
Fault Diagnosis for Test Alarms in Microservices through
Multi-source Data

Shenglin Zhang
Nankai University

& HL-IT
Tianjin, China

Jun Zhu
Nankai University
Tianjin, China

Bowen Hao
Nankai University
Tianjin, China

Yongqian Sun∗
Nankai University
& TKL-SEHCI
Tianjin, China

Xiaohui Nie
CNIC, CAS

Beijing, China

Jingwen Zhu
Nankai University
Tianjin, China

Xilin Liu
Huawei Cloud

Shenzhen, China

Xiaoqian Li
Huawei Cloud

Shenzhen, China

Yuchi Ma
Huawei Cloud

Shenzhen, China

Dan Pei
Tsinghua University &

BNRist
Beijing, China

ABSTRACT
Nowadays, the testing of large-scale microservices could produce an
enormous number of test alarms daily. Manually diagnosing these
alarms is time-consuming and laborious for the testers. Automatic
fault diagnosis with fault classification and localization can help
testers efficiently handle the increasing volume of failed test cases.
However, the current methods for diagnosing test alarms struggle
to deal with the complex and frequently updated microservices. In
this paper, we introduce SynthoDiag, a novel fault diagnosis frame-
work for test alarms in microservices through multi-source logs
(execution logs, trace logs, and test case information) organized
with a knowledge graph. An Entity Fault Association and Position
Value (EFA-PV) algorithm is proposed to localize the fault-indicative
log entries. Additionally, an efficient block-based differentiation ap-
proach is used to filter out fault-irrelevant entries in the test cases,
significantly improving the overall performance of fault diagnosis.
At last, SynthoDiag is systematically evaluated with a large-scale
real-world dataset from a top-tier global cloud service provider,
Huawei Cloud, which provides services for more than three mil-
lion users. The results show the Micro-F1 and Macro-F1 scores
improvement of SynthoDiag over baseline methods in fault clas-
sification are 21% and 30%, respectively, and its top-5 accuracy of

∗Yongqian Sun is the corresponding author. Email: sunyongqian@nankai.edu.cn

HL-IT, TKL-SEHCI, and BNRist are short for Haihe Laboratory of Information Tech-
nology Application Innovation, Tianjin Key Laboratory of Software Experience and
Human Computer Interaction, Computer Network Information Center at Chinese
Academy of Sciences, and Beijing National Research Center for Information Science
and Technology, respectively.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0658-5/24/07
https://doi.org/10.1145/3663529.3663833

fault localization is 81.9%, significantly surpassing the previous
methods.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; Software testing and debugging.

KEYWORDS
Microservice, Test Case, Fault Diagnosis, Execution Logs, Trace
Logs

ACM Reference Format:
Shenglin Zhang, Jun Zhu, Bowen Hao, Yongqian Sun, Xiaohui Nie, Jingwen
Zhu, Xilin Liu, Xiaoqian Li, Yuchi Ma, and Dan Pei. 2024. Fault Diagnosis
for Test Alarms in Microservices through Multi-source Data. In Companion
Proceedings of the 32nd ACM International Conference on the Foundations
of Software Engineering (FSE Companion ’24), July 15–19, 2024, Porto de
Galinhas, Brazil. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3663529.3663833

1 INTRODUCTION
Microservices represent an architectural paradigm that decomposes
the functional aspects of software applications into a collection of
small, lightweight services [23]. This approach enables the divi-
sion of the business functionality into independent segments that
can be concurrently developed, meeting the demand for frequent
iterations and rapid updates [22]. To guarantee the reliability of
service functionality, rigorous testing is conducted before launch-
ing or updating any business features [7]. Many research works
have focused on developing test cases to thoroughly assess each
component in a microservice [6, 18].

During the execution of test cases, several factors can lead to
failed test cases and raise test alarms, including environment issues,
code errors, incorrect testing procedures, etc. Testers are responsible
for addressing these test alarms by analyzing massive log files
(as shown in Figure 1) scattered across different service modules,
classifying the fault category, and diagnosing the root cause of each
failed test case [1, 11]. In this way, they can take the right remedial

https://orcid.org/0000-0003-0330-0028
https://orcid.org/0009-0008-7802-5204
https://orcid.org/0009-0005-3523-4346
https://orcid.org/0000-0003-0266-7899
https://orcid.org/0000-0002-0371-854X
https://orcid.org/0000-0002-7954-6449
https://orcid.org/0009-0001-4870-1012
https://orcid.org/0009-0007-3882-7619
https://orcid.org/0009-0002-3304-1389
https://orcid.org/0000-0002-5113-838X
https://doi.org/10.1145/3663529.3663833
https://doi.org/10.1145/3663529.3663833
https://doi.org/10.1145/3663529.3663833


FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil S. Zhang, J. Zhu, B. Hao, Y. Sun, X. Nie, J. Zhu, X. Liu, X. Li, Y. Ma, D. Pei

actions, such as resetting environmental configurations, reporting
exception messages to developers, or rectifying test scripts [1, 11].

A thorough classification of failed test cases and a detailed lo-
calization of fault-indicative logs is crucial for testers handling
test alarms [11]. However, manually analyzing these logs is time-
consuming and laborious [1, 18]. For example, we conducted a study
at a top-tier global cloud service provider, Huawei Cloud, which
provides services for over three million users. Thousands of test
cases are executed daily, and even if only around 5% of these test
cases result in faults, hundreds of test cases make it impractical for
manual fault diagnosis. Previous studies [1, 2, 5, 11] classify failed
test cases by their fault category or pinpoint the fault-indicative
logs within the execution logs of test alarms. Nevertheless, they
only process the execution logs while neglecting the trace logs,
which could result in suboptimal fault diagnosis performance in the
microservice system (see Section 2.2.1). Hence, it is urgently needed
to design a new automatic fault diagnosis framework, including
fault classification and localization for test alarms, by analyzing
multi-source logs in microservices. Yet, it faces the following three
challenges (see § 2.2.3 for more details):

Challenge 1: Underutilized multi-source logs. The disparate
formats of these multi-source logs have rendered previous methods
ineffective in leveraging them, particularly in integrating execution
logs (semi-structured texts) with trace logs (tree-structured texts
with span).

Challenge 2: Inefficient fault-irrelevant logs filtering. It has
been observed that not all the logs in the failed test case are associ-
ated with faults [1]. These fault-irrelevant logs account for a large
proportion, which will hinder diagnosis models from accurately
extracting fault features. The existing methods cannot effectively
filter out these irrelevant log entries while keeping the relevant log
entries [11].

Challenge 3: Inaccurate localization for new types of logs.
Owing to the frequent software upgrades and configuration changes
of the microservice system and the corresponding test scripts, fault
logs’ content may vary among test cases, even if they belong to the
same fault category. Consequently, the fault log entries of historical
test cases may be dissimilar to those in the new failed test cases,
which makes it fail to provide adequate reference information for
localizing fault logs in new failed test cases using existing methods.

This paper proposes SynthoDiag, a novel fault diagnosis frame-
work for test alarms in microservice systems through multi-source
logs. (1) To address challenge 1, recognizing the capacity of knowl-
edge graphs to establish correlations among data in varying for-
mats [4, 12, 21], we propose the utilization of knowledge graphs for
diagnosing failed test cases that involve multi-source logs; (2) To
address challenge 2, we propose an effective block-based differenti-
ation strategy to eliminate fault-irrelevant logs while preserving
the contextual information of the remaining logs that are relevant
to faults; (3) To address challenge 3, we propose an Entity Fault As-
sociation score and Position Value (EFA-PV) algorithm to determine
the significance of each log entry by capitalizing on the content of
the logs as well as their relationships in multi-source logs.

The contributions of this paper are summarized as follows:

• As far as our knowledge extends, we are among the first to
simultaneously conduct fault classification and localization for

Figure 1: Multi-source logs in a failed test case. The execution
logs are collected from the executor (client side), and the trace
logs are collected from the microservice system (server side),
and the testcase info is predefined by testers.

test alarms in microservice systems, and SynthoDiag is intro-
duced as the premier framework to employ multi-source logs,
encompassing execution logs, trace logs, and test case informa-
tion, for the diagnosis of failed test cases.

• We propose a simple yet effective block-based differentiation
strategy to enhance data quality, thereby addressing the chal-
lenge introduced by the fault-irrelevant logs in the training
data.

• We propose EFA-PV to assess the significance of log entries,
leveraging both the content of log entries and the relationships
between log entries.

• To substantiate the effectiveness of SynthoDiag, a comprehen-
sive evaluation is conducted using a real-world test case dataset
obtained from Huawei Cloud. The improvements demonstrated
by SynthoDiag over baseline methods in fault classification are
remarkable, with Micro-F1 scores and Macro-F1 scores experi-
encing a notable increase of 21% and 30%, respectively. Further-
more, it achieves a top-5 accuracy of 0.819 in fault localization.

The subsequent sections of this paper are structured as follows:
Preliminary knowledge is expounded upon in § 2, while the frame-
work of SynthoDiag is delineated in § 3. To demonstrate effective-
ness, the experiment setup and results are elaborated upon in § 4.
§ 7 offers an overview of related works, culminating in a conclusion
in § 8.

2 PRELIMINARY AND MOTIVATION
2.1 Background
The structure of a test case is intricately designed, incorporating
a sequence of operations along with their respective checkpoints.
This design is pivotal for evaluating the functionality of services
during the System and Integration Testing (SIT) phase [11].

Test Alarm Analysis. In the context of SIT, the occurrence of a
failure within a test case is signified by the triggering of an alarm.
This alarm indicates a discrepancy between the actual outcome
of an operation and its anticipated result, which may arise due to
various factors such as an unstable network environment, incorrect
execution of test steps, or underlying issues within the service
itself. To effectively address these alarms, testers are required to



Fault Diagnosis for Test Alarms in Microservices through Multi-source Data FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

implement tailored solutions that are contingent upon the specific
category of the fault identified.

Table 1: Cause and solution for different fault categories

Fault
Category Cause Solutions

Service
Issue

Issues within
the service

Submitting bug reports
to the developers

Environment
Issue

Issue external to
the service and
unrelated to
the test steps

Re-executing test case or
setting the environment

Script Defect Wrong test steps Correcting the test script
Tool
Defect

Third-party
test tools defect

Asking help from supporters
of the third-party tools

Fault Category. Test case faults are typically categorized into
the following four categories in Table 1. Among these, Environment
Issue and Script Defect emerge as the most prevalent categories.
Environment Issue pertains to failures induced by external environ-
mental factors, whereas Script Defect relates to failures caused by
inaccuracies within the test scripts. The complexity of microser-
vices environments and the dynamic nature of test script updates
often contribute to the frequency of these issues. Conversely, Tool
Defect represents a highly impactful category, as a single flaw in
the testing tool can lead to multiple test case failures. Meanwhile,
Service Issue stands out as the most critical category, given its role in
uncovering potential service problems and facilitating preemptive
measures to avert severe incidents. To accurately determine the
category of a failed test case, testers are reliant on the analysis of
logs from multiple sources.

It is worth noting that in our scenario, there is already a historical
fault case category library, where many cases have been marked in
these four categories by experienced testers, without the need to
build it from zero.

Multi-source Logs. Log plays a pivotal role in diagnosing faults
due to their semantic information of services and operations [11,
21, 26] and the source of the log determines the focus of the content.
As shown in Figure 5, each test case generates three types of logs,
execution logs originating from the client side, trace logs from the
server side, and testcase info pre-written by the tester:

• Execution Logs: The execution log is mainly composed of test
information for many test operations. There is a clear beginning
and end (e.g., Begin to send request and Check point fail entry
in Figure 1) for each operation. Specific testing content was
recorded between them, including testing preparations, testing
operations, request parameters, response messages, checkpoint
outcomes, error messages etc. These messages can help us clas-
sify the test case into which category, often requires a combi-
nation of trace logs to achieve more accurate classification (see
§ 2.2.1). Note that an operation in the execution log corresponds
to a set of trace logs on the server side.

• Trace Logs: These logs are generated on the server side, and
encompass invocation flow traces among services and logs gen-
erated by each service. There are multiple groups of trace logs
in a test case, which is decided by the request counts in the

execution logs, and each group of trace logs can be related to
an operation in the execution logs. As such, trace logs meticu-
lously capture operational intricacies of microservice instances
and messages about faults arising from service issues and envi-
ronmental issues.

• Testcase Information. It is written by the tester before testing
and records the basic information about the test case, including
the purpose, id, executors, etc., of the test case. This information
can be used to understand the test case and find the passed test
cases with the same purpose in history, which can help us to
make the comparison and understand the cause of the fault
more quickly.

Fault Diagnosis. Fault diagnosis in this paper refers to the
classification and localization of faults for failed test cases. Fault
classification is to determine which existing fault category a new
case belongs to, while fault localization is to identify and highlight
which specific log entries are most likely to be related to the root
cause, i.e., fault-indicative log entries (e.g., the Request b to delete
tester_factory_001 Exception: Connection Timeout in Figure 2). Fault
diagnosis can assist testers in quickly identifying and resolving
faults.

Figure 2: The same error logs in the execution logs can be
caused by diverse reasons as indicated in the trace logs.

2.2 Motivation
Analyzing faults through logs is a labor-intensive task, necessitating
meticulous scrutiny of individual log entries by testers to accurately
identify the underlying causes of faults. Given the sheer volume of
failed test cases and the extensive number of logs, manual inspec-
tion of each test case becomes impractical. Therefore, providing the
tester with the fault category and fault-indicative log entries can
significantly enhance testing efficiency. These objectives align with
the overarching goals of test case fault diagnosis[1, 11]. Nonetheless,
when diagnosing failed test cases within a microservice system, we
confront several challenges, including underutilized multi-source
logs, inefficient fault-irrelevant logs filtering, and inaccurate local-
ization for new template logs.



FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil S. Zhang, J. Zhu, B. Hao, Y. Sun, X. Nie, J. Zhu, X. Liu, X. Li, Y. Ma, D. Pei

2.2.1 Underutilized Multi-source Logs. The inherent complexity of
microservice systems necessitates the analysis of multi-source logs
to accurately diagnose fault test cases.

However, prior research has predominantly concentrated on fea-
ture extraction from execution logs to diagnose fault categories,
because execution logs contain comprehensive information about
the test case in the traditional system. This is no longer applicable
in the scenarios of a microservice system, because the intricate
environment introduces complexity, whereby the same log in exe-
cution logs may stem from various underlying causes. For instance,
Figure 2 show three distinct test cases exhibit an log entry of iden-
tical error message. Based solely on the execution logs, one might
assume that they belong to the same fault category. However, a
closer examination of trace logs reveals disparate fault causes for
each case. Test case A encounters fault due to an infinite loop in
the service progress, classified as service issue. In contrast, test case
B’s fault results from network interference which lead to the loss of
the response message, categorized as environment issue. Lastly, test
case C’s fault is caused by permission denied from the database and
is also characterized as service issue due to the wrong configuration
of service. Consequently, these diagnosing methods of the test case
in traditional, which only focus on the execution logs, are no longer
adapted to the scenes of the microservice system, and multi-source
logs must be used.

Challenge 1: Fault diagnosis within microservices cannot solely
depend on execution logs and there is a need for analyzing multi-
source logs.

2.2.2 Inefficient Fault-irrelevant Logs Filtering. Leveraging multi-
source logs for fault diagnosis typically involves analyzing the
entirety of the log data. However, most of the logs are irrelevant
to the failure, and often only a small fraction of the logs is critical
to helping testers diagnose the failed test case. Remarkably, after
carefully investigating thousands of failed test cases collected from
Huawei Cloud, we find that less than 10% of these log entries pertain
to faults. As is shown in § 4.3.1, this presence of irrelevant log entries
poses challenges to characterizing failed test cases accurately, which
leads to the final performance of the model dropping by more than
10%.

The prior research, such as LFF [1], attempts to address this
issue by using a template-based differentiation technique. This
method filters out the logs in the failed test case that share the same
template with the logs in the historically successful test cases. On
the one hand, the template is only the format of the output and
does not determine whether it is related to the exception, which
means that the fault-relevant logs may have the same template
as the successful logs will also be filtered. On the other hand, the
relationship between log entries, especially the context information,
will be lost with this method. In this way, as is shown in § 4.3.1,
these incorrectly removed fault-relevant logs and lost messages
even cause performanceworse thanwithout filtering. Consequently,
we will propose the concept of log block in (§ 3.2, which divides
logs according to test operations, which can more effectively filter
irrelevant logs while retaining contextual information.

Challenge 2: Fault-irrelevant logs in the microservices will con-
fuse the diagnostic model and previous methods cannot filter out
them effectively.

2.2.3 Inaccurate Localization for New Template Logs. Upon pre-
senting testers with fault categories, it becomes essential to provide
further details to enhance the interpretability of faults, which helps
testers to comprehend faults better and verify the accuracy of diag-
nostic results through the localization of fault-indicative logs.

The strategy proposed by LFF [1] is based on the premise that
logs associated with templates frequently observed in historical
failed test cases are more likely to indicate the underlying faults.
Accordingly, this approach prioritizes logs in new failed test cases
by quantifying the presence of their corresponding templates in
past failures. Nevertheless, due to the independent and frequent
deployment of services, microservice system test cases undergo
rapid updates, leading to the generation of the new template [7].
On the one hand, these newly generated templates will not appear
in the historical failed test cases. On the other hand, the log with
these newly generated templates can be the real fault-indicative
log. As is shown in § 4.2, these methods achieve a bad performance
on the Top-5 accuracy. Consequently, fault-indicative log entries in
new test cases can not be localized by the existing method.

Challenge 3:The update of test cases leads to a mismatch between
new logs and old logs, which makes previous methods no longer
applicable to localize the historical fault-indicative log entries.

2.2.4 Summary. To diagnose failed test cases in microservices ef-
fectively, it is imperative to utilize both trace logs and execution
logs. Furthermore, addressing the disparity in the formats of these
logs from various sources is essential. Additionally, in light of the
detrimental effects of irrelevant log entries within the training data,
a more robust filtering mechanism must be devised. Moreover, to
enhance the interpretability of diagnostic results, there is a need
to propose a localization method that adapts to the scenes of the
microservice system.

3 DESIGN
3.1 The Framework of SynthoDiag
The SynthoDiag framework comprises three main components: log
filtering, case embedding, and fault diagnosing, as illustrated in
Figure 3. When parsing the logs of a failed test case, SynthoDiag
filters the irrelevant log entries in logs with log-block § 3.2 (ad-
dressing challenge 2). It then builds the knowledge graph of the
failed test cases based on the remaining fault-relevant log entries
§ 3.3 (addressing challenge 1). Next, SynthoDiag uses KGE with
semantic information to embed each failed test case into a vector
§ 3.4. Finally, the historical failed test cases and labels will be stored
in a case category library. When a new failed test case needs to be
diagnosed, SynthoDiag gets the case vector and knowledge graph
of this test case with the same steps, and then it will output the
fault category and localize the fault-indicative log entries in the
test case for interoperability § 3.5 (addressing challenge 3).

3.2 Fault-Irrelevant Log Filtering
As previously elucidated in § 2.1, a test case comprises a single set
of execution logs and multiple sets of associated trace logs. The
execution logs of each operation can be related to the trace logs and
the removal of irrelevant log entries from execution logs allows for
the elimination of redundant trace logs. Consequently, SynthoDiag



Fault Diagnosis for Test Alarms in Microservices through Multi-source Data FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

Figure 3: The framework of SynthoDiag

focuses exclusively on eliminating irrelevant log entries from exe-
cution logs with two steps: log block division and irrelevant log
blocks removment.

Log block division. As mentioned at the end of § 2.2.2, we
involve the concept of log block to divide execution logs according
to test operations for retaining contextual information.

What is a log block? We know that the execution log consists of
test operations’ information. A test operation is the smallest unit
for a test. Consequently, we define a log block corresponding to a
test operation, which contains all test information related to that
specific operation.

How to divide log blocks? As described in § 2.1, there is a clear
beginning and end for each test operation, which is pre-defined
by testers. The testers have devised highly consistent beginning
and end rules in our scenario, which ensures that the deviation of
log blocks can be executed flawlessly by using a straightforward
regular expression matching approach.

We will continue to utilize the examples presented in Figure
2 for illustrative purposes. The blue box marks the log block of
Operation 17. Operation 17 starts with the log entry that marks the
test operation is going to send a request (Begin to send request) and
ends with the log entry that marks the response of this operation
as unsuccessful (Check point fail). And the other logs of Operation
17 record the information of this request, such as the request object
(Service III ), and the request parameters (tester_factory_001, delete).
Consequently, each log block can comprehensively document the
details of a test operation on the client side and can be related to a
group of specific trace logs on the server side.

Irrelevant log blocks removement. In this part, we want to
remove the normal operation log blocks from the fault case log.
Specifically, we check whether each log block has appeared in the
passed cases to determine whether to delete it. This is because we
have many passed test cases, all of which are operations that have
successfully passed the test. The specific removement process for a
log block is divided into the following three steps:

Step 1: Find the same case in passed test cases. We check the
testcase information of the passed cases to find the case with the
same name. Since the same case usually involves the same testing

operation, this step helps us narrow down the scope and quickly
find the same pass log block.

Step 2: Find the same log block from the same passed case. Due
to the request part (i.e., the request operation and parameters)
representing the content of the operation and the response part
(i.e., the checkpoint result) representing the test result, we can
compare the test log block’s request part and response part with
the passed blocks’. If these two parts are the same, it means they
are the same test operation and have the same results. Then this
test block should be removed.

Naturally, if we cannot find the same passed case in Step 1:,
we need to spend more time searching for the same log block in
different passed cases. Furthermore, if the same log block cannot be
found, we can only temporarily consider it a fault test and keep it.

Step 3: Removement. If the same passed log block is found, not
only should the test block of the execution log, but the set of trace
logs corresponding to the test operation should also be deleted, for
the whole operation testing is successful. In this way, irrelevant
log blocks both in the execution log and trace log are removed, and
relevant log entries are retained.

3.3 Knowledge Graph Construction
SynthoDiag performs the steps of entity extraction, entity align-
ment and graph construction to build a knowledge graph that
captures essential information of the failed test case from multi-
source logs. This subsection outlines the steps involved in knowl-
edge graph construction.

At the entity extraction step, SynthoDiag extracts three types
of entities from the original log entries.

• Attribute Entity. The attribute entity consists of structured
data within the log entry, representing specific attributes of the
log entry (e.g., INFO,WARN, and ERROR in the execution log
entries that represent the level of the log entry or the service
name of the trace log entry). Thus, we extract the attribute entity
directly from the original log entries using regular expressions,
which are predefined with the testers according to the features
of logs.



FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil S. Zhang, J. Zhu, B. Hao, Y. Sun, X. Nie, J. Zhu, X. Liu, X. Li, Y. Ma, D. Pei

• Parameter Entity. The parameter entity represents the vari-
able component within the unstructured data. Consequently,
parameters contain highly specific information about each test
case. SynthoDiag utilizes the Drain log parsing method [8] to
extract these parameters, which can separate the template and
the parameters (e.g. in Figure 2, the tester_factory_001 and delete
in the execution logs and tester_factory_001, 76 and 20 in the
trace logs of test case A).

• Log Entity. The log entity represents the unstructured original
log content, which is the most salient aspect of the original
log entry that testers prioritize. With the log entity, we can
build the relationship between the attribute entities and the
parameter entities. We extract the log entity from the original
log entries by excluding structured data (e.g. In Figure 2, Request
Service: Service III in the execution logs or Connection Timeout
in the trace logs of test case B).

SynthoDiag takes entity alignment step to merge the parame-
ter entities with similar semantic representations. On the one hand,
the same parameter may be recorded in different formats by multi-
source logs, on the other hand, there are still deviations in the log
parsing method when they parse similar log content into different
parts, which will be regarded as different entities. To ensure the
robustness of the framework, SynthoDiag converts each parameter
entity into vectors using a pre-trained language model BERT [20].
In this way, the parameter entities with similar semantics can be
represented with vectors that are close to each other. Then, Syntho-
Diag aggregates these close parameter entities together and takes
the parameter entity in the center of the cluster to represent the
other parameter entities.

Finally, SynthoDiag takes the graph construction step with
these three types of entities. As shown in Figure 4, when building
the graph of the failed test case, SynthoDiag builds the connection
between the log entity and the corresponding attribute entities
with the relationship at. The connection between the log entity
and the extracted parameter entities can be with the relationship
has. Besides, due to the feature of trace logs, SynthoDiag also builds
the connection between the attribute entities, that represent the
name of service, to reflect the request relationship between service
with request. In this way, the log entities from the same source can
be connected by attribute entities and parameter entities, and the
log entities from different sources can be connected by the merged
parameter entities.

This integrated approach to knowledge graph construction en-
ables SynthoDiag to represent and connect information from multi-
source logs effectively, facilitating more comprehensive classifica-
tion and localization.

3.4 Case Embedding
Utilizing the prior modules, we can construct a graph that focuses
on the relationship between logs, and standardize the format of
logs from different sources.

To facilitate a more effective comparison of similarities between
different test cases, SynthoDiag converts the failed test case into
a vector representation with its knowledge graph and the filtered
fault relevant log entries. On the one hand, the knowledge graph
of the failed test case records the relationship among log entries,
enabling the distinction of various failed test cases that exhibit

similar logs but differ in structure. On the other hand, the seman-
tic information contained in the fault relevant log entries is also
essential to identifying test cases with identical failed reasons. As
discussed in prior research[3], SynthoDiag adopts MRotate [10], a
knowledge graph embedding algorithm that embeds the knowledge
graph into a continuous space by viewing relations as rotations in
the complex vector space, where it models the interaction between
entities and relations, to obtain the structural representation vector
for each entity in the knowledge graph. This captures structural
information among diverse entities, providing an overview of the
relationships between log entries. Consequently, SynthoDiag uti-
lizes Sentence-BERT[20], an adaptation of the pre-trained BERT
model specifically tailored for sentence embedding tasks, to derive
the semantic representation vector for each log entry. Following
this, we get the vector for each entity by concatenating its structural
representation vector and the semantic representation vector of the
corresponding log entry. Finally, we aggregate all entity vectors in
each test case to compute an average vector, designated as the case
vector.

3.5 Fault Diagnosing
At the fault diagnosing stage, SynthoDiag classify the test cases into
a specific categories using case vectors we obtained above, and then
proposes an measure mechanism of fault-indicative log entries for
localization.

Fault Classification. Table 1 shows four fault categories that
used in SynthoDiag. Noting that many historical cases have already
been marked by the testers in these four categories (as mentioned
in § 2.1). In addition, this library has the capability to continuously
expand as more diagnostic outcomes are validated and feedback is
incorporated, as shown in Figure 3.

In this work, SynthoDiag utilizes the k-nearest neighbors (KNN)
algorithm to classify the failed test case based on the category-
labeled test cases, and subsequently provides the corresponding
fault category with a diagnostic report with an explanation of fault
classification. The K-NN algorithm represents a non-parametric,
supervised learning method that determines an entity’s category
based on the categories of its k closest neighbors. This approach is
accessible to testers due to its straightforward conceptual basis and
ease of interpretation.

Fault Localization. Additionally, to facilitate more efficient
root cause localization, SynthoDiag identifies the most likely fault-
indicative log entrywithin the test case. This identification is carried
out by using the extracted parameter entity, which records more
specific details of a test case in a more fine-grained form. We intro-
duce the Entity Fault Association score (EFA) for individual entities
to assess their relationship with a specific fault category, along with
the Position Value (PV) to gauge the entity’s significance within
the current test case.

Based on our observations, entities that predominantly manifest
within a single fault category, with infrequent occurrences in other
categories, often exhibit relevance to the primary cause of that
specific fault category. Building upon this insight, we define the
EFA for Entity 𝑒 and fault Category 𝑖 as Equation 1:

𝐸𝐹𝐴𝑒𝑖 = −𝑚𝑠𝑒 (𝐷𝑒 ) ·
1

log
(
1 − 𝑛𝑒

𝑖

𝑁𝑖

) (1)



Fault Diagnosis for Test Alarms in Microservices through Multi-source Data FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

Figure 4: The knowledge graph of test case A.

where 𝐷𝑒 denotes the distribution of entity 𝑒 in each fault category,
𝑁𝑖 denotes the number of test cases in fault category 𝑖 , and 𝑛𝑒

𝑖
denotes the number of test cases in fault category 𝑖 where entity 𝑒
appears in. A higher 𝐸𝐹𝐴𝑒

𝑖
value indicates a stronger link between

entity 𝑒 and fault category 𝑖 .
In addition, for a parameter entity, the more log entities it relates

to, the more important it is in the current use case because this
parameter entity appears in many fault-indicative log entries and
can build the relationship between log entries. Thus, SynthoDiag
searches the knowledge graph of the current case to calculate the
PV of parameter entity 𝑒 as Equation 2:

𝑃𝑉 𝑒 =
(
𝐿𝑒𝑒𝑥𝑒 + 1

)
·
(
𝐿𝑒𝑡𝑟𝑎𝑐𝑒 + 1

)
, (2)

where 𝐿𝑒𝑒𝑥𝑒 is the number of connected execution log entries, and
𝐿𝑒𝑡𝑟𝑎𝑐𝑒 is the number of connected execution log entries. Then, we
get the 𝐸𝐹𝐴-𝑃𝑉 𝑒

𝑖
of entity 𝑒 with fault category 𝑖 by multiplying

𝐸𝐹𝐴𝑒
𝑖
and 𝑃𝑉 𝑒 , as Equation 3:

𝐸𝐹𝐴-𝑃𝑉 𝑒
𝑖 = 𝐸𝐹𝐴𝑒𝑖 × 𝑃𝑉

𝑒 . (3)

Next, we calculate the value score of each log entry by summing
up the 𝐸𝐹𝐴-𝑃𝑉 𝑒

𝑖
of the extracted parameter entities. Finally, we

sort the log entries with their value score and localize the top-K log
entries as the fault-indicative log entries.

4 EVALUATION
In this section, we evaluate the performance of SynthoDiag using
the datasets collected from a top-tier global Cloud service provider.
We aim to answer the following research questions (RQs):

RQ1: How does SynthoDiag perform overall in log diagnosis
compared to baseline models?

RQ2: Does each component of SynthoDiag have significant con-
tributions to SynthoDiag ’s performance?

RQ3: Specifically, discuss the necessity of KNN in classification
and how its main hyperparameter 𝐾 affects the results. Noting that
there are no other important hyperparameters to discuss in the
whole framework besides 𝐾 here.

4.1 Experiment setup
Dataset: We conduct experiments using a real-world Multi-source
test case dataset collected from the production environment of a top-
tier global Cloud service provider (𝑯𝒖𝒂𝒘𝒆𝒊 dataset ). The 𝑯𝒖𝒂𝒘𝒆𝒊
dataset includes execution logs and trace logs from 1687 failed test
cases. To ensure consistent classification standards, we assigned
one tester to manually re-label all 1600+ failed test cases into four
categories ("Service Issue"-9.0%, "Environment Issue"-53.2%, "Script
Defect"-36.3%, "Tool Defect"-1.5%), and take the re-labeled result
as the ground truth of each test case. We adopt a cross-validation
strategy to assess performance. This strategy involves dividing all
failed test cases into five equal subsets and selecting one subset
as the test set while using the remaining four as the training set
in rotation. The final performance is determined by averaging the
results from these five datasets.

Baselines:We compare SynthoDiag with four fault classification
algorithms: running-system classification algorithm LogCluster
(trace logs) [14], Cloud19 (trace logs) [25] and fault test classification
algorithm LFF (execution logs) [1], CAM (execution logs) [11]. We
also compare SynthoDiag with LFF and CAM for fault localization.
The parameters of these methods are optimized for performance.

Evaluation Metrics: In this scenario, fault diagnosis can be
viewed as a multi-classification task. To measure the performance,
we take the Micro-F1 score and Macro-F1 score as the metrics [21],
where the Micro-F1 score is the percentile of fault test cases classi-
fied into the correct category. And the Macro-F1 score is calculated
as follows,

𝑀𝑎𝑐𝑟𝑜 − 𝐹1 =
∑𝑘
𝑖

2×𝑅𝑒𝑐𝑎𝑙𝑙𝑖×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖
𝑅𝑒𝑐𝑎𝑙𝑙𝑖+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖

𝑘
(4)

where 𝑘 is the number of fault categories, 𝑅𝑒𝑐𝑎𝑙𝑙𝑖 is the percent-
age of fault cases with category 𝑖 that are correctly classified into
category 𝑖 and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 is the percentage of fault cases classified
into category 𝑖 with correct category 𝑖 . The Micro-F1 score reflects
the overall performance on classification, and the Macro-F1 score
reflects the average performance among the fault categories, which
we focus more on. Besides, to measure the performance of fault



FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil S. Zhang, J. Zhu, B. Hao, Y. Sun, X. Nie, J. Zhu, X. Liu, X. Li, Y. Ma, D. Pei

localization, we use Top-5 Accuracy [19], which is the percentage
of localization results that contain correct fault log entries within 5
candidates.

Experimental Setup: We conduct all the experiments on a Fu-
sionServer G560 V5 server with Inter Xeon E5-2697 v4 CPU and
251GB of memory. We implement SynthoDiag and the other four
baselines with Python 3.7.

Micro-F1 Score Macro-F1 Score
0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

0.872 0.891

0.536

0.175

0.761

0.5870.602

0.285

0.538

0.262

SynthoDiag LFF CAM Cloud19 LogCluster

(a) F1-Scores

Top-5 Accuracy
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0.819

0.210
0.150

SynthoDiag LFF CAM

(b) Top-5 Accuracy

Figure 5: The effectiveness of different methods on 𝑯𝒖𝒂𝒘𝒆𝒊
dataset. F1-Score for classification and Top-5 Accuracy for
localization.

Table 2: Time for diagnosing one case

SynthoDiag LFF CAM Cloud19 LogCluster
Time 0.39 34 2.22 0.23 1.76(s/case)

4.2 The Overall Performance
This section presents a comparative analysis of SynthoDiag and
four baseline methods applied to 𝑯𝒖𝒂𝒘𝒆𝒊 dataset for evaluating
the effectiveness of our approach.

Figure 5 presents a comprehensive comparison between Syntho-
Diag and the baseline methods in terms of F1-score, Top-5 accuracy,
and Table 2 presents the execution time.

In summary, SynthoDiag outperforms all the baseline methods,
with a Micro-F1 score of 0.872 and a Macro-F1 score of 0.891. These
scores are 21% and 30% higher than the best baseline method, re-
spectively. To be specific, while CAM achieves a Micro-F1 score of
0.761, it has a lower Macro-F1 score of 0.587, and the other three
baselines all perform poorly on Macro-F1 score, which shows that
SynthoDiag has a better performance than these fault classifica-
tion methods. And, SynthoDiag also shows the best performance
on fault localization with a top-5 accuracy of 0.819, which shows
that both template-based or string-based localization methods are
not suitable for localizing fault log entries in failed test cases of
Microservice System. While LFF and CAM can do both the classifi-
cation and localization, the defects in their design make them not
adapt to this scenario.

Furthermore, as shown in Table 2, SynthoDiag achieves prompt
diagnosis of each failed test case, with a time requirement of just
0.39 seconds. This efficiency is over 100 times higher than previous
manual diagnosis. According to testers’ statistics, manual diagnosis
of a case usually takes more than 5 minutes because it requires
complex analysis, including reading the origin execution logs, re-
trieving the log entry that may be related to this fault, analyzing
both the fault-relevant log entries and the trace logs etc.

4.3 Ablation Study
We conduct ablation experiments on 𝑯𝒖𝒂𝒘𝒆𝒊 dataset to evaluate
the effectiveness of key components in SynthoDiag: fault-irrelevant
log filtering, multi-source log fusion, case embedding, and EFA-PV.

4.3.1 Fault-Irrelevant Log Filtering. Firstly, SynthoDiag utilizes the
block-based filtering strategy to filter out irrelevant log entries.
We conduct experiments with the other two processing strategies:
line-based filtering and no filtering. As depicted in Figure 6 (a), the
block-based filtering strategy yields the best performance because
it retains the most log entries relevant to faults. line-based filtering
almost removes all the log entries and only leaves the log entries
of the error message, which means that there is not enough valid
information remaining to diagnose the fault. Conversely, the no
filtering strategy retains all log entries, including irrelevant ones,
which adversely affect the extraction of features from failed test
cases.

4.3.2 Multi-source Log Fusion. In this work, we propose to use
multi-source logs (execution logs from the client side and trace logs
from the server side) to diagnose failed test cases. To verify the
effectiveness of using multi-source logs, we only take execution
logs (exe logs) and trace logs (trace logs) to build the failed test case
with the same steps, and evaluate the performance on these three
metrics.

As illustrated in Figure 6(b), the utilization of multi-source logs
indeed aids in diagnosing the fault categories of failed test cases.
While execution logs document test progress, trace logs from the
server side capture finer-grained server-side details. Therefore, the
amalgamation of execution logs and trace logs can enhance diag-
nostic performance. Service issues are responsible for only a small
fraction of failed test cases; hence, the trace log contains limited
valuable information.

4.3.3 Case Embedding. After building the knowledge graph of
the failed test case, SynthoDiag embeds the case with structure
and semantic vectors. We believe that this approach yields a case
vector that encompasses a richer set of information about the test
case. To evaluate the effectiveness of this module, we take different
embedding strategies: we only use the structure vectors (w/o Bert)
and the semantic vectors (w/o KGE), and we also take the traditional
template-based embedding strategy on the origin logs (One-hot),
which take the template of the origin log entry to represent the test
case.

In Figure 6 (c), it is evident that the combination of structure
representation and semantic vectors significantly enhances the per-
formance of SynthoDiag. Both w/o Bert and w/o KGE exhibit lower
Micro-F1 and Macro-F1 scores in isolation. The exclusion of w/o
Bert results in the neglect of crucial semantic representation within
the log content, which is essential for identifying similarities among
cases in the same fault category. w/o KGE cannot use the relation-
ship between logs, which is a crucial feature for distinguishing cases
among fault categories. SynthoDiag effectively combines both struc-
ture representation from KGE and semantic representation from
Bert, allowing for a more detailed extraction of features from failed
test cases. When the embedding method is replaced with one-hot,
the performance deteriorates significantly, as the template-based
approach fails to adapt to the varying recording styles of trace logs.



Fault Diagnosis for Test Alarms in Microservices through Multi-source Data FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

Micro-F1 Score Macro-F1 Score
0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

0.872 0.891

0.637
0.577

0.735
0.668

block filter line filter no filter

(a) Filtering Strategy

Micro-F1 Score Macro-F1 Score
0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

0.872 0.891
0.835 0.840

0.597

0.308

multi logs exe logs trace logs

(b) Source of Logs

Micro-F1 Score Macro-F1 Score
0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

0.872 0.8910.858 0.8530.842 0.846
0.794 0.826

SynthoDiag w/o Bert w/o KGE one-hot

(c) Case Embedding Strategy

Top-5 Accuracy
0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

0.819
0.736 0.763

0.697

EFA-PV EFA PV TF-IDF

(d) Localization Strategy

Figure 6: The effectiveness of each module

Consequently, it can be concluded that SynthoDiag achieves supe-
rior performance when both structure representation and semantic
representation are incorporated.

4.3.4 EFA-PV. We introduce EFA-PV as a method for identifying
fault logs by computing the importance of parameter entities and
arranging the original log entries based on their value scores. EFA-
PV combines EFA to determine the correlation between parameter
entities and fault categories, and PV to assess the significance of
parameter entities within the current test cases. In contrast to EFA-
PA, TF-IDF solely gauges the uniqueness of parameter entities
without quantifying their relationship with fault categories. To
evaluate the effectiveness of this module, we only use part of EFA-
PV (EFA) and (PV ) to localize the fault log entries. And we replace
EFA-PV with TF-IDF to measure the importance of the log entry
(TF-IDF ).

As depicted in Figure 6 (d), EFA-PV attains the highest accuracy,
surpassing EFA and PV when used individually. This is because EFA
aids in identifying fault parameter entities, while PV gauges the sig-
nificance of parameter entities in failed test cases. However, TF-IDF
can solely identify unique log entries, which may not necessarily
be associated with faults.

4.4 Classification Algorithms

Micro-F1 Score Macro-F1 Score
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e

0.872 0.891
0.849 0.8580.835 0.823

0.872 0.872

0.736 0.732

0.867
0.836

0.606

0.463

KNN(K=1) KNN(K=3) KNN(K=5) Random Forest Bayes GBC ABC

Figure 7: Performance with different classification methods

We also discuss the effect of different classification algorithms.
We conduct experiments with five different classification algo-
rithms: KNN (K=1), KNN (K=3), KNN (K=5), Random Forest, Bayes,
Gradient Boosting Classifier (GBC), Ada Boost Classifier (ABC). As
depicted in Figure 7, both the KNN and Random Forest algorithms
exhibit comparable performance. However, Random Forest is un-
able to provide a reasonable explanation for the output results. On
the other hand, KNN can adapt to updates by incorporating the
newly labeled cases into the case category library. Furthermore,

with increasing values of 𝐾 , the classification performance dimin-
ishes due to the imbalance in the fault category and the heightened
interference as 𝐾 increases.

5 IMPLEMENTATION

Figure 8: The deployment of SynthoDiag on the cloud plat-
form.

SynthoDiag has been implemented on the automated testing
cloud platform of Huawei Cloud. As illustrated in Figure 8, this
cloud platform is provided as a service (PaaS) for users to do the task
of testing automatically, including test script generation, fault diag-
nosis, board of test, etc. When users want to access these services,
they connect their test pipeline to the interface provided by the
platform. The results of each test case will be uploaded and saved
into the platform. When there are failed test cases, SynthoDiag will
be called and the final analyzed failure reason and log entries of
the root cause will be presented in the platform to help testers take
the right remedial actions.

In the cloud platform, SynthoDiag works as a service for diag-
nosing failed test cases. When there is a test alarm during testing,
the information about the test case will be sent to the SynthoDiag.
Then SynthoDiag will take the steps in § 3 to preprocess data and
diagnose the failed test cases. The fault category and root cause
will be presented on the platform to the users with the fault logs.



FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil S. Zhang, J. Zhu, B. Hao, Y. Sun, X. Nie, J. Zhu, X. Liu, X. Li, Y. Ma, D. Pei

Deployment effectiveness. SynthoDiag has been implemented
over 7 months, and diagnoses thousands of fault cases per week. Ac-
cording to the feedback from testers, Testers have provided feedback
that it achieves over 85% classification recall and over 80% localiza-
tion accuracy, which is consistent with our evaluation. Meanwhile,
it greatly improves the diagnostic efficiency of testers compared to
manual labor before. The process of diagnosing failed test cases be-
comes more straightforward, rapidly and automatically for testers.
Besides, they believe thatSynthoDiag has strong generalization abil-
ity and plan to apply it to more testing scenarios.

6 DISCUSSION
During the deployment, we also encountered some practical prob-
lems that affected the performance of the results.

6.0.1 Data Quality. SynthoDiag employs a knowledge graph to
construct test cases by leveraging multi-source logs. The effective-
ness of this construction process relies on the relationships between
the various multi-source logs. A more distinct relationship between
multi-source logs (e.g., shared content or explicit request param-
eters), enhances the effectiveness of joint analysis. In real-world
testing scenarios, the relationships between multi-source logs need
to be well recorded, which is a prerequisite for using multi-source
logs for diagnosis. Therefore, before implementing SynthoDiag, it
is crucial to understand the mechanism of the tested system.

6.0.2 Ambiguity of Fault Category. SynthoDiag utilizes the KNN
approach to identify the most similar historical test case and as-
signs the fault category of the matched test case to the current test
case. Consequently, the accuracy of the historical fault category
label directly impacts the effectiveness of categorization. Neverthe-
less, in real-world scenarios, there are often over a dozen testers
responsible for analyzing system failures, and the criteria for fault
categorization may differ among them. As a result, identical fault
test cases may receive different categorizations, leading to ambi-
guity that can hinder the accurate categorization of faults by the
diagnostic model. This is a recurring issue in situations involv-
ing numerous participants. In our future work, we will explore a
cost-effective method for label adjustment.

7 RELATEDWORK
Numerous research approaches are dedicated to addressing the
challenges of diagnosing or localizing faults, which focus on iden-
tifying faults and localizing fault information respectively. In our
work, we address both of these critical tasks, with the overarching
goal of reducing the workload on the tester.

7.1 Fault Diagnosis
Diagnosing before manually analyzing can help the tester compre-
hend faults. Lu et al. [16] classifies Spark faults with four distinct
categories. Cloud19 [25] employs log associations with system tasks
to classify faults within cloud systems. It’s worth noting that these
studies conducted their analyses within run-time environments,
a context that doesn’t precisely align with our specific scenario.
Kim et al. [9] use association rule learning to identify false test

alarms. CAM [11] exploits information retrieval techniques to clas-
sify test faults. LogFaultFlagger (LFF) [1] distinguishes faults caused
by product problems from all test faults by ameliorating CAM [11].

7.2 Fault Localization
The testers need to find the information about the fault to solve
problems faster. However, as software systems have expanded, the
volume of logs has surged, rendering manual log inspection an
exceedingly time-consuming endeavor.

MicroRank[24] combines anomaly detectionwith PageRank scor-
ing and extended spectrum analysis to effectively identify and rank
potential root causes of latency issues in microservice systems.
MicroHECL [15] identifies root causes by constructing a dynamic
relation graph and employing finely tuned rules. AutoMap [17]
employs a modified PC algorithm to construct an anomaly behavior
graph and propose potential root causes. LogCluster [14] utilizes
clustering techniques to decrease the number of logs that should
be examined. Onion [27] provides debugging clues by locating
incident-indicating logs. However, it is important to highlight that
these methods may not align with our specific scenario, as they
are primarily designed for runtime microservice systems and offer
debugging insights at the server level. While LFF [1], CAM [11],
and Historian [13] use information retrieval techniques to flag fault
log entries, they can not take advantage of multi-source logs and
adapt the the demand of microservice systems.

8 CONCLUSION
After careful investigations on thousands of failed test cases col-
lected from a top-tier global cloud service provider, Huawei Cloud,
which provides services for millions of users, we identify the im-
portance of fusing multi-source logs for test case fault diagnosis in
microservices. Consequently, we propose a framework, SynthoDiag,
for diagnosing failed test cases by fusing the information from ex-
ecution logs, test information, and trace logs with the knowledge
graph technique. We present a log-block-based differentiation ap-
proach to reduce the impact of fault-irrelevant log entries. To tackle
the challenge introduced by the newly generated log templates, we
introduce EFA-PV, which can effectively represent the relevance of
a log entry to a given fault. Finally, we conduct comprehensive ex-
periments on a real-world test case dataset collected from Huawei
Cloud, demonstrating that the proposed SynthoDiag outperforms
all state-of-the-art methods. SynthoDiag takes the first step towards
fusing multi-source logs for diagnosing failed test cases in microser-
vices. In the future, we will evaluate SynthoDiag in more scenarios
to demonstrate its performance.

9 ACKNOWLEDGEMENT
This work is supported by the Advanced Research Project of China
(No. 31511010501), and the National Natural Science Foundation of
China (62272249, 62302244, 62072264).



Fault Diagnosis for Test Alarms in Microservices through Multi-source Data FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

REFERENCES
[1] Anunay Amar and Peter C Rigby. 2019. Mining historical test logs to predict bugs

and localize faults in the test logs. In 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE). IEEE, 140–151.

[2] Zhichao Chen, Junjie Chen, Weijing Wang, Jianyi Zhou, Meng Wang, Xiang
Chen, Shan Zhou, and Jianmin Wang. 2023. Exploring better black-Box test case
prioritization via log analysis. ACM Transactions on Software Engineering and
Methodology 32, 3 (2023), 1–32.

[3] Yuanfei Dai, Shiping Wang, Neal N Xiong, and Wenzhong Guo. 2020. A survey
on knowledge graph embedding: Approaches, applications and benchmarks.
Electronics 9, 5 (2020), 750.

[4] Cheng Deng, Yuting Jia, Hui Xu, Chong Zhang, Jingyao Tang, Luoyi Fu, Weinan
Zhang, Haisong Zhang, Xinbing Wang, and Chenghu Zhou. 2021. Gakg: A
multimodal geoscience academic knowledge graph. In Proceedings of the 30th
ACM International Conference on Information & Knowledge Management. 4445–
4454.

[5] Wojciech Dobrowolski, Maciej Nikodem, and Olgierd Unold. 2023. Software
Failure Log Analysis for Engineers. Electronics 12, 10 (2023), 2260.

[6] Luca Gazzola, Maayan Goldstein, Leonardo Mariani, Marco Mobilio, Itai Segall,
Alessandro Tundo, and Luca Ussi. 2023. ExVivoMicroTest: ExVivo testing of
microservices. Journal of Software: Evolution and Process 35, 4 (2023), e2452.

[7] Israr Ghani, Wan MN Wan-Kadir, Ahmad Mustafa, and Muhammad Imran Babir.
2019. Microservice testing approaches: A systematic literature review. Interna-
tional Journal of Integrated Engineering 11, 8 (2019), 65–80.

[8] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R Lyu. 2017. Drain: An online
log parsing approach with fixed depth tree. In 2017 IEEE international conference
on web services (ICWS). IEEE, 33–40.

[9] Kim Herzig and Nachiappan Nagappan. 2015. Empirically detecting false test
alarms using association rules. In 2015 IEEE/ACM 37th IEEE International Confer-
ence on Software Engineering, Vol. 2. IEEE, 39–48.

[10] Xuqian Huang, Jiuyang Tang, Zhen Tan, Weixin Zeng, Ji Wang, and Xiang Zhao.
2021. Knowledge graph embedding by relational and entity rotation. Knowledge-
Based Systems 229 (2021), 107310.

[11] He Jiang, Xiaochen Li, Zijiang Yang, and Jifeng Xuan. 2017. What causes my
test alarm? Automatic cause analysis for test alarms in system and integration
testing. In 2017 IEEE/ACM 39th International Conference on Software Engineering
(ICSE). IEEE, 712–723.

[12] Amar Viswanathan Kannan, Dmitriy Fradkin, Ioannis Akrotirianakis, Tugba
Kulahcioglu, Arquimedes Canedo, Aditi Roy, Shih-Yuan Yu, Malawade Arnav,
and Mohammad Abdullah Al Faruque. 2020. Multimodal knowledge graph for
deep learning papers and code. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management. 3417–3420.

[13] Jinhan Kim, Valeriy Savchenko, Kihyuck Shin, Konstantin Sorokin, Hyunseok
Jeon, Georgiy Pankratenko, Sergey Markov, and Chul-Joo Kim. 2020. Automatic
abnormal log detection by analyzing log history for providing debugging in-
sight. In Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering: Software Engineering in Practice. 71–80.

[14] Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei Chen. 2016.
Log clustering based problem identification for online service systems. In Pro-
ceedings of the 38th International Conference on Software Engineering Companion.

102–111.
[15] Dewei Liu, Chuan He, Xin Peng, Fan Lin, Chenxi Zhang, Shengfang Gong, Ziang

Li, Jiayu Ou, and Zheshun Wu. 2021. Microhecl: High-efficient root cause local-
ization in large-scale microservice systems. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP).
IEEE, 338–347.

[16] Siyang Lu, BingBing Rao, Xiang Wei, Byungchul Tak, Long Wang, and Liqiang
Wang. 2017. Log-based abnormal task detection and root cause analysis for spark.
In 2017 IEEE International Conference on Web Services (ICWS). IEEE, 389–396.

[17] Meng Ma, Jingmin Xu, Yuan Wang, Pengfei Chen, Zonghua Zhang, and Ping
Wang. 2020. Automap: Diagnose your microservice-based web applications
automatically. In Proceedings of The Web Conference 2020. 246–258.

[18] Shang-Pin Ma, Chen-Yuan Fan, Yen Chuang, Wen-Tin Lee, Shin-Jie Lee, and
Nien-Lin Hsueh. 2018. Using service dependency graph to analyze and test
microservices. In 2018 IEEE 42nd Annual Computer Software and Applications
Conference (COMPSAC), Vol. 2. IEEE, 81–86.

[19] Suman Ravuri and Oriol Vinyals. 2019. Classification accuracy score for condi-
tional generative models. Advances in neural information processing systems 32
(2019).

[20] Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings
using siamese bert-networks. arXiv preprint arXiv:1908.10084 (2019).

[21] Yicheng Sui, Yuzhe Zhang, Jianjun Sun, Ting Xu, Shenglin Zhang, Zhengdan
Li, Yongqian Sun, Fangrui Guo, Junyu Shen, Yuzhi Zhang, et al. 2023. LogKG:
Log Failure Diagnosis through Knowledge Graph. IEEE Transactions on Services
Computing (2023).

[22] Muhammad Waseem, Peng Liang, Mojtaba Shahin, Amleto Di Salle, and Gastón
Márquez. 2021. Design, monitoring, and testing of microservices systems: The
practitioners’ perspective. Journal of Systems and Software 182 (2021), 111061.

[23] Zhe Xie, Haowen Xu, Wenxiao Chen, Wanxue Li, Huai Jiang, Liangfei Su,
Hanzhang Wang, and Dan Pei. 2023. Unsupervised Anomaly Detection on Mi-
croservice Traces through Graph VAE. In Proceedings of the ACMWeb Conference
2023. 2874–2884.

[24] Guangba Yu, Pengfei Chen, Hongyang Chen, Zijie Guan, Zicheng Huang, Linxiao
Jing, Tianjun Weng, Xinmeng Sun, and Xiaoyun Li. 2021. Microrank: End-to-
end latency issue localization with extended spectrum analysis in microservice
environments. In Proceedings of the Web Conference 2021. 3087–3098.

[25] Yue Yuan, Wenchang Shi, Bin Liang, and Bo Qin. 2019. An approach to cloud
execution failure diagnosis based on exception logs in openstack. In 2019 IEEE
12th International Conference on Cloud Computing (CLOUD). IEEE, 124–131.

[26] Shenglin Zhang, Pengxiang Jin, Zihan Lin, Yongqian Sun, Bicheng Zhang, Sibo
Xia, Zhengdan Li, Zhenyu Zhong, Minghua Ma, Wa Jin, et al. 2023. Robust
Failure Diagnosis of Microservice System through Multimodal Data. arXiv
preprint arXiv:2302.10512 (2023).

[27] Xu Zhang, Yong Xu, Si Qin, Shilin He, Bo Qiao, Ze Li, Hongyu Zhang, Xukun Li,
Yingnong Dang, Qingwei Lin, et al. 2021. Onion: identifying incident-indicating
logs for cloud systems. In Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 1253–1263.

Received 2024-02-08; accepted 2024-04-18


	Abstract
	1 Introduction
	2 Preliminary and Motivation
	2.1 Background
	2.2 Motivation

	3 Design
	3.1 The Framework of SynthoDiag
	3.2 Fault-Irrelevant Log Filtering
	3.3 Knowledge Graph Construction
	3.4 Case Embedding
	3.5 Fault Diagnosing

	4 Evaluation
	4.1 Experiment setup
	4.2 The Overall Performance
	4.3 Ablation Study
	4.4 Classification Algorithms

	5 Implementation
	6 Discussion
	7 Related Work
	7.1 Fault Diagnosis
	7.2 Fault Localization

	8 Conclusion
	9 Acknowledgement
	References

