, when the number of timeseries
becomes massive, indexes consume a huge space, which is known as
the high cardinality problem that makes memory bloat. To solve this
problem (addressing Challenge C1), Lindorm TSDB uses a structure
similar to Log Structured Merge tree (LSM-tree) to periodically
flush in-memory indexes into the shared storage and merge them
later. With this hybrid storage scheme, we query an index item
by first looking it up in the memory. If it misses in memory, we
then access the shared storage. Since the access to shared storage is
significantly slower, we apply a tailored cache policy for speeding
up (Section 4.3). Moreover, considering many historical timeseries
are inactive, we use a time partitioning mechanism to boost the
memory utilization (Section 4.3).

To allow users to easily query timeseries, Lindorm TSDB sup-
ports SQL syntax. As introduced in Section 2.2, a single SQL state-
ment often involves multiple timeseries and conducts aggregate
operations in two dimensions, i.e., by time and by tags. Since data
points from the same timeseries resides on the same shard and differ-
ent timeseries resides on different shards, we propose a pipelined
execution engine (Section 4.4) that supports computation push-
down (addressing Challenge C2). This pipelined execution engine
pushes down the query to all shards where hit timeseries are lo-
cated, and completes the scanning of multiple timeseries in parallel.
It then aggregates values back from the shard to TSCore, and assem-
bles the partial results from each TSCore as the final results. During
this process, once aggregated values are computed, we can skip
loading and transferring massive original data points, saving con-
siderable memory and network resources. To further speed up the
aggreation within one timeseries, we employ a pre-downsampling
mechanism (Section 4.4) that reduces retrievals and computations
on original timeseries data.

Apart from above designs, we also propose Lindorm ML (Sec-
tion 5), which integrates machine learning algorithms (e.g., anomaly
detection, time series forecasting) inside Lindorm TSDB. Lindorm
ML combines the data governance capabilities of a database and the
data analysis capabilities of machine learning algorithms. It allows
users to directly train machine learning models inside the database
via SQL, and using these models to make online inferences. All
data and model computations are in the database in both phases. In
addition, we utilize Lindorm TSDB’s features such as timeseries lay-
out and query push-down to achieve batched, distributed parallel

3718

and near-data training and inference optimizations, thus enabling
efficient time series data analysis (addressing Challenge C3).

4 SYSTEM DESIGN
4.1 Distributed Architecture

Lindorm TSDB exploits a distributed architecture that combines
the best of shared-nothing and shared-storage. In particular, shared-
nothing architecture makes the database horizontally scalable, while
the cloud-native shared storage gives elasticity and high availabil-
ity to the database. The time series data is physically stored in the
reliable shared storage. When scaling the TSDB (e.g., adding or
removing a node), the downtime can be minimized since no data
migration is required, improving to the quality of service.

Our logical sharding strategy shards time series data according
to two dimensions: time and timeseries identifier (the identifier
is uniquely determined by a set of tags and one field). For a data
point, we first determine the shard group assignment based on its
timestamp. A shard group contains multiple shards that all manage
data points from the same time range (0, t1]. Data points are then
routed to shards in the group based on their identifiers’ hash values.
When the number of database nodes changes (e.g., scales out), the
number of shards needs to change as well, i.e., a new shard group
will be automatically generated. This design avoids the massive data
migration from data redistribution. As shown in Figure 3, when
the number of shards increases at time T, a new shard group is
created to manage all data generated after T, while all previous
shard groups remain unchanged. In this way, the historical data
points are still in their original shards, so that they do not need
migration. We observe that monitoring systems rarely query and
write historical data, and it is worthy to not change distribution of
historical data for a stable system performance.

Timeseries

- — TS Prox

(Tags, Timestamp) © Ay
Route TS to target shard

According to hash & timestamp

: N hard-1 hard-2 hard-
Aftor T Shard1 Shardk2, Shard:3,
1
Shard-group-2: E i i I i ! I i
Shard-1, 2, 3 ! i ! i ! i
\ i \ ! \ J

_______ 4 i —— - SN

Expansion time: T

I
1
Before T i
Shard-group-1: \

Shard-1, 2
i 1 i
B B
Shared - R =
Storage shard] shard] shard J

Figure 3: Lindrom TSDB sharding (arrows with different col-
ors mean different timeseries)

Next, we discuss how Lindorm TSDB organizes data physically.
The newly ingested data to a shard is first written to the Write
Ahead Log (WAL) on the shared storage, and then to the memory
on TSCore. Periodically, the data in memory is flushed to the shared

storage. The mapping relations between shards and TSCores are
stored in Apache ZooKeeper [2] as metadata. In this manner, com-
pute and storage can be separated. TSCores only need to read from
and write to the shared storage, and each node is able to access
all timeseries as well as the metadata. If one TSCore fails, other
active nodes can instantly take over its requests. In this case, the
metadata needs to be updated, and then the unflushed data in the
failed node’s memory is restored on the active node using WAL.

With the help of the distributed architecture above, both query
and write requests can be executed in paralle] on multiple TSCores,
bringing high efficiency. When ingesting the data, each data point
is routed to the corresponding TSCore, and then be written to the
shard. In a query, we first determine whether this query can be
routed to certain shards according to the query conditions, e.g., the
query carries a primary key or a complete tag set. Otherwise, the
query is broadcast to all TSCores, each of which executes the query
on all shards managed by it.

4.2 TSM Storage Engine

Lindorm TSDB employs an LSM-Tree-like (Log Structured Merge
Tree) storage optimized for time series data, which we call TSM
(Time Structured Merge Tree) [19], as shown in Figure 4. By taking
the characteristics of time series data into account, TSM optimizes
the WAL writing, memory organization, compression algorithm,
and compaction policy over standard LSM.

Write Request Read Request

Memtable (Active)
Time Series Data&Index
Switch

Forward Forward Forward

WAL Memtable Index Index Index
Time Series Data&Index Inverted Inverted Inverted

WA AL Index Index Index
Flush&Compaction, TS Data TSData TS Data

Built-in Stream Process
Pre-downsample

Time series specific format and
compaction strategy

Figure 4: Lindrom TSDB TSM storage engine

Similar to most LSM-based storages, data in TSM is first writ-
ten to the append-only WAL to ensure durability and high write
throughput. Then, it is written to the Memtable in memory, and
ready to subsequent accesses. When the Memtable accumulates to
a certain threshold, a flush will be triggered to persist the table into
storage according to the policy: a forward index file Fwdldx file, an
inverted index file InvIdx file and a time series data file TSD file. All
the files (i.e., Fwdldx file, InvIldx file and TSD file) will be periodi-
cally compacted to new files in the background. A TSD file contains
a batch of data chunks (containing timeseries), and it can quickly
locate the timeseries in data chunks according to its timeseries ID.
When a query arrives, the set of timeseries IDs that meet the query
conditions will first be retrieved from the InvIdx files. TSD files
will then be fast filtered out according to the query time range, and
target data chunks will be located by qualified timeseries IDs.

Compaction. TSD file compaction happens in the background
according to certain policies. We use the level compaction strategy

3719

Table 3: Forward and inverted indexes (key = value)

forward index inverted index

hostname=host-a = 1
hostname=host-b = 2
region=ap-1 =1, 2

hostname=host-a®ion=ap-1 = 1
hostname=host-b®ion=ap-1 = 2
1 = hostname=host-a®ion=ap-1
2 = hostname=host-b®ion=ap-1

to deal with TSD files of different sizes. The compaction ensures
that data belonging to the same timeseries and time period only
resides in a single TSD file, which reduces the number of TSD files
to be scanned during a query. During compaction, the TSD files and
indexes will be dropped if their TTLs (Time-To-Live) are set and
have expired. In addition, we mark cold TSD files based on their
timestamps so that Lindorm DFS can automatically transfer them
to cheaper storage medium in the compaction process.

Time series customized compression. We use dictionary encoding,
Delta-of-Delta, XOR, ZigZag, RLE and other compression algo-
rithms to compress timeseries, achieving a up to 15X compression
ratio. Recall that in our data model (Section 2.1), a timeseries is
identified by a combination of field and tags, and a write request
may write multiple timeseries with the same tags. Hence, fields and
tags of different timeseries will contain a large amount of redun-
dant information. Note that values from the same timeseries often
change smoothly over time, which makes compression effective.
We use different compression methods for different data. Lock-free
compression is applied to in-memory data to improve memory uti-
lization. WAL logs are compressed by dictionary compression in
batch way to reduce I/O and improve throughput. In persistent TSD
files, data points from the same timeseries over a continuous period
is composed into a data chunk, which is internally compressed
using Delta-of-delta, XOR, ZigZag, and RLE.

4.3 Index Optimization

Recall that for fast data ingestion, Lindorm TSDB creates forward
indexes in each shard to maintain the mapping between tag sets and
timeseries IDs. At the same time, in order to speed up the lookup
of timeseries at query time, inverted indexes are created to maintain
the mapping of each tag to the set of timeseries IDs that contain
the tag. Table 3 shows forward and inverted indexes that contain
two timeseries, where hostname and region are tag keys.

For the case of monitoring system, massive short-time-span time-
series are created due to the creation or destruction of containers.
These timeseries will soon become inactive and lead to index infla-
tion. To resolve this issue, we partition the data in shard according
to time. Hence, each time partition has its own indexes, which only
manage those timeseries written within a time period. In addition,
we observe that recent timeseries are more favored by queries.
When there are too many time partitions, we provide a lazy loading
mode to only load the latest time partition in high priority, with the
historical ones loaded asynchronously. This significantly reduces
the service interruption time caused by partition loading process.

When writing a timeseries, we first search its tag set in the
in-memory forward index, and then in the disk index files. If the
timeseries does not exist, a new timeseries ID with the tag set will

be created in the Memtable’s forward index. After that, each tag
in the new timeseries is updated in the Memtable’s inverted index.
When the flush is triggered, Both forward and inverted indexes in
the Memtable will be written to the shared storage, generating new
Fwdldx files and InvIdx files, respectively.

To speed up the index lookups on disk, we perform a series of
optimizations. First, the index files are merged in the background
to reduce the total number of files. Second, we add a bloom filter to
each file, through which unrelated files can be filtered out quickly.
The bloom filters are cached in memory to further speed up the
file filtering. Besides, we use a block cache to cache index files in
memory to reduce storage accesses.

Compared to inverted indexes, forward indexes are accessed
much more frequently. During the write process, Forward indexes
are looked up to determine the existence of timeseries. In the inter-
timeseries aggregate query, we also need to obtain the tags of
the timeseries from forward indexes. As a result, the efficiency of
searching forward indexes is crucial. Hence, in addition to block
cache, we design an additional layer of cache for the forward index,
called seriescache. While the block cache is used to cache file data,
the seriescache only stores the mapping between timeseries IDs
and tags that are accessed recently, consuming less space. The
block cache and seriescache both use the LRU policy. In those cases
that the tag lengths vary much or are too long, seriescache may
occupy a lot of memory. Fortunately, we can optionally use the MD5
values instead of the original tags to reduce the memory footprint.
We observe that in real-world monitoring systems, MD5-encoding
seriescache can cache up to 5x of items than the original version.

When looking up inverted indexes, we need to conduct intersec-
tion operations on the posting lists. For example, when the query
conditions are hostname=‘host-a’ and region=‘ap-1’, we first
find the posting lists corresponding to these two conditions, which
are {2} and {1,2}, respectively. Then, we get the intersection of two
lists, which is {2} here. We use RoaringBitmap [26] as the data struc-
ture for the posting list. Compared with integer type timeseries IDs,
bitmap saves much space and supports fast set operations.

4.4 SQL Execution Engine

Lindorm TSDB supports standard SQL syntax, as well as extended
syntax for the downsampling query to simplify the usage. It opti-
mizes the execution of data ingestion by using a fast path based on
the characteristics of time series data’s write pattern. In order to
optimize the efficiency of the downsampling query, it adds a pre-
downsampling mechanism in the process of data writing, which
aggregates the original timeseries in time dimension in advance.
Lindorm TSDB also exploits the fact that timeseries are organized
in groups, and proposes a pipelined execution engine that computes
in a timeseries-wise manner and supports query push down.

Lindorm SQL. Many time series databases are equipped with
dedicated query languages to handle time series data, such as In-
fluxDB’s InfluxQL [20] and OpenTSDB’s [8] HTTP APIL Compared
to these highly customized query languages, SQL has the advan-
tage of ease-to-use and a rich ecology. As a standard language for
databases, most developers can use SQL proficiently without extra
learning efforts. Hence, Lindorm TSDB chooses to fully support

SQL with a relational-like data model. It extends the syntax for time
series queries while still being compatible with ANSI SQL standard.

As discussed in Section 2.2, in monitoring systems, users are
often less interested in individual data points, but more on the
aggregated analysis of multiple data points, e.g., the average metrics
within a minute. Lindorm TSDB extends the standard SQL based
on Apache Calcite [10] with one new syntax sample by for the
downsampling query:

SELECT max(cpu_user) WHERE hostname='host-a'
AND timestamp >= '2023-1-1 12:00' sample by '1@min'

Write optimization. The time series data ingestion process can
be characterized as a bulk repetition of simple INSERT SQL state-
ments. We observe that parsing SQL directly using Calcite results in
very low write throughput, because the SQL parser and execution
plan generator in Calcite consume a lot of CPU cycles. To opti-
mize the performance of above two parts, we design a fast path for
write processing, as depicted in Figure 5. The vast majority of write
statements are very simple, containing only three elements: tag
set, timestamp, and field value. It is very easy to parse them even
without the sophisticated parser in Calcite. Therefore, we have im-
plemented a small parser that only handles simple write statements,
and it is only responsible for parsing out the time series related
information. This parser is invoked first upon Lindorm TSDB re-
ceives a SQL statement. If the parsing is successful, the data points
are bypassed Calcite and sent directly to the execution engine, oth-
erwise it will continue to go through Calcite as normal. We observe
that the write throughput in fast path mode is 15x higher than that
in Calcite path mode. In addition, SQL prepare statement can be
used for batch write optimization in clients. Our tests have shown
that by combining the fast path and prepare statement execution,
we can achieve 20X of write throughput improvement.

G Original Calcite

[Avatica Server]

[

(Lindorm SQL Meta]
T

Built-in Parser

G Extending Calcite or customized implementation

Calcite Insert

DownSample Query

Simple Executor

Insert Parser

Executor

Complex Executor Lindorm TSDB Adapter

[Optimizer] [Schema API]

Planner & Executor

Table API

Figure 5: Lindorm TSDB write path optimization

Query optimization. In monitoring systems, the execution pro-
cess of a typical time-series aggregate query can be divided into
three steps:

(1) Find the timeseries that meet the predicates.

(2) Perform a ‘sample by’ operation on each timeseries to ob-
tain the aggregated values of each timeseries on the time
windows.

(3) Perform a ‘group by’ operation on all the aggregated values.

In order to improve the execution efficiency of the aggregate query,
Lindorm TSDB takes advantage of the distributed storage of time
series data and optimizes from two aspects: pre-downsampling and
pipelined execution engine.

Pre-downsampling. A naive approach for the downsampling query
‘sample by t’ is to: scan each related data points, divide them into
different t-time windows according to timestamp, and then com-
pute the aggregated value for each window. The complexity of
this approach is linear to the number of data points. When deal-
ing with high-frequency sampling, it has to scan a considerable
number of original data points. To solve this problem, we use
a pre-downsampling mechanism when writing data points. Pre-
downsampling means that the downsampled values are calculated
during writing and then stored in the database. Pre-downsampling
allows the aggregated values to be extracted directly without calcu-
lation. For example, at write time, the database simultaneously com-
putes the sum of data points every 1, 10, and 60 minutes and stores
them. When the user issues a ‘sample by 10min’ query, the database
can return the result directly without scanning the original data
points. If the user performs a ‘sample by 30min’ query, which is not
within existing sampling rates, the database can also compute the
30min aggregated value using three consecutive 10min aggregated
values. Compared to scanning the raw data, pre-downsampling
eliminates the data scanning and computation to a huge extent.

To minimize the impact on write throughput, pre-downsampling
is not performed when the data is written to Memtable. It only
happens when the Memtable is flushed to shared storage or when
TSD files are merged at compaction. Access to the original data
is very convenient on these occasions, and the computation can
be highly efficient. In addition, the number of pre-downsampled
files will be much smaller than the original data files, which further
improves the query efficiency. Currently, we support a collection
of common operators, e.g., count, first, last, min, max and sum.

Pipelined execution engine. To take advantage of our timeseries
optimized storage and to optimize queries in monitoring scenarios
(e.g., sample by and group by), we propose a pipelined execution
engine below the SQL layer and above the storage layer, which is
shown in Figure 6. This engine is designed as an operator pipeline,
with the lowermost layer being a timeseries scan operator responsi-
ble for finding the specified timeseries from the storage engine, and
the uppermost layer implementing an adapter for Calcite to provide
a row-iterator interface. These timeseries flow between pipeline
operators in the form of multiple rows. At query time, the query
statement goes through Calcite’s syntax parsing in the SQL layer,
bypasses the original Calcite executor (into our customized simple
executor), and finally goes through the entire pipelined execution
engine driven by the row iterator to read data from the storage
engine. In the pipeline of the execution engine, various timeseries
operators can be extended and defined. The difference between
these operators and those in the SQL layer is that they compute the
data in the time series dimension rather than in the row dimension,
and can therefore serve as optimizations for batch computation. As
the name of the pipelined execution engine suggests, the data is
streamed through all the operators in the pipeline and released as
soon as it is processed by each operator, avoiding data dwell and
reducing memory usage. In addition, we have embedded pipelined

3721

execution engine in both TSProxy and TSCore, based on which the
query push-down feature is implemented, allowing some compu-
tations to be distributed and parallelized among multiple TSCore
nodes. In addition, the pipelined execution engine can also process
queries in parallel between multiple shards within one TSCore and
between multiple timeseries to further improve query performance.

SELECT device_id, region, time, last(temperature) AS temperature FROM sensor SAMPLE BY 5m;

f

SQL Layer

DownSampleOp

Row

Rowlterator
ipelined Execution Engine|
SeriesComputeOp
SerisScanOp
—————

I _ J
QMJ
G

fsipelined Execution Engine|
SeriesComputeOp ‘

SerisScanOp
A ——

TSCore A

TSProxy B TSProxy C

/

Pipelined Execution
Engine

TSCore B

Pipelined Execution
Engine

TSCore C

Figure 6: Lindorm TSDB SQL query overview

Figure 7 shows the internals of the pipelined execution engine.
As can be seen, the timeseries scan operator, located at the bottom
of the pipelined execution engine, takes data input from the lower
layers. The data input can either be the network RPC (from TSProxy
to TSCore) or the storage 10 from the storage engine (due to query
push down). The upstream operators of the timeseries scan operator
can be divided into two categories according to whether downsam-
pling is required, including the commonly used downsampling type
of aggregation (DSAgg) and interpolation (Filling) operators, and
non-downsampling type of operators such as obtaining the rate
of change (Rate) and obtaining the difference (Delta). In addition,
upstream of these operators, other operators that can be used for
cross-time series aggregation are implemented to meet the needs
of a wide variety of time series processing.

5 LINDORM ML

In this section, we introduce Lindorm ML, a machine learning
component integrated into Lindorm TSDB, to enable advanced
time series analysis. It leverages SQL syntax extensions to provide
Lindorm TSDB with sophisticated algorithms for anomaly detection
and forecasting of timeseries. Figure 8 illustrates the simplicity of
using Lindorm ML, where users can still interact with Lindorm
TSDB through SQL. Firstly, users can train a machine learning
model, e.g., an anomaly detector, by specifying an extended CREATE
MODEL syntax together with predicates that filter the data from
Lindorm TSDB. Then, they can use another extended SQL syntax
to perform inference with the trained model.

As an internal service in the database, Lindorm ML accepts the
model training request forwarded by the TSDB node and takes
on the main control logic to drive the model training process in
the database. The inference service is provided directly by the

SQL Iterator
Rowlterator

LimitOp

Cross time series process |

;
'
'
1 ’ AggOp
:
'

| RPC Network 10 | | Storage 10 |

Figure 7: Lindrom TSDB pipelined execution engine

TSDB node, without the participation of Lindorm ML, thus reusing
the high availability and scalability of the TSDB services natu-
rally. In addition, the management of model data and metadata is
shared between Lindorm ML and TSDB nodes through the under-
lying distributed file system and ZooKeeper. Lindorm ML utilizes
TSDB’s distributed storage and query of time series data to propose
a model partitioning design and implementation. A user-created
logical model actually consists of many physical models, which
correspond to different timeseries data. These physical models are
divided into model partitions according to the partitioning of the
timeseries. This design brings the ability of using the query push-
down technology of TSDB execution engine to enable the model
training and inference pushdown, further enabling the distributed
parallel, near-data training and inference optimization.
Algorithm support. We support popular statistical and deep learn-
ing based time series anomaly detection and forecasting algorithms
(e.g., ARIMA[6], DeepAR[33], TFT[27]) provided by open source
algorithm packages. Further, we support our in-house online al-
gorithms that support real-time anomaly detection [17]. All these
algorithms are uniformly managed by the Lindorm ML plugin on
the TSDB node.

v

& 1. CREATE MODEL Lindorm TSDB
CREATE MODEL model_name Nodes CREATE MODEL
FROM (select * from o Lindorm ML
TASK TIME_SERIES_ANOMALY_DETECT SQL Func In-DB trainin,
ALGORITHHM OneShotSTL
model management
Lindorm ML
Plugin

2. Model inference using InferFunc save model 1 T load data/model
SELECT anomaly_detect(field_name, model_name)
FROM table SAMPLE BY 0; [(model parttion-1] (model panmon-zj] [((model metadata]}

\ Lindorm DFS ZooKeeper

Figure 8: Lindrom ML overview

3722

5.1 In-Database Training

Figure 9 depicts the Lindorm ML training procedure. TSProxy on
the TSDB node receives the user’s CREATE MODEL command and,
after partially decoding the SQL syntax, delivers it to the Lindorm
ML node in the same cluster. The SQL query is then fully parsed
by Lindorm ML. The CREATE MODEL statement executes in two
steps: First, a model management module generates the model’s
metadata, including the model name, task, algorithm, and so on
and persists it in ZooKeeper; then, a train() internal SQL function
call is sent back to the TSProxy that performs the model’s train-
ing process. By design, the training function as the TrainingOp
operator of the TSDB pipeline can be pushed down to the TSCore
nodes for distributed execution. Before entering the training op-
erator TrainingOp, the pipelined execution engine processes the
data in two steps: the SeriesScanOp operator extracts relevant
features and the PreProcessingOp operator performs the neces-
sary data preprocessing. In Lindorm TSDB, the SeriesScanOp,
PreProcessingOp and TrainingOp operator all process each in-
dividual timeseries separately, thereby naturally satisfying the re-
quirement of input data for the time series machine learning algo-
rithms (e.g., anomaly detection and forecasting).

The model management module Mode1Manager in the Lindorm
ML plugin manages the model partitioning, persists the trained
model data to Lindorm DFS, updates the model metadata stored in
ZooKeeper (e.g., the training progress, evaluation metrics).

When the training operators are pushed down to multiple TSCore
nodes for execution, the physical models trained from the timeseries
on one TSCore node naturally forms a partition. The advantage of
this way is that it is easy to adapt to the scenarios of adding/deleting
and failover of TSDB nodes. If the training operator is not pushed
down but executed on TSProxy, the physical models will not be
partitioned. In this way, multiple timeseries data are cached in the
training operator, thus enabling batch training and improving effi-
ciency. In summary, utilizing the distributed storage of TSDB data
and the operator pushed-down technique enables Lindorm ML’s
batch, distributed parallel and near-data training optimization.

CREATE

CREATE Parser MODEL
MODEL l SQL Layer| | Forawrding to l

Pipelined Execution Engine || < | (TrainingDriver) (Model Manager
SELECT train(model_name, ...);
Query pushdown 1 TSP 1
TrainingOp J- AlgoManager Pipelined
BatchRows Execution
(PreP ingop) [Engine :
BatchRows 1 Lindorm ML
_ Lindorm ML Plugin
\ CSeriesScan0p_J),
Shard-3
series-1 || series-2 Shard-2
K —— TSCore B
TSCore A < Generate model metadata
Persist model data l l Update mod}l\
[[model partition-1] [model partition-z]] model metadata
Lindorm DFS ZooKeeper

Figure 9: Lindrom ML In-Database Training

5.2 In-Database Inference

Unlike the training process, inference can be done entirely on the
TSDB node. The SQL inference function called by the user (e.g.,
anomaly_detect()) is also a TSDB pipelined execution engine oper-
ator that can be pushed down and executed. Similarly, before the
inference function InferenceOp obtains its input data, the data is
first processed by the timeseries scan operator SeriesScanOp and
the preprocessing operator PreProcessingOp at the pipelined exe-
cution engine layer. The inference operator InferenceOp also calls
the Lindorm ML plugin, which finds the corresponding model and
algorithm from the model metadata according to a user-specified
model name. When loading a model, the model partition corre-
sponding to the input data is found according to the same time-
series routing rules. As with the training process, batch, distributed
parallel and near-data inference optimization can be achieved when
multiple TSCore nodes are involved in the inference function.

5.3 Model metadata management

The metadata of models is maintained in ZooKeeper, to be con-
sistent with the way that TSDB manages the metadata of tables.
We have extended the implementations of the Schema and Table
in the SQL layer, so that the model metadata can be queried as if
they were tables. We also encapsulate the syntactic sugar “SHOW
MODEL(S)” statements to simplify its usage.

6 EVALUATIONS

We evaluate Lindorm TSDB in four aspects. We first compare Lin-
dorm TSDB with two popular open-source TSDBs on write (Sec-
tion 6.2) and query (Section 6.3) performance. Then, we evaluate
the efficiency on time-series machine learning tasks of Lindorm ML
(Section 6.4). Finally, we study the contributions of the main com-
ponents in Lindorm TSDB to the overall performance (Section 6.5).

6.1 Experiment Setup

We conduct experiments on five Alibaba Cloud Elastic Compute
Service (ECS) [14] servers, with efficient cloud disk (ESSD) [12]
mounted as the disk for each server. We deploy the TSDBs on four
servers, each of which has 16 cores and 64GB RAM. The fifth server
runs as a client to generate writes and queries, which has 32 cores
and 128GB RAM.

Comparison databases. For the end-to-end performance com-
parison, we choose two representative and open-source TSDBs,
InfluxDB and TimescaleDB, as baselines. InfluxDB is a very popular
TSDB, ranking first in DB-Engines Ranking [36]. TimescaleDB is an
open-source TSDB with both its standalone and distributed version
available. Meanwhile, benchmark results show that TimescaleDB
has excellent performance [22]. When evaluating the functions of
the main components in Lindorm TSDB, we turn off the push-down
optimization and the seriescache respectively, and then we study
how Lindorm TSDB works. Finally, we also compare the perfor-
mance of Lindorm TSDB with different number of nodes to verify
its horizontal scalability. In summary, there are five TSDBs deployed
on the ECS servers:

o InfluxDB: single-node InfluxDB.
e TimescaleDB-1: single-node TimescaleDB.

3723

e TimescaleDB-3: three-node TimescaleDB.
e Lindorm-1: single-node Lindorm TSDB.
e Lindorm-3: three-node Lindorm TSDB.

Configurations. For InfluxDB, we tune its cache limits to get
the best performance. Specifically, we set its cache-max-memory-
size to 16g, cache-snapshot-memory-size to 4g, and GOGC to 30.
For TimescaleDB, we adjust the configuration for TimescaleDB-3
according to its official guidelines to achieve the best performance.
We deploy an additional access node for TimescaleDB-3.

6.2 Writing Performance Evaluation

We evaluate the write throughput, i.e., the number of data points
ingested into the database per second, of each database at different
timeseries scales. We use the DevOps data generated from Time
Series Benchmark Suite, TSBS [3] as the insertion test data. In
particular, TSBS generates 101 timeseries for each host to represent
different type of system or application metrics, e.g., CPU usage,
number of diskio, number of nginx requests, etc. Each timeseries
contains about 11 tags.

In TSBS, we adjust the number of timeseries generated by chang-
ing the number of hosts, host_scale. The number of timeseries equals
to host_scale * 101. To improve the write performance, we set a
large write batch for each database, i.e., 10000, and we also set the
number of workers to be the number of cores, i.e., 16 for single-node
databases and 48 for three-node databases.

& InfluxDB
= TimescaleDB-1

®Lindorm-1 mLindorm-3

TimescaleDB-3

Q)
s 10
3.8
=]
=
o
£
9 4
=
=2
1000 5000 10000 100000
Host Scale

Figure 10: Write throughput at different timeseries scales

Figure 10 shows the write throughput of each TSDB at different
timeseries scales, where each timeseries contains 12 hours of data
with the data interval as 1 minute. The results show that both single-
node and three-node Lindorm TSDB outperform other baselines.
At the largest scale (i.e., 100000 hosts and 10M timeseries), three-
node Lindorm TSDB has about 10X higher write throughput than
other TSDBs. The first reason is that Lindorm TSDB partitions
the timeseries according to the tags, allowing multiple timeseries
being written in parallel at the same time. Secondly, Lindorm TSDB
creates the seriescache for the forward index, which facilitates
determining the ID of the timeseries specified by tags in a write
command.

As the timeseries scale increases, Lindorm TSDB have much
lower performance degradation than TimescaleDB. Because MD5

encoding method for timeseries tags make the seriescache able to
cache the tags and IDs of numerous timeseries that have recent
data writes. Thus, when host_scale increases to 100000, the number
of accesses to the index in disk does not increase much in Lindorm
TSDB.

6.3 Query Performance Evaluation

In query evaluation, we adjust the DevOps data generation in TSBS
and collect 1 timeseries for each host, where the total number of
timeseries equals host_scale. In this way, one query can hit more
timeseries at the same host_scale. For each query, we restart the
databases, repeat 5 times with different filter conditions, and present
the average latency.

Table 4 describes the three query patterns that we have men-
tioned in Section 2.2. Q1 and Q2 use region as the filter tag, e.g.,
WHERE region=ap-1, and hit host_scale/9 timeseries in each query.
There is no tag selector in Q3 and thus Q3 queries on all timeseries
in the TSDB.

Table 4: Three query patterns

Query Description

Q1 - Latest value The last data points of timeseries in 1 region.

aggregate on each timeseries in 1 region per

2-D li
Q OWnsamping 5 minutes for 1 hour.

Q3 - inter-timeseries | aggregate on all timeseries in each region per 5

aggregate minutes for 2 hours.
Table 5: Q1’s query latency (ms)
InfluxDB Lindorm TimescaleDB
Host Scale

1-node 1-node 3-node 1-node 3-node

10000 22 44 53 237 210

100000 145 90 95 1530 1610
1000000 2083 464 284 211689 13452

Table 5 shows the results for Q1, the latest value query. At smaller
host scales (10,000 and 100,000), InfluxDB and Lindorm TSDB per-
form closely. This is because Lindorm TSDB needs to push down
the query and collect results from all shards or nodes through RPC.
The time consumed by RPC is not negligible when the total la-
tency is low. But at the large scale such as 1M, the query latency
of InfluxDB is 4.48x as high as that of single-node Lindorm TSDB
and 7.33X as high as that of three-node Lindorm TSDB. Because
Lindorm TSDB can push the query down to the storage engine
and can scan multiple timeseries parallelly to get their last data
points. TimescaleDB is not able to utilize the index on timestamp
in the latest value query hitting multiple timeseries [24], resulting
in particularly low efficiency.

For the downsampling query whose results are in Table 6, it
requires more data points computed than Q1. And for an aggrega-
tion query such as Q2 and Q3, the number of returned values is
much smaller than the number of data points involved in the query.
Therefore, Lindorm TSDB’s streaming optimization in the execu-
tion engine reduces a lot of memory footprint and data transfer
consumption. The larger the timeseries scale, the more significant
the advantage of Lindorm TSDB over other TSDBs. Compared with

3724

Table 6: Q2’s query latency (ms)

Host Scale InfluxDB Lindorm TimescaleDB
1-node 1-node 3-node 1-node 3-node

10000 72 89 91 53 67

100000 1046 177 190 502 471
1000000 15261 1165 934 51916 10012

three-node Lindorm TSDB, InfluxDB has 4.5 and 15.3x higher
query latencies at the scales of 100000 and 1M hosts respectively.
And three-node TimescaleDB has 1.5X and 9.7X higher latencies.

Table 7: Q3’s query latency (ms)

InfluxDB Lindorm TimescaleDB
Host Scale
1-node 1-node 3-node 1-node 3-node
10000 559 175 164 91 427
100000 9437 1390 809 898 4296
1000000 111815 21177 6884 43630 30651

The results of Q3 query are shown in Table 7. In a Q3 query,
InfluxDB and Lindorm TSDB need to find region values for all
hit timeseries in order to group them. Lindorm TSDB has the se-
riescache to optimize the process of searching tag values in the
forward index. In addition, Lindorm TSDB is able to push down the
downsampling operator together with the inter-timeseries aggre-
gate operator. This allows the data points to be aggregated by time
window and tags in each shard and TsCore node before they are col-
lected by higher level, significantly improving the efficiency. When
the query hits 1M timeseries, both single-node and three-node Lin-
dorm TSDB outperform other TSDBs by a large margin. It is worth
noting that single-node TimescaleDB outperforms three-node ver-
sion at small scales. by checking the query execution process in
three-node TimescaleDB, we find that the query tasks on partitions
are executed serially. It is probably because region tag is not set as
the partition key, which is hostname. We run queries where the data
are aggregated by hostname and find that computations in partions
are parallel, which verifies our hypothesis. When the timeseries
scale becomes very large, the memory of single-node TimescaleDB
was not enough for such large amount of data, so the performance
drops heavily.

6.4 Advanced Time-Series Analysis Evaluation

We evaluate the efficiency of Lindorm ML in performing time-series
anomaly detection tasks. We still use the data generation approach
in Section 6.3 to prepare data for machine learning tasks. Each
timeseries contains two consecutive segments of data for training
and inference, both of which are one-day long.

In evaluation, we create training and inference tasks at different
timeseries scales (10,000 and 100,000) via SQL provided by Lindorm
ML, where we run OneShotSTL [17] as anomaly detection algorithm.
Meanwhile, we run the same algorithm outside Lindorm TSDB
for training and inference as the baseline. Specifically, we first read
data from Lindorm TSDB and then apply OneShotSTL to them. We
record the time spent in each way respectively.

As shown in Table 8, compared to performing machine learning
externally, Lindorm ML consumes about half the time for both

training and inference at different scales. This is because Lindorm
ML reduces the time-consuming transmission of the raw data. In
addition, various optimizations in the pipelined execution engine
also improve the efficiency of machine learning computations.

Table 8: Efficiency of time-series anomaly detection

Training Time(s) Inference Time (s)

Host Scale
Lindorm ML outside Lindorm ML outside
10000 19.69 36.72 19.89 36.37
100000 198.53 431.66 206.11 391.89

6.5 Ablation Study

We study the contributions of the main modules in Lindorm TSDB
by evaluating Lindorm TSDBs with different configurations:

(1) Turn off the push-down optimization in the pipeline stream-
ing execution engine.
(2) Turn off the seriescache for the forward index.

In addition to experiments on the above configurations, we also
evaluate the write throughput in three cases to investigate the adapt-
ability and scalability: node scaling event, node failure event, and
deployment with different cluster size. We use the data generation
method in Section 6.3, i.e., one timeseries on each host.

Table 9: Ablation study on the push-down optimization

Q3 query latency (ms)

Host Scale
with push-down ~ w/o push-down
10000 900 2256
100000 7525 25569
1000000 94082 322840

To investigate the effectiveness of push-down optimization in
Lindorm TSDB’s pipeline streaming execution engine. We perform
Q3 query on three-node Lindorm TSDB with and without push-
down optimization respectively. The results are in Table 9. The
query aggregate on data in all timeseries for 8 hours to guarantee a
large computational workload. When push-down optimization is
unavailable, Lindorm TSDB have to collect all data and then finish
inter-timeseries aggregate operation in the proxy level. This leads
to about 2X higher query latency.

Table 10: Ablation study on the seriescache

Write throughput (M/s) Q3 query latency (ms)

Host Scale
with cache w/o cache with cache w/o cache
1000 5.88 4.75 160 189
10000 5.28 3.6 383 485
100000 4.66 1.4 3549 5235

In Table 10, we explore how the seriescache for forward index
improves the performance of Lindorm TSDB. The results show very
large improvement in write throughput from seriescache, between
23.8% to 232%. The seriescache also contirbutes to the efficiency of

3725

Table 11: Write throughput (M/s) of Lindorm TSDBs with
different nodes

Host Scale 2-node 4-node 6-node
10000 5.05 11.55 19.78
100000 5.08 11.14 19.01
1000000 4.64 10.99 18.06
5 3.6
z 49 @
S 48 \- s 35
547 () S 34 AN
£ 46 = £ N
245 i 233 s
g s | g |
Tt N
£ 42 Occurs = Occurs
¥ = ?
4 v 3 v
0 60 120 180 240 300 360 420 0 60 120 180 240 300 360 420

Time (second)

(a) Node failure

Time (second)

(b) Node scaling

Figure 11: Write throughput over time when the database
cluster status changes

Q3 query where tag values are required for grouping timeseries.
With the seriescache, query latencies are reduced by 15.3% to 32.2%.
We compare the write throughputs of distributed Lindorm TSDB
deployed in 2, 4, and 6 nodes to study the scalability of data in-
gestion. The results in Table 11 shows over 100% scalability. At all
timeseries scales, the per-node write throughput is higher when
there are more nodes in Lindorm TSDB. When the number of nodes
increases, a single node manages fewer timeseries, making the data
structures in the storage engine more efficient. For example, most
of accesses to the index in one node cannot be hit in the cache when
data of a large number of timeseries are written to the node. If the
Lindorm TSDB cluster has more nodes, it is possible for those index
entries that are accessed in the disk to be cached in other nodes.
We study Lindorm TSDB’s adaptability to two cases, i.e., single-
node failure event and node scaling event. We provide two stable
traffic data inputs and then manually close one TsCore node and
add two TsCore nodes respectively during data ingestion. Figure 11
displays the write throughput over time before and after manual
operations. When a node goes down (Figure 11a), the write through-
put of Lindorm TSDB slightly drops by 4%. After that, within 30
seconds, other healthy nodes take over the data of the failure node
from the shared storage and the system performance returns to be
stable. When adding new nodes to the database (Figure 11b), there
is no significant change in the write throughput. Because the data
that are written before the scaling does not need to be migrated
with the help of the sharding strategy taking time into account.

7 LESSONS LEARNED

Lindorm TSDB serves several large-scale monitoring systems within
Alibaba and provides external services in Alibaba Cloud. Lindorm
TSDB has undergone many years of iterations of several versions.
During the evolution, we accumulate some business observations
and system design experience summarized as follows:

e In distributed databases, node failure is common, and when a
node crashes in Lindorm TSDB, a healthy node takes over its
shards. However, the new node cannot provide service until it

finishes replaying all records in the WAL. To address this, we
designed an asynchronous WAL replaying mechanism, which
allows the shard to start serving write requests immediately after
it is started. The read service is enabled only after the replaying
is completed to ensure data consistency. This guarantees high
availability of write requests as a priority after shard migration.
With this feature enabled, write service interruption time drops
from minutes to seconds.

The adoption of a schematized multi-fields data model and the
support of SQL syntax not only helps users understand the time
series data model and simplifies its usage, but also facilitates trou-
bleshooting for DBAs. For example, we can use SQL "explain" to
see if the entire execution plan meets expectations. Additionally,
it allows for easy integration with third-party ecosystems.
Enabling the pre-downsampling feature effectively reduces query
latency by 80% in businesses, at the cost of an 8% increase in
storage space. This cost is manageable with the storage tiering
feature in Lindorm DFS. Also, since the computation occurs
during compaction, the additional CPU usage is minimal, at less
than 5%. Compared to instant computing at query time or using
features like Continuous Query [21], resource consumption is
significantly lower.

In its early versions, Lindorm TSDB did not have a pipelined exe-
cution engine. When a large amount of data was queried, all of the
data had to be read out at once and cached in memory for calcu-
lation. This led to memory exhaustion with FullGC and affected
the service, making it difficult to meet the needs of supporting im-
portant business operations, such as the dashboard of Alibaba’s
Global Shopping Festivals. The newly designed pipelined execu-
tion engine solves this problem and improves performance by at
least 10x.

In monitoring scenarios, the latest value query is often used to
check the health status of system. This requires high QPS and low
latency. To address this, we have designed a cache specifically
for this query. The latest value of each timeseries is cached when
queried and will be updated when new data points are written to
that timeseries. After implementing this cache, query response
time was reduced by 85%.

8 RELATED WORK

Time-series database. There are many previous works focusing
on time-series databases. OpenTSDB [8] uses HBase [1], a key-value
database to store time-series data points, where each data point is an
individual data row with rowkey. It leads to low data compression
ratio and access efficiency. InfluxDB [18] develops TSM storage
architecture based on LSM, greatly improving the write throughput.
But it lacks optimization in query execution (e.g., InfluxDB does not
parallelly perform computation on multiple timeseries in one data
partition). TimescaleDB [23] is a Postgres-based TSDB. It mainly
relies on partitioning technology for parallel data ingestion and
query. But its performance drops significantly when executing
the query hitting multiple timeseries. QuestDB [32] is a column-
oriented TSDB showing high single-node write performance, but it
does not offer distributed deployment and scalability. Timon [11],
BTrDb [5] and Peregreen [38] propose novel data structures storing
data points in the same timeseries. They can have fast response

3726

time for aggregate query on data of single timeseries across long
time range, which is not common in monitoring systems (see in
Table 1). Gorilla [31] proposes the delta-of-delta timestamps and
XOR'd floating point values, which are widely used in the existing
TSDBs for data compression. TimeUnion [40] and Byteseries [35]
mitigate the high-cardinality problem by compressing the inverted
index in memory. But they ignore the acceleration of access to
the index on disk. There are also TSDBs designed for Internet
of Things (IoT) scenario, such as DB2 [15] and IoTDB [39]. They
are not efficient for complex tags query in monitoring systems.
To tackle the increasing timeseries scale in monitoring systems,
more and more TSDBs [4, 37] are deployed in distributed way.
They use shared-nothing architecture and suffer from performance
degradation due to data migration in the case of node scaling.

In-Database Machine Learning. To the best of our knowledge, no
existing TSDBs integrate machine learning functions. The existing
systems [7, 16, 25, 30, 34] that support in-database machine learning
are limited to relational data model. Although Oracle ML [30], Azure
Data Explorer [28] and BigQuery ML [16] allows applying time
series forecasting and anomaly detection to time-series data, they
do not optimize the computation based on characteristics of time-
series data. Lindorm ML is inspired by SQL Server’s Raven [25].
It reuses the ONNX RUNTIME [29] inference engine for cross-
optimization on relational and linear algebra. We also utilize open-
source inference engines for specific ML computation.

9 CONCLUSION

In this paper, we first summarize data scales and common query
patterns in large-scale monitoring systems. Then we present Lin-
dorm TSDB, a distributed time-series databases that is designed
for handling massive timeseries in large-scale monitoring systems.
Lindorm TSDB combines shared-nothing architecture and shared
storage to scale nodes efficiently as the number of timeseries in sys-
tems increases. Lindorm TSDB adopts an optimized index structure
with cache and a novel pipelined execution engine to acheive high
write throughput and efficient processing of queries hitting a large
number of timeseries. For better detection and diagnosis of system
performance issues, Lindorm TSDB enables users to analyze data
with ready-to-use anomaly detection and time series forecasting
algorithms through SQL.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable suggestions
and helpful opinions. We would also like to thank Yong Lin, Wei
Zou, Songzheng Ma, Dengke He, Yaguang Li, Yuan Cui, Xiang Wang,
Wenlong Yang, Yang Liu, Qingyi Meng, Xing Jin and Youdong Zhang
who contributed significantly to the development of Lindorm TSDB.

REFERENCES

[1] 2023. Apache HBase. https://hbase.apache.org/. Last accessed: 2023-07-07.

[2] 2023. Apache ZooKeeper. https://zookeeper.apache.org/. Last accessed: 2023-07-
07.

[3] 2023. Time Series Benchmark Suite. https://github.com/timescale/tsbs. Last
accessed: 2023-07-07.

[4] Colin Adams, Luis Alonso, Benjamin Atkin, John Banning, Sumeer Bhola, Rick

Buskens, Ming Chen, Xi Chen, Yoo Chung, Qin Jia, et al. 2020. Monarch: Google’s

planet-scale in-memory time series database. Proceedings of the VLDB Endowment

13, 12 (2020), 3181-3194.

https://hbase.apache.org/
https://zookeeper.apache.org/
https://github.com/timescale/tsbs

[11]

[12]
[13]
[14]

[15]

[16]

[17]

[18]
[19]
[20]
[21]

[22]

[23]

Michael P Andersen and David E Culler. 2016. Btrdb: Optimizing storage system
design for timeseries processing. In 14th { USENIX} Conference on File and Storage
Technologies ({ FAST} 16). 39-52.

Adebiyi A. Ariyo, Adewumi O. Adewumi, and Charles K. Ayo. 2014. Stock Price
Prediction Using the ARIMA Model. In Proceedings of the 2014 UKSim-AMSS
16th International Conference on Computer Modelling and Simulation (UKSIM ’14).
IEEE Computer Society, USA, 106-112. https://doi.org/10.1109/UKSim.2014.67
Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai, Naresh
Chainani, Kiran Chinta, Venkatraman Govindaraju, Todd] Green, Monish Gupta,
Sebastian Hillig, et al. 2022. Amazon Redshift re-invented. In Proceedings of the
2022 International Conference on Management of Data. 2205-2217.

The OpenTSDB Authors. 2021. OpenTSDB. http://opentsdb.net/. Last accessed:
2023-07-07.

The OpenTelemetry Authors. 2023. OpenTelemetry. https://opentelemetry.io/.
Last accessed: 2023-07-07.

Edmon Begoli, Jesis Camacho-Rodriguez, Julian Hyde, Michael J Mior, and
Daniel Lemire. 2018. Apache calcite: A foundational framework for optimized
query processing over heterogeneous data sources. In Proceedings of the 2018
International Conference on Management of Data. 221-230.

Wei Cao, Yusong Gao, Feifei Li, Sheng Wang, Bingchen Lin, Ke Xu, Xiaojie Feng,
Yucong Wang, Zhenjun Liu, and Gejin Zhang. 2020. Timon: A timestamped event
database for efficient telemetry data processing and analytics. In Proceedings of
the 2020 ACM SIGMOD International Conference on Management of Data. 739-753.

Alibaba Cloud. 2023. Alibaba Cloud ESSDs. https://www.alibabacloud.com/help/
en/elastic-compute-service/latest/essds. Last accessed: 2023-07-07.

Alibaba Cloud. 2023. Alibaba Cloud OSS. https://www.alibabacloud.com/product/
object-storage-service. Last accessed: 2023-07-07.

Alibaba Cloud. 2023. Alibaba ECS. https://www.alibabacloud.com/product/ecs.
Last accessed: 2023-07-07.

Christian Garcia-Arellano, Hamdi Roumani, Richard Sidle, Josh Tiefenbach,
Kostas Rakopoulos, Imran Sayyid, Adam Storm, Ronald Barber, Fatma Ozcan,
Daniel Zilio, et al. 2020. Db2 event store: a purpose-built IoT database engine.
Proceedings of the VLDB Endowment 13, 12 (2020), 3299-3312.

Google. 2023. Bigquery ML. https://cloud.google.com/bigquery/docs/bgml-
introduction. Last accessed: 2023-07-07.

Xiao He, Ye Li, Jian Tan, Bin Wu, and Feifei Li. 2023. OneShotSTL: One-Shot
Seasonal-Trend Decomposition For Online Time Series Anomaly Detection And
Forecasting. Proc. VLDB Endow. 16, 6 (2023), 1399-1412.

InfluxData Inc. 2023. InfluxDB. https://docs.influxdata.com/influxdb/v2.6/. Last
accessed: 2023-07-07.

InfluxData Inc. 2023. InfluxDB TSM. https://docs.influxdata.com/influxdb/v1.3/
concepts/storage_engine/. Last accessed: 2023-07-07.

InfluxData Inc. 2023. InfluxQL. https://docs.influxdata.com/influxdb/v1.8/query
language/. Last accessed: 2023-07-07.

InfluxData Inc. 2023. InfluxQL Continuous Queries. https://docs.influxdata.com/
influxdb/v1.8/query_language/continuous_queries/. Last accessed: 2023-07-07.
TimeScale Inc. 2020. TimescaleDB vs InfluxDB. https://www.timescale.
com/blog/timescaledb- vs-influxdb-for-time- series-data-timescale-influx-sql-
nosql-36489299877/. Last accessed: 2023-07-07.

TimeScale Inc. 2023. TimeScaleDB. https://www.timescale.com. Last accessed:
2023-07-07.

3727

[24]

[25]

(39]

[40]

TimeScale Inc. 2023. TimeScaleDB does not use index in the last(). https:
//docs.timescale.com/api/latest/hyperfunctions/last/. Last accessed: 2023-07-07.
Konstantinos Karanasos, Matteo Interlandi, Doris Xin, Fotis Psallidas, Rathijit Sen,
Kwanghyun Park, Ivan Popivanov, Supun Nakandal, Subru Krishnan, Markus
Weimer, et al. 2019. Extending relational query processing with ML inference.
arXiv preprint arXiv:1911.00231 (2019).

Daniel Lemire, Gregory Ssi-Yan-Kai, and Owen Kaser. 2016. Consistently faster
and smaller compressed bitmaps with roaring. Software: Practice and Experience
46, 11 (2016), 1547-1569.

Bryan Lim, Sercan O Arik, Nicolas Loeff, and Tomas Pfister. 2021. Temporal fusion
transformers for interpretable multi-horizon time series forecasting. International
Journal of Forecasting 37, 4 (2021), 1748-1764.

Microsoft. 2023. Azure Data Explorer. https://azure.microsoft.com/en-us/
products/data-explorer. Last accessed: 2023-07-07.
Microsoft. 2023. ONXX Runtime. https://onnxruntime.ai/.
2023-07-07.

Oracle. 2023. Oracle Machine Learning for SQL. https://docs.oracle.com/en/
database/oracle/machine-learning/oml4sql/21/dmcon/time-series.html. Last
accessed: 2023-07-07.

Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro, Qi Huang, Justin
Meza, and Kaushik Veeraraghavan. 2015. Gorilla: A fast, scalable, in-memory
time series database. Proceedings of the VLDB Endowment 8,12 (2015), 1816-1827.
QuestDB. 2023. QuestDB. https://questdb.io/. Last accessed: 2023-07-07.
David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. 2020.
DeepAR: Probabilistic forecasting with autoregressive recurrent networks. Inter-

national Journal of Forecasting 36, 3 (2020), 1181-1191.
Maximilian Schiile, Frédéric Simonis, Thomas Heyenbrock, Alfons Kemper,

Stephan Giinnemann, and Thomas Neumann. 2019. In-database machine learn-
ing: Gradient descent and tensor algebra for main memory database systems.
BTW 2019 (2019).

Xuanhua Shi, Zezhao Feng, Kaixi Li, Yongluan Zhou, Hai Jin, Yan Jiang, Bing-
sheng He, Zhijun Ling, and Xin Li. 2020. ByteSeries: an in-memory time series
database for large-scale monitoring systems. In Proceedings of the 11th ACM
Symposium on Cloud Computing. 60-73.

solid IT. 2023. DB-Engines Ranking of Time Series DBMS. https://db-engines.
com/en/ranking/time+series+dbms. Last accessed: 2023-07-07.

TDengine. 2023. TDengine. https://tdengine.com/. Last accessed: 2023-07-07.
Alexander A Visheratin, Alexey Struckov, Semen Yufa, Alexey Muratov, Denis
Nasonov, Nikolay Butakov, Yury Kuznetsov, and Michael May. 2020. Peregreen-
modular database for efficient storage of historical time series in cloud environ-
ments. In Proceedings of the 2020 USENIX Conference on Usenix Annual Technical
Conference. 589-601.

Chen Wang, Xiangdong Huang, Jialin Qiao, Tian Jiang, Lei Rui, Jinrui Zhang,
Rong Kang, Julian Feinauer, Kevin A McGrail, Peng Wang, et al. 2020. Apache
IoTDB: Time-series Database for Internet of Things. Proceedings of the VLDB
Endowment 13, 12 (2020), 2901-2904.

Zhiqi Wang and Zili Shao. 2022. TimeUnion: An Efficient Architecture with
Unified Data Model for Timeseries Management Systems on Hybrid Cloud
Storage. In Proceedings of the 2022 International Conference on Management of
Data. 1418-1432.

Last accessed:

https://doi.org/10.1109/UKSim.2014.67
http://opentsdb.net/
https://opentelemetry.io/
https://www.alibabacloud.com/help/en/elastic-compute-service/latest/essds
https://www.alibabacloud.com/help/en/elastic-compute-service/latest/essds
https://www.alibabacloud.com/product/object-storage-service
https://www.alibabacloud.com/product/object-storage-service
https://www.alibabacloud.com/product/ecs
https://cloud.google.com/bigquery/docs/bqml-introduction
https://cloud.google.com/bigquery/docs/bqml-introduction
https://docs.influxdata.com/influxdb/v2.6/
https://docs.influxdata.com/influxdb/v1.3/concepts/storage_engine/
https://docs.influxdata.com/influxdb/v1.3/concepts/storage_engine/
https://docs.influxdata.com/influxdb/v1.8/query_language/
https://docs.influxdata.com/influxdb/v1.8/query_language/
https://docs.influxdata.com/influxdb/v1.8/query_language/continuous_queries/
https://docs.influxdata.com/influxdb/v1.8/query_language/continuous_queries/
https://www.timescale.com/blog/timescaledb-vs-influxdb-for-time-series-data-timescale-influx-sql-nosql-36489299877/
https://www.timescale.com/blog/timescaledb-vs-influxdb-for-time-series-data-timescale-influx-sql-nosql-36489299877/
https://www.timescale.com/blog/timescaledb-vs-influxdb-for-time-series-data-timescale-influx-sql-nosql-36489299877/
https://www.timescale.com
https://docs.timescale.com/api/latest/hyperfunctions/last/
https://docs.timescale.com/api/latest/hyperfunctions/last/
https://azure.microsoft.com/en-us/products/data-explorer
https://azure.microsoft.com/en-us/products/data-explorer
https://onnxruntime.ai/
https://docs.oracle.com/en/database/oracle/machine-learning/oml4sql/21/dmcon/time-series.html
https://docs.oracle.com/en/database/oracle/machine-learning/oml4sql/21/dmcon/time-series.html
https://questdb.io/
https://db-engines.com/en/ranking/time+series+dbms
https://db-engines.com/en/ranking/time+series+dbms
https://tdengine.com/

	Abstract
	1 Introduction
	2 PRELIMINARIES
	2.1 Data Model
	2.2 Query Patterns

	3 Lindorm TSDB Overview
	4 System design
	4.1 Distributed Architecture
	4.2 TSM Storage Engine
	4.3 Index Optimization
	4.4 SQL Execution Engine

	5 Lindorm ML
	5.1 In-Database Training
	5.2 In-Database Inference
	5.3 Model metadata management

	6 Evaluations
	6.1 Experiment Setup
	6.2 Writing Performance Evaluation
	6.3 Query Performance Evaluation
	6.4 Advanced Time-Series Analysis Evaluation
	6.5 Ablation Study

	7 Lessons learned
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

