
Causality Enhanced Graph Representation Learning
for Alert-Based Root Cause Analysis
Zhaoyang Yu1, Qianyu Ouyang1, Changhua Pei2∗, Xin Wang3, Wenxiao Chen4,

Liangfei Su5, Huai Jiang5, Xuanrun Wang6, Jianhui Li2, Dan Pei1
1Tsinghua University; BNRist, {yu-zy20, oyqy19}@mails.tsinghua.edu.cn, peidan@tsinghua.edu.cn

2Computer Network Information Center, Chinese Academy of Sciences, {chpei, lijh}@cnic.cn
3Stony Brook University, x.wang@stonybrook.edu

4Huawei, chenwenxiao3@huawei.com
5eBay Inc, {liasu, huajiang}@ebay.com

6Lingjun Investment, xuanrun wang@163.com

Abstract—Accurate and efficient root cause identification in
online service systems is critical for service stability and user
experience. When a system failure occurs, numerous alerts are
generated, but existing methods fail to effectively integrate all
these multi-modal data to pinpoint the root causes. Moreover,
most existing approaches are inefficient for large-scale online
services due to their high reliance on handcrafted rules and
domain expertise. This paper introduces AlertRCA, an algorithm
for Root Cause Analysis (RCA) based on Alert events. It
utilizes a pre-trained Alert2Vec module to encode multi-modal
alert information into vectors, and implements an RCA-oriented
causality prediction graph attention network (CPGAT) to auto-
matically gauge causal relationships between alerts. Further, we
devise a novel dispersing and aggregating graph neural network
(DAGNN) to identify root causes. Experiments on a real-world
dataset collected from a top-tier e-commerce company reveal
AlertRCA’s superior performance, achieving 83.9% top-1 and
96.8% top-3 accuracy on average. Our codes are available at
https://github.com/NetManAIOps/AlertRCA.

I. INTRODUCTION

The seamless functioning of large-scale online service
systems is essential to people’s daily lives. Due to their
intricate architecture, these systems are susceptible to failures
at any component level, potentially inducing severe business
impacts [1]–[4]. Hence, swiftly and accurately identifying
the root causes of such disruptions and restoring system
functionality is of paramount importance.

System recovery after a failure, typically overseen by
Site Reliability Engineers (SREs), generally involves a three-
step process: anomaly detection [5]–[7], Root Cause Analy-
sis (RCA) [8], and system remediation. Anomaly detection
utilizes monitoring data such as business and performance
metrics [9]–[13], logs [14]–[17], or a combination thereof [18],
[19] to detect if there exist anomalous alerts and aggregates
them into a multi-modal alert. RCA then leverages the alert
information to perform domain- and system-specific analysis
to pinpoint and verify the root cause of a failure, whether soft-
ware glitches or hardware issues due to configuration changes
or malfunctions. With accurate RCA, SREs can promptly
restore the system to its normal state. Focusing on the work in
the RCA phase, the aim of this work is to generate a ranked
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list of potential root causes to be addressed in the subsequent
failure remediation phase.

Despite the numerous RCA methods proposed, they all ad-
here to the same workflow. Initially, they create a dependency
graph between various RCA entities, including metrics [12],
services [20], [21], and alert events. Subsequently, different
models such as GCN [22], GNN [23], Random Walk [24], and
DFS are applied to the constructed graph. Nonetheless, there
are two primary fundamental issues that existing methods do
not adequately address:

• Obtaining a practical and accurate graph that demonstrates
the causal relationship among entities related to the failure,
referred to as a Causal graph in this paper. This is a critical
yet challenging task. Although ideal graphs can be extracted
from traces as shown in previous studies [20], traces are
often unavailable in many online services due to their high
requirements for computational and storage resources. Some
methods, such as Groot [21], attempt to manually construct
the causal graph with the help of domain experts. However,
this approach is neither scalable nor practical when service
upgrades are frequent and the number of graph nodes
increases rapidly. Certain causal inference methods, relying
on metrics [12] or traces [20], are unsuitable for our multi-
modal scenario.

• A deep learning-based method specifically designed for
alert-based RCA scenarios is absent: The considerable
learnable parameters and data-driven mechanism of deep
learning-based methods enable them to learn from historical
events and exhibit superior performance compared to rule-
based methods such as PageRank and DFS. Nevertheless,
there is no method explicitly tailored for alert-based RCA,
significantly limiting their theoretical performance.

To address the above challenges, we propose AlertRCA, a
Root Cause Analysis algorithm based on Alert events. As
illustrated in Figure 1, an alert contains a large number of
extensible key-value pairs to describe suspicious events such
as the time, type, semantic interpretation, status code, etc.
A pre-trained Alert2Vec module is designed in AlertRCA to
extract the semantic vector for the downstream tasks. In order
to circumvent the need for the manual construction of a causal
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graph, we first leverage an automated approach to generate a
complete graph connecting all events, referred to as the Alert
Dependency Graph (ADG) in this paper. Subsequently, we
employ an RCA-oriented Causality Prediction Graphical At-
tention Network (CPGAT) proposed to determine the causality
scores for each link within the ADG. Links with a causality
score of zero are then removed from the graph.

"ServiceClientErrorSpike": {
"startsAt": 1593958909000,
"endsAt": 1593959209000,
"pool": "r1pgwpmtsvc",
"colo": null,
"severity": 143,
"status": "504",
"type": "Error",
"typename": "PayPal_GATEWAY_TIMEOUT",
"indication": "paypal",
"target": "paypal gateway"

}

Fig. 1. Example of the Alert Event.

Utilizing the causal graph learned by CPGAT, we introduce
a novel Dispersing and Aggregating Graph Neural Network
(DAGNN) to identify the root causes. It consists of two main
steps: 1) Using a dispersing and aggregating mechanism to
measure the root cause contribution along with the failure
propagating direction, and 2) Identifying the true root causes
from plenty of suspicious ones with a self-residual structure,
taking into account both the alert events’ own information and
self-loop dependencies. By combining the above components
together, AlertRCA is learned in a supervised manner based on
two real-world datasets, containing respectively 782 business
domain failures and 170 service-based failures from a top-
tier software company over 15 months (Jan 2020 ∼ Apr
2021). It is worth mentioning that such datasets are prevalent
in the majority of online service companies. This can be
attributed to the fact that historical accidents may lead to
substantial financial damages. Therefore, each accident is
thoroughly examined, pinpointed, eradicated, and documented.
The evaluation of these two datasets shows that AlertRCA
reaches 77.4% top-1 and 96.8% top-3 accuracy on the service-
based dataset and 85.3% top-1 and 96.7% top-3 accuracy on
the business domain dataset.

The contributions of this paper are summarized as follows:
• We propose AlertRCA, a Root Cause Analysis algorithm

based on Alert events. AlertRCA is practical and precise due
to several factors: 1) It utilizes widely recognized alert events
as input, rather than challenging-to-obtain trace information,
which may be difficult for smaller companies to access;
2) It avoids the dependence on manually created rules that
denote causal relationships between events; 3) It has been
specifically designed for RCA scenarios.

• We design a novel Dispersing and Aggregate Graph Neural
Network (DAGNN) that extends beyond traditional graph
models by incorporating not only neighboring nodes but also
fault propagation directions and contributions from nodes.
Furthermore, DAGNN is equipped with a Causality Predic-

tion Graphical Attention Network (CPGAT) we propose to
automatically learn causal links between alert events through
an asymmetric attention mechanism.

• Comprehensive evaluations are conducted on two real-world
datasets. The results show that AlertRCA outperforms other
baselines by reaching 83.9% top-1 accuracy and 96.8% top-3
accuracy among a long candidate list on average.

• Besides the real-world datasets, we also evaluate our method
on an open-source dataset. Compared with the state-of-the-
art method [20], we achieve 24.8% and 15.7% improvements
on top-1 accuracy. Our codes are available at https://github.
com/NetManAIOps/AlertRCA.

II. PRELIMINARY

A. Alert Event

To continually monitor the health status of a multifaceted
online system comprising diverse services, each service em-
ploys several anomaly detection mechanisms, including time-
series anomaly detection and log anomaly detection. Heteroge-
neous data are constantly checked, and semi-structured events
are reported if there are anomalies. We call such a kind of
event Alert Event (also written as alert for brevity).

As shown in Fig. 1, an alert contains a set of property-
value pairs based on configured templates, which are different
depending on the locations where the events are generated.
Information in an alert contains various attributes (see Fig. 1),
including event name (ServiceClientErrorSpike), service name
(paypal gateway), start time, end time, status code, anomaly
severity, critical logs, etc. The values of attributes are also
of many types, including number, string, boolean, etc. It is
important to note that our algorithm can process any semi-
structured datasets if they contain the following essential
elements: WHEN (the timing of events), WHAT (a brief
description of events), and WHERE (the location of events).
Utilizing alert event-like data as input for Root Cause Analysis
(RCA) algorithms offers three primary advantages:
• Multi-modal compatibility: Alert events are not limited to

representing anomalies identified by anomaly detection al-
gorithms. They can also record service changes such as code
deployment and system rebooting with minimal effort.

• Comprehensibility: As demonstrated in Fig. 1, alert events
contain sufficient semantic information, making them easily
understandable for system maintainers.

• Resource efficiency: In comparison to raw monitored data
like logs and time-series data, alert events extract only the
most valuable information for RCA. This is particularly ben-
eficial for computing, storage, and bandwidth efficiency in
online services with hundreds of thousands of sub-modules.

B. Service Dependency Graph

In Fig. 1, it is demonstrated that each event encompasses
the service in which it occurs. By integrating this with ser-
vice topology data, typically found in the system Configura-
tion Management Database (CMDB), a Service Dependency
Graph (SDG) can be developed. An example of a potential
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Fig. 2. Illustration of service dependency graph, where an alert in Service E
is the ground-truth root cause.

SDG for a checkout system is depicted in Fig. 2. The con-
struction of an SDG is carried out as described below.

When a failure occurs, the construction of the SDG starts
with an initial event and the corresponding service. By con-
tinuously looking for services that report events and have
dependency relationships with the current services in the
SDG, the SDG will eventually include all possible failure-
related services, their dependencies, and the events reported
on them. In practice, RCA algorithms like PageRank [25]
and RandomWalk [24] can be utilized in SDG with features
extracted from events on services.

Nonetheless, the potential existence of numerous sub-
modules and the possibility of multiple alerts occurring within
a single service make it insufficient to merely locate the root
cause services. This is because it fails to provide specific
information necessary for the subsequent failure remediation
process. Furthermore, conducting RCA solely at the service-
level could potentially lead to inaccurate localization out-
comes. Taking a real-world failure (Fig. 2) as an example,
the root cause of the failure is the code deployment event
on service-E. But, service-B will be identified as the most
likely root cause if only service-level information is considered
because there are two alerts on service-B and the severity of
them is higher.

III. METHODOLOGY

In this section, we present the comprehensive design of
our AlertRCA, with its workflow illustrated in Fig. 3. Before
delving into the specifics, we need to clarify three essential
notations:
• SDG: Short for service dependency graph, an example of

which can be seen in Fig. 2. The graph’s nodes consist of
services, and edges exist only between services, not between
alert events.

• ADG: Short for alert dependency graph, an example is
depicted in the second rectangle of Fig. 3. The graph’s nodes
consist of alert events and edges represent the relationship
between alert events. It is important to note that in ADG,
the edge between events is constructed in a dummy mode.
This means that if there is an edge between Service 5 (S5)
and Service 3 (S3) (represented by black arrows), all events

belonging to S5 will be connected to all events belonging
to S3. Moreover, there are no weights for edges in ADG.

• ACG: Short for alert causal graph, an example is depicted
in the third rectangle of Fig. 3. The distinction between
the ACG and ADG is that in the ACG, all weights for
edges between events are automatically determined by our
algorithm (details in Section III-D), and edges with a weight
of 0 will be removed.

A. Overview

The workflow of AlertRCA is illustrated in Fig. 3. AlertRCA
takes an SDG as input to locate the root cause in four steps:
ADG construction, Alert2Vec, Causality Prediction Graphical
Attention Network (CPGAT) and Dispersing and Aggregating
Graph Neural Network (DAGNN).

Specifically speaking, first, to deal with multi-modal data in
alerts, we need to construct an ADG from the original SDG.
Then, Alert2Vec encodes alerts to vectors expressing semantic
information, called alert vector, based on a pre-trained natural
language model (Section III-C). Third, to help distinguish
between real and fake causal links in the ADG constructed
from the SDG, we design CPGAT to assign each causal link
in the ADG a causality score (Section III-D, Section III-E).
Finally, a graph neural network tailored for root cause analysis,
DAGNN, is used to locate the root cause based on the ADG
with alert vectors and causality scores (Section III-F).

B. Construction of Alert Dependency Graph (ADG)

Constructing a completely accurate causal graph without
resorting to the domain knowledge of experts is extremely
challenging. We devise Alert Dependency Graph, (ADG)
(Fig. 4), a type of intermediate graph between SDG and ACG.
As mentioned earlier, there exist causal links between all pairs
of alerts in ADG constructed from SDG, except those whose
services have no dependencies in SDG. For all alerts within the
same service, causal links are established between each other
in the ADG. It is noteworthy that the edges in ADG do not
represent the final causal relationship and may be completely
unrelated.

ADG has two important properties: (1) constructing ADG
requires only SDG and no additional domain expertise; (2)
the final causal graph we want should be a sub-graph of the
corresponding ADG. Thus AlertRCA locates the root cause
only with ADG as input and requires no manual rule.

C. Alert2Vec

The objective of the Alert2Vec phase is to obtain the
representation vectors associated with alert events. Intuitively,
we propose Alert2Vec to imitate how SREs understand the
alerts. When SREs check the failure and relevant alerts in an
online service system, they read each attribute in the alerts and
then form a general impression.

As shown in Fig. 5, Alert2Vec has two stages, generating
a semantic vector for each alert attribute and compressing all
semantic vectors into one alert vector for each alert. In the
first stage, Alert2Vec uses a pre-trained language model (LM)
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to understand the semantic meaning of each attribute. Here, we
choose BERT [26], a widely used open-source large language
model that can be much easier deployed in a company than a
GPT [27] model. For each attribute k and the corresponding
value v, the key-value sentence is constructed as “k is v”. For
example in the fifth row of the example in Fig. 1, i.e., the
attribute “severity”, the key-value sentence is constructed as
“severity is 143”. Then, we feed these key-value sentences to
the BERT to obtain the semantic vectors of all attributes.

Key-Value Sentences

1st Key-value sentence

2nd Key-value sentence

3rd Key-value sentence

┅

nth Key-value sentence

Input
Alert Event

Key 1: Value 1

Key 2: Value 2

Key 3: Value 3
┅

Key n: Value n

Output

CONCAT
MLP

Alert 
Vector

Fig. 5. Workflow of the Alert2Vec module.

The default size of the semantic vector obtained from LM
is very large for downstream computing. Therefore, in the
second stage, we use a shallow Multi-Layer Perception (MLP)
to compress the semantic vectors in an alert. We concatenate
all semantic vectors in one alert to compress with MLP and
output a domain-specific feature vector called alert vector
with a much smaller size Sm. In this paper, we empirically
set Sm as 100.

The LM helps in two ways: extracting vectors from multi-
modal data to provide multi-modal compatibility and im-
proving the generality of RCA methods taking advantage of

the knowledge from the natural language domain. This is
beneficial in the early stages of a new online service system
when sufficient training data have not been collected yet. It
is noteworthy that all the parameters of BERT is fixed during
the training of our AlertRCA model.

D. Causality Prediction Graphical Attention Network

The objective of the Causality Prediction Graphical At-
tention Network (CPGAT) is to autonomously determine a
causality score for each edge within the input ADG, assessing
the likelihood of a causal relationship between the two events
connected in ADG. We then combine ADG and causality
scores to generate a refined graph which is called Alert Casual
Graph (ACG).

We design CPGAT with the consideration of three obser-
vations that SREs will pay attention to when determining
whether one alert is caused by another. Intuitively, when SREs
check whether a potential causal link A → B (i.e., alert
A causes alert B) actually exists, they will read the alert
information of A and B and then consider the following three
observations:
• O1. The probability of a causal connection between alert

A and alert B can vary significantly depending on the
contextual environment involving other concurrent alerts.

• O2. The historical co-occurrence of alert A and alert B plays
a significant role in determining the likelihood of a causal
relationship between these two alerts.

• O3. The summation of the probabilities for all poten-
tial causal links associated with alert A, denoted as
(
∑

weight(i → A), should be equal to 1.
For O1, it is necessary to extract the feature vector for

each alert in the ADG based on both its own information
and the neighboring information. Thus a graph convolutional
network [28] (GCN) is very suitable for completing the task. In
CPGAT, we use a shallow GCN for feature extraction, because
the direct causality between two alerts usually depends on
their own (or close neighborhood) contexts instead of those
of other alerts. With the features from the GCN, we design a
specific causality measure function a (Eqn. (7)) for causality
score calculation. The higher the score between two alerts, the
more likely they have a causality relationship. The details of
the causality measure function are described in Section III-E.

For O2, we train AlertRCA using failures that have histori-
cally occurred in the system. Since the measurement function



Algorithm 1: CPGAT

1 Input: V , the alert vectors; G, the ADG
2 Output: A causality score, G∗, the ACG
3 Parameters: h = 2, the depth of GCN. β = 0.
4 H = V
5 for i = 1 to h do
6 H = GCN(H , G)
7 end
8 initialize A as empty dict
9 add self-loop edge to each node in G

10 for u, v as the edge in G do
11 x = Hu

12 y = Hv

13 Au,v = â(x, y, β)
14 end
15 combine G and A to generate G∗

16 return G∗

contains learnable parameters, our model can take into account
the historical frequency of co-occurring alert pairs.

For O3, it is necessary to normalize the attention scores of
all in-edges of a certain alert. We propose a novel causality
measure function â (Eqn. (8)) to better model the causality
relationship between alerts. Section III-E will introduce the
method in details.

In a nutshell, Algorithm 1 describes the workflow of CP-
GAT, where Hu denotes the hidden vector of node u obtained
from GCN. CPGAT takes ADG and alert vectors of all alerts
as input and outputs the causality scores between alerts. Then
we combine ADG and causality scores to generate ACG.

E. Causality Measure Function

Here we describe how we design our causality measure
function used in CPGAT. In the first place, we exploit the
following widely used measure functions in graph representa-
tion learning [26], [29], [30]:

a0(x, y) = sum(x · y) (1)
a1(x, y) = sum(v · tanh(x+ y)) (2)

a2(x, y) = sum(x · y)/
√
D (3)

a3(x, y) = sum(xTWy) (4)
a4(x, y) = sum(v · (x∥y)) (5)

where D is the dimension of the input vector.
However, these simple measure functions are not suitable

for root cause analysis (RCA). For example, for alert A and
alert B, the attention score a0, a1, a2 will give the same score
at the link A → B and the link B → A. However, there is
no relationship between “A causes B” or “B causes A.” a3
is an asymmetric attention score but not practical because the
size of the parameter matrix W in a3, D×D, is too large for
training. a4 is a popular asymmetric measure function used
in graph attention networks [31], which can be simplified to

the following formula (the vector v is the learnable parameters
and can be divided into two parts v0, v1 where v = v0∥v1)

a4(x, y) = sum(v0 · x) + sum(v1 · y) = n0(x) + n1(y) (6)

where n0(x) = sum(v0 · x) and n1(y) = sum(v1 · y).
This simplification indicates that the causality score given

by a4 at each link is the sum of the scores of two nodes on
both sides. However, it brings some troubles into RCA tasks.

Alert X
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Alert U
Hidden Vector 𝑢

(a)

Alert A Alert B

Alert C Alert D
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0.3
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Fig. 6. The dotted/solid lines in Fig. 6a indicate the fake/real causality links.
Fig. 6b shows self-loop attention and normalization.

a4 is not suitable for RCA since it induces an unexpected
potential relationship between causality scores. For example,
as shown in Fig. 6a, there is one real causal link, i.e., Y → Z,
in the ADG. Therefore, a4(x, y) = a4(z, u) = a4(x, u) = 0
and a4(z, y) = 1 are expected. Then we will have:

n0(x) + n1(y) = n0(z) + n1(u) = n0(x) + n1(u) = 0

Then a4(z, y) = n0(z) + n1(y) = (n0(x) + n1(y)) −
(n0(x) + n1(u)) + (n0(z) + n1(u)) = 0 + 0 + 0 = 0. It
contradicts our expectation that a4(z, y) = 1.

In conclusion, these existing measure functions above are
unsuitable for RCA. Inspired by self-attention in Trans-
former [26], we propose a novel casual measure function for
attention mechanism:

a(x, y) =

H∑
h=1

(
∑
i

(
∑
j

Qhijxj) ∗ (
∑
j

Khijyj))/
√
D (7)

where D is the dimension of the input vector and Q,K are
multi-head learnable matrices whose shape is H×Da×D (H
is the multi-head number and Da is the attention dimension,
which is relatively small). In Section IV-D, we evaluated all the
measure functions we mentioned and proved the effectiveness
of our proposed function a shown in Eqn. (7).

According to the definition of the causal link, i.e., A → B
represents that A causes B. The sum of the attention scores
at the in-edges of alert B should be 1 to satisfy the mathe-
matical rules of the causality relationship. Thus we propose
a normalization method based on Eqn. (7) to get Eqn. (8).
Besides, we define the self-loop causality score. The self-loop
causality score a(x, x) of an alert whose hidden vector is x
aims to measure the probability that no other alert causes it.
Meanwhile, the self-loop causality score is also an important
factor in determining whether an alert is the root cause (see
Section III-F). Fig. 6b shows an example where there is a 30%
chance that other alerts do not cause Alert B.

On the other hand, we will remove the links whose predicted
causality score is too low to simplify the topology of the ADG.
Therefore we set the causality score as 0 if the attention score



predicted by CPGAT is too low (less than β, a hyperparameter
whose default value is 0). The causality score is:

â(x, y, β) =
max(0, exp a(x, y)− β)∑
z max(0, exp a(x, z)− β)

(8)

where z iterates the hidden vectors of nodes at all in-edges
of the alert that x belongs to and x itself for the self-loop
causality score.

F. Dispersing and Aggregating Graph Neural Network

The primary function of the Dispersing and Aggregating
Graph Neural Network (DAGNN) is to allocate a score, ru,
to every alert present in the ACG generated by CPGAT. This
score signifies the likelihood of a specific alert event being the
root cause behind a particular system failure. The Algorithm 2
shows the process of DAGNN.

Generally speaking, in a failure, if A is the root cause, then
it will satisfy the following three conditions:
• C1. Alert A causes numerous neighbor nodes to be anoma-

lous.
• C2. Few other alerts lead to A. Mostly A is self-looping.
• C3. The higher frequency of Alert A appearing in the history

of system failures, the greater the likelihood of Alert A being
the root cause of the current system failure.
As shown in Algorithm 2, DAGNN first generates a vector

representation, cu (Line 18), for each alert in the ACG that is
able to reflect how the alert satisfies the three conditions above.
And then an MLP with Softmax(·) as the activation function
computes a suspicious score, ru (Line 19), for each alert.
DAGNN uses two special designs to obtain more informative
representations: (1) dispersing aggregating structure; (2) self-
residual structure.

Dispersing aggregating structure: Traditional GAT [31]
aggregates the features of a node’s neighbors in each iteration
with the corresponding scores. This process can be simplified
as the following formula:

x′
j = σ(

∑
i∈Nj

αi,jxi) (9)

where x denotes the features of nodes, σ denotes a neural
network such as MLP, Nj denotes the neighbors of node j,
and α denotes a measure score. And we have

∑
i∈Nj

αi,j = 1.
Recall the definition of the causal link, i.e., A → B represents
that A causes B. To make the node features represent the
information about the C1, DAGNN aggregates for each node
the features of all nodes linking to it at each iteration. And the
weights are the causality scores (Eqn. (8)) from other nodes
to the node receiving the messages:

x′
j = σ(

∑
j|i∈Nj

â(xi, xj , β)xi) (10)

This process, Eqn. (10), is dispersing and aggregating. Be-
cause it can be regarded as two steps. First, the feature of
each node is dispersed to every out-edge except the self-loop
edge according to the corresponding causality score. Second,
the information is aggregated from the in-edges of each node.

Algorithm 2: DAGNN

1 Input: G, the ACG; A, the causality scores; V , the
alert vectors for all nodes in G.

2 Output: r, Root Cause Probability of each node.
3 Parameters: h = 20, the number of layers of DAGNN.
4 x = V
5 for k = 1 to h do
6 xlast = x
7 initialize x as empty dict
8 for u, v as the edge in G do
9 xv = xv + xlastu ∗Au,v

10 end
11 x = MLPk(x)
12 if k < h then
13 x = x+ V
14 end
15 end
16 initialize r as empty dict
17 for u as the node in G do
18 cu = (xu∥Vu) ∗Au,u

19 ru = MLP(cu)
20 end
21 return r

Self-residual structure: DAGNN also proposes a self-
residual structure for C2 and C3. The traditional graph neural
networks use the simple hierarchical structure like Eqn. (9),
which ignores self-loop attention and thus, also gradually loses
the feature of the node itself in the iterations. According to the
physical meaning of self-loop attention, an alert with higher
self-loop attention is more likely not to be caused by other
alerts and thus more likely to be the root cause. Inspired by
this, DAGNN proposes a self-residual structure. Specifically,
DAGNN directly concatenates a node’s feature vector and its
alert vector in the final representation, cu, while multiplying by
its self-loop causality score. This makes cu have information
of the alert (C2), while also reflecting the likelihood of other
alerts causing it (C3). Meanwhile, at the end of each iteration
of DAGNN, we add the alert vector of each node directly to the
corresponding feature vector. In this way, the information from
the shallow layer will contribute to the final representation to
mitigate the over-smoothing.

Finally, a two-layer MLP with Softmax(·) as the output
activation is adopted on c to infer the probability, ru, that a
node is the root cause, called root cause probability. For a
failure, All alerts in the ACG are ranked by their root cause
probabilities in the descending order. SREs can then examine
them one by one.

IV. EXPERIMENTS

We conduct several experimental studies to answer the
following research questions for evaluating AlertRCA:
• RQ1. How effective and efficient is AlertRCA?



• RQ2. How is the performance of AlertRCA in the early
stage of the system, where the training data are insufficient?

• RQ3. Does each main module contribute to AlertRCA?
• RQ4. Can CPGAT and DAGNN work well in other systems

besides the alert-based system?

A. Setup

1) Dataset: We evaluate our model, AlertRCA, for RQ1-
RQ3 on real-world e-commerce system data, serving 185
million active users across 3 data centers with 5000 services.
We use two types of labeled datasets, service-based and
business-based, with 782 and 170 failures respectively from
Jan 2020 to Apr 2021. Each failure is resolved, labeled, and
verified by the SRE team. Each dataset is split 50/50 for
training and testing.

For RQ4, we use DejaVu’s A1 and A2 datasets [20] to assess
CPGAT and DAGNN performance when given metric data
instead of alert metadata. These datasets are from a production
system at a major ISP, with ten failure types. We replace
Alert2Vec with DejaVu’s feature extractor to handle this data,
and use the same training and testing sets for credibility. Only
A1 and A2 datasets are used, due to their singular root causes
per failure, aligning with our model’s training objectives.

2) Baseline: Our baseline approaches include:
• Groot [21]. Groot uses a pre-defined manual rulebook to

construct a causal graph for a failure. Then a customized
PageRank is applied to locate the root cause.

• GrootN. We replace the input of Groot, a causal graph,
with the corresponding ADG. In this way, we evaluate the
performance of Groot in the absence of expert rules.

• PageRank-SDG. It applies the PageRank to the SDG for
service-level root cause localization.

• GCN [32]. Graph Convolutional Network, GCN is a kind
of basic graph neural network. It has been widely used in
node classification. RCA in ADG can be seen as a special
case of binary node classification, which calculates a score
∈ [0, 1] for each alert.

• GraphSAGE [28]. GraphSAGE is an optimized GCN for
the embedding of unseen nodes.

• GAT [31]. Graph Attention Network, GAT introduces an
attention mechanism to improve GCN that assigns weights
to different adjacent nodes.

• DejaVu [20]. DejaVu represents a failure as a graph similar
to our ADG. The difference is that nodes in DejaVu are a
series of metric data, while each node of ADG is an alert.
DejaVu uses GRU [33] and GAT to find the root cause nodes.
To our best knowledge, there is no end-to-end RCA al-

gorithm designed based on the analysis of alert data. There-
fore, we evaluate PageRank at the service level. Some graph
neural networks, such as GCNs [32], GraphSAGE [28], and
GAT [31], are popular and widely used in graph-related tasks
like node classification and link prediction. The BERT [26]
is used in GCN, GraphSAGE, and GAT to transform alerts
into node features. To prove the effectiveness of the RCA
algorithm (CPGAT and DAGNN) in AlertRCA, we evaluate
AlertRCA on a system not generating alert data, and compare

TABLE I
PERFORMANCE OF AlertRCA AND BASELINES, WHERE MC INDICATES

WHETHER THE MANUAL CONFIGURATION IS USED, AND DL INDICATES
WHETHER DEEP LEARNING IS USED.

Model Service-based Business domain

MC DL Top-1 Top-3 Top-1 Top-3

Groot ✓ × 0.743 0.924 0.812 0.955
GrootN × × 0.171 0.488 0.232 0.455
PageRank-SDG × × 0.161 0.253 0.012 0.018
GCN × ✓ 0.293 0.573 0.692 0.853
GraphSAGE × ✓ 0.622 0.781 0.811 0.937
GAT × ✓ 0.122 0.476 0.605 0.792
AlertRCA × ✓ 0.774 0.968 0.853 0.967

its performance with DejaVu, a state-of-the-art RCA method
for time series data.

3) Metric: We use top-1 and top-3 accuracy rates as the
metrics. The top-k accuracy represents the ratio of failures
whose root causes can be found by checking the first top-k
recommendations.

In experiments for RQ4, we replace the Alert2Vec with
the GRU feature extractor in DejaVu to deal with metric
data. Meanwhile, the hyperparameters of AlertRCA are almost
identical to those of Dejavu.

B. RQ1: Effectiveness and Efficiency

Table I shows the results of RCA accuracy of AlertRCA and
baselines. We repeat each experiment five times and present
the average results for eliminating the randomness in gradient
descent. The experiments in other RQs are conducted several
times as well. Except for Groot with the manual rulebook and
service-level algorithm, the top-1 accuracy of AlertRCA out-
performs the baselines by 5.2%∼534.4%, and on the top-3 ac-
curacy, AlertRCA outperforms the baselines by 3.2%∼112.5%.
With domain knowledge, Groot outperforms other baselines
and is slightly less effective than AlertRCA. The popular graph
neural network methods (GCN, GraphSAGE, and GAT) do not
perform well because they aggregate messages from multi-hop
neighbors to form the alert features, which only contain the
information about C1 or C3 in Section III-F. Thus, they lack
the comprehensive information needed in RCA to determine
whether an alert is the root cause. Based on the traditional
PageRank methods that run RCA on ADG, GrootN performs
poorly because there are many fake causal links that should
have been filtered out by manual rules. PageRank is not able
to deal with incorrect causal relationships.

To evaluate the efficiency of AlertRCA, we measure the
training and inference time of AlertRCA without using GPU.
Since the hidden dimension is small in AlertRCA, the average
training time for one failure of AlertRCA is only 12s, and the
average inference time per failure is only 2s, satisfying the
requirement for an online production system.

Conclusion 1. AlertRCA is more effective in locating root
cause alerts even when compared to the RCA algorithm with
manual rules. Meanwhile, AlertRCA is efficient enough to
support RCA in online systems.
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Fig. 7. Performance of AlertRCA, AlertRCA with one-hot encoding, and
Groot.

C. RQ2: Quick-Start

We study how AlertRCA performs when the running time
of the system is not very long. When deploying a new
microservice system in a short time, the collected training data
are insufficient. In practice, Groot has a similar problem: SREs
need much time discussing and designing the rulebook.

To evaluate AlertRCA and Groot in this situation, we sort
the failures of both datasets by time and then use only the first
m(m = 3, 6, 9, 12, 15) months of data for training and testing.
The results are shown in Fig. 7, where One-hot Encoding
AlertRCA replaces BERT in Alert2Vec.

Both the top-1 accuracy and the top-3 accuracy of Groot
drop significantly, 0.105∼0.21, when only three months of
data are used which are insufficient for SREs to organize
a comprehensive set of rules. However, the performance of
AlertRCA degrades only 0.012∼0.14, because the pre-trained
model in AlertRCA has learned extensive semantic knowledge
from a large corpus. One-hot AlertRCA has no obvious per-
formance difference with different data used, as the one-hot
encoder does not require much data to train.

Conlcusion 2. AlertRCA is able to reach a promising
performance after a new microservice system is started in 3
months. Therefore, AlertRCA is a quick-start RCA approach.

D. RQ3: Abalation Study

There are three major modules in AlertRCA, namely
Alert2Vec, CPGAT, and DAGNN. To understand the function
of each module, we evaluate AlertRCA with these modules
removed or replaced:
• BERT
• Causality Measure Functions in CPGAT.
• Dispersing Aggregating Structure in DAGNN.
• Self-residual Structure in DAGNN.

TABLE II
ABLATION STUDY ABOUT MODELS FOR THE NATURAL LANGUAGE

PROCESS IN ALERT2VEC MODULE.

Model Service-based Business domain

Top 1 Top 3 Top 1 Top 3

BERT 0.774 0.968 0.853 0.967
GloVe 0.613 0.871 0.800 0.946
Word2Vec 0.581 0.871 0.813 0.953
Fasttext 0.548 0.839 0.800 0.953
One-hot Encoding 0.548 0.839 0.773 0.940

TABLE III
ABLATION STUDY ABOUT MEASURE FUNCTIONS.

Model Service-based Business domain

Top 1 Top 3 Top 1 Top 3

AlertRCA 0.774 0.968 0.853 0.967

Replace
Attention

by

a0 0.710 0.871 0.827 0.973
a1 0.774 0.903 0.813 0.987
a2 0.613 0.806 0.793 0.967
a3 0.742 0.935 0.773 0.953
a4 0.613 0.871 0.806 0.980

Table II shows how the language model improves the
performance of AlertRCA. BERT outperforms other popular
NLP methods (GloVe [34], Word2Vec [35] and Fasttext [36]
and the simple one-hot encoding), especially in the service-
based dataset.

Conclusion 3. BERT is essential for the Alert2Vec module
to understand the semantics in alerts.

In Table III, we explore how the attention score function
improves the performance of AlertRCA. We compare the tra-
ditional measure functions a0 ∼ a4 mentioned in Section III-E
and the causality score Eqn. (8) adopted in AlertRCA. It
is worth noting that in the business domain dataset, our
causality score improves the top-1 accuracy and lowers the
top-3 accuracy. After analyzing testing cases, we find that
the root cause alerts of some failures rank second or third
when other measure functions are used, and rank first when
the causality score was used. This is because we introduce the
self-loop attention representing the probability that an alert is
not caused by others. When several alerts all cause a failure,
the self-loop attention helps distinguish the alert not caused
by other alerts, i.e., the root cause alert.

Conclusion 4. In RCA, the normalized causality attention
can help to locate the root cause alert more precisely.

We conduct three comparative experiments to study how the
DAGNN contributes to AlertRCA and summarize the results
in Table IV:

1) AlertRCA w/o SS: Remove the self-residual structure. The
alert vector V is not added in each iteration, and only x is
retained in the final representation c.

2) AlertRCA w/o DAS: Remove the dispersing aggregating
structure, where we apply Eqn. (9) in each iteration like
GAT.



3) AlertRCA w/o SA: Remove the self-loop attention and set
Au,u = 1.

These three parts correspond to the three properties listed
in Section III-F (C1∼C3) of the root cause. As can be seen
in Table IV, AlertRCA decreases to some extent on both top-
1 accuracy and top-accuracy (except for the effect of self-
loop attention on top-3 accuracy, which is consistent with the
conclusion above).

Conclusion 5. Compared with the simple hierarchical ar-
chitecture, the self-residual structure, dispersing aggregating
structure, and self-loop attention are crucial to AlertRCA.

TABLE IV
ABLATION STUDY ABOUT DAGNN.

Model Service-based Business domain

Top 1 Top 3 Top 1 Top 3

AlertRCA 0.774 0.968 0.853 0.967

w/o
SA 0.613 0.935 0.806 0.986
DAS 0.451 0.817 0.813 0.942
SS 0.452 0.903 0.720 0.866

E. RQ4: Metric as Input

We investigate whether CPGAT and DAGNN in AlertRCA
are effective on other systems by conducting experiments on
datasets, A1 and A2 in DejaVu [20], from a system generating
time series data instead of alert data.

Table V shows the performance of the two methods on the
A1 and A2 datasets respectively. AlertRCA and DejaVu do not
differ significantly in terms of top-3 accuracy. However, the
top-1 accuracy of AlertRCA outperforms DejaVu by 24.8% in
A1 and 15.7% in A2, which is significant. It is mainly caused
by the following reasons. First, DejaVu uses a GAT-based
structure to aggregate the features for each of its neighbors. As
mentioned in Section III-E, the measure function in GAT (a4)
does not meet the requirements of RCA both on how they are
calculated and how they are normalized. Second, Dejavu feeds
the aggregated feature of each node directly into the MLP for
classification. However, without the self-residual structure, a
node is unable to retain its own information sufficiently when
GAT propagates information, making it more difficult to find
the correct root cause.

Conclusion 6. CPGAT and DAGNN in AlertRCA can work
well in other systems that do not generate alerts.

TABLE V
PERFORMANCE ON METRIC DATASETS

Model Dataset A1 Dataset A2

Top 1 Top 3 Top 1 Top 3

AlertRCA 0.875 0.968 0.723 0.883
DejaVu 0.701 0.937 0.625 0.851

V. RELATED WORKS

In recent years, many approaches have been proposed to
tackle the RCA problem in online service systems. These
approaches capture the system’s state by instrumentation or

monitoring metrics. Then they construct an SDG to represent
the causality relationship. However, existing methods [8], [12],
[18] have limited effectiveness in industrial environments.

In terms of operational complexity, [37], [38] has good
adaptability to the diverse technology stack. In terms of scale
and complexity, [37]–[40] are only evaluated in a small-scale
environment, with few services (< 100) and no real events;
[41] support limited types of events with manual causality
configurations. In terms of monitoring complexity, existing
log analysis-based methods [14]–[17], [41] can not adapt to
the frequent context changes caused by the rapidly evolving
technology stack. These and most existing approaches cannot
prove practical effectiveness due to the limited coverage of
diversified root cause types and validations in small-scale and
non-production environments with few actual failures.

DejaVu [20] performs RCA on the failure dependency graph
where a node represents a metric set. It cannot be used to deal
with alert data. Meanwhile, DejaVu directly employs GAT for
feature aggregation of nodes without considering the physical
meaning of RCA and is unable to get high top-1 accuracy.

Groot [21] presents a flexible and effective graph-based
framework for RCA to deal with the complexities of large-
scale microservice systems. However, constructing a causal
graph heavily relies on time-consuming manual configurations
making Groot infeasible in the real-world environment.

VI. CONCLUSION

In this paper, we introduce AlertRCA, a novel root cause
analysis model leveraging alert events for large-scale online
service systems. AlertRCA addresses two major limitations in
existing methods, obtaining a practical and accurate causal
graph and designing a specific deep learning-based approach
for alert-based RCA. To construct the causal graph, we
propose an automated process involving Alert Dependency
Graph (ADG), Alert2Vec, and Causality Prediction Graphical
Attention Network (CPGAT). We design a unique Dispersing
and Aggregating Graph Neural Network (DAGNN) to identify
the root causes of system failures.

AlertRCA is a novel RCA algorithm due to its practicality
and accuracy, and it uses widely recognized alert events as
input, making it accessible for companies of all sizes. It cir-
cumvents the dependence on handcrafed rules, and is designed
to be explicitly tailored for alert-based RCA scenarios. Our
extensive evaluations on real-world and open-source datasets
underscore AlertRCA’s superior performance, demonstrating
its effectiveness and feasibility for real-world applications. We
believe AlertRCA opens a promising direction for RCA in
large-scale online service systems, providing a practical tool to
swiftly and accurately address service failures, thus ensuring
the seamless functioning of these vital systems.
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