
The Journal of Systems & Software 203 (2023) 111735

Y
K

s
b
a
c
m
s
h
i
a
b
o
s
a
d
a
l

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

LWS: A framework for log-basedworkload simulation in session-based
SUT✩

ongqi Han a, Qingfeng Du a,∗, Jincheng Xu a, Shengjie Zhao a, Zhekang Chen b, Li Cao b,
anglin Yin c, Dan Pei c

a School of Software Engineering, Tongji University, 201804, Shanghai, China
b Bizseer, 100083, Beijing, China
c Department of Computer Science and Technology, Tsinghua University, 100084, Beijing, China

a r t i c l e i n f o

Article history:
Received 3 November 2022
Received in revised form 22 March 2023
Accepted 26 April 2023
Available online 4 May 2023

Keywords:
Workload simulation
Behavior model
Intensity modeling
AIOps

a b s t r a c t

Artificial intelligence for IT Operations (AIOps) plays a critical role in operating and managing cloud-
native systems and microservice-based applications but is limited by the lack of high-quality datasets
with diverse scenarios. Realistic workloads are the premise and basis of generating such AIOps datasets,
with the session-based workload being one of the most typical examples. Due to privacy concerns,
complexity, variety, and requirements for reasonable intervention, it is difficult to copy or generate
such workloads directly, showing the importance of effective and intervenable workload simulation.
In this paper, we formulate the task of workload simulation and propose a framework for Log-
based Workload Simulation (LWS) in session-based systems. LWS extracts the workload specification
including the user behavior abstraction based on agglomerative clustering as well as relational models
and the intervenable workload intensity from session logs. Then LWS combines the user behavior
abstraction with the workload intensity to generate simulated workloads. The experimental evaluation
is performed on an open-source cloud-native application with both well-designed and public real-
world workloads, showing that the simulated workload generated by LWS is effective and intervenable,
which provides the foundation of generating high-quality AIOps datasets.

© 2023 Elsevier Inc. All rights reserved.
1. Introduction

Microservice-based applications composed by loosely coupled
ervices have become the de-facto standard for delivering core
usiness in large IT enterprises due to the independent and scal-
ble nature (Soldani et al., 2018). With the development of cloud
omputing, microservice-based applications have the promise of
igrating to the cloud-native architecture with scalability, re-
iliency, and elasticity (Kratzke and Quint, 2017). Due to the
eterogeneous, asynchronous, and independent nature, artificial
ntelligence for IT Operations (AIOps) that enhances the quality
nd reliability of IT service offerings (Notaro et al., 2021) has
een proposed and applied in the operation and management
f cloud-native systems and microservice-based applications. De-
pite the steady growing efforts in various AIOps tasks such as
nomaly detection and fault localization in recent years, AIOps
atasets comprised of execution traces, monitoring metrics, logs,
nd fault labels commonly suffer from privacy restrictions, scale
imitations, few data types and specific scenarios (Li et al., 2022),

✩ Editor: Jacopo Soldani.
∗ Corresponding author.

E-mail address: du_cloud@tongji.edu.cn (Q. Du).
ttps://doi.org/10.1016/j.jss.2023.111735
164-1212/© 2023 Elsevier Inc. All rights reserved.
which makes it difficult to guarantee the generality and real
performance of AIOps efforts. Therefore, it is critical to continually
generate high-quality AIOps datasets with diverse scenarios for
the purpose of assisting and evaluating AIOps researches.

Generating high-quality AIOps datasets requires realistic work-
loads that represent incoming user requests in specific time
intervals as the premise and basis. For commonly treated AIOps
tasks such as anomaly detection and fault localization, realis-
tic workloads can produce diverse failure scenarios better than
simple constant workloads, which promotes the development
of AIOps (Li et al., 2022). One of the most typical workloads is
the session-based workload describing the sequence of interde-
pendent requests from the same user in session-based applica-
tion systems (Goeva-Popstojanova et al., 2006). Generating such
workloads in microservice-based applications is not a simple
implementation of mocking user operations based on testing
tools. Instead, it involves the following major challenges:

(1) The Conflict between Realism and Privacy: Realism in
generating workloads is crucial for accurately reflecting real sys-
tem performance in AIOps datasets. However, for privacy con-
cerns, original real user operations are generally not directly

accessible. Instead, observability data such as logs monitoring

https://doi.org/10.1016/j.jss.2023.111735
https://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2023.111735&domain=pdf
mailto:du_cloud@tongji.edu.cn
https://doi.org/10.1016/j.jss.2023.111735

Y. Han, Q. Du, J. Xu et al. The Journal of Systems & Software 203 (2023) 111735

u
c

b
t
u
l
v
o
b

o
s
s
2
w
b

s
s
l
c
w
f
i
m
p
i
a
i
r
a
w
i
u

Fig. 1. The motivating scenario and typical use cases of LWS.
ser operations needs to be converted to the workload specifi-
ation for generation.

(2) Complexity and Variety: Microservice-based applications
enefit from the loose coupling characteristic, which enables
hem to provide more functionalities that can lead to complex
ser behavior combinations in workloads compared to mono-
ithic applications. Besides, real workloads are usually highly
olatile (Reiss et al., 2012), which vary considerably from constant
r stepwise increasing workloads usually performed in sand-
oxed scenarios.

(3) Reasonable Intervention: Some prior knowledge from
ther similar systems can be referred to in workload generation,
uch as holidays and events providing somewhat predictable
hocks in a wide range of business scenarios (Taylor and Letham,
018). The reasonable intervention based on prior knowledge in
orkload generation is beneficial for the analysis of predictable
usiness patterns that happened in similar systems before.

These challenges reflect that the effective and intervenable
imulation of workloads for generating AIOps datasets is more
uitable and feasible than the simple copy of previous work-
oads based on original user operations. In response to these
hallenges, we propose an end-to-end framework for log-based
orkload simulation (LWS) to extract and generate workloads

rom logs produced by user operations that happened before
n the session-based system under test (SUT). Fig. 1 shows the
otivating scenario and typical use cases of LWS. The whole
rocess of AIOps dataset generation and utilization is divided
nto three parts. First session logs from the original session-based
pplication under real-world user operations are collected as the
nput of LWS. For potential privacy concerns, LWS is designed to
equire no additional data from the original system. In consider-
tion of controllability and precise fault labels in AIOps datasets,
e separate workloads from faults and assume that all failures

n generated datasets are caused by fault injection. Therefore,
ser behaviors in such session logs are under the failure-free
2

assumption and LWS only considers normal workloads. Then
in the simulation process, the workload is simulated by LWS
and executes on the session-based application for simulation
along with injected faults. The scope of LWS is workload simula-
tion containing typical use cases of reproducing, transferring and
intervening workload scenarios as well as extracting workload
specification as the basis, differing from the peak or average
workload generation in performance testing. Finally, the labeled
AIOps dataset with diverse scenarios is generated by collecting
observability data in the session-based application for simulation
and applied in AIOps tasks such as anomaly detection, which is
the motivating scenario of LWS. To meet the above requirements,
LWS extracts the workload specification including the user be-
havior abstraction based on agglomerative clustering as well as
relational models and the intervenable workload intensity from
session logs. Then LWS combines the user behavior abstraction
with the workload intensity to generate simulated workloads. To
summarize, the main contributions of our work are as follows:

• We define the task of workload simulation formally with a
set of necessary preliminaries. To the best of our knowledge,
this is the first formal definition of workload simulation.

• We propose an end-to-end framework named LWS for log-
based workload simulation in session-based application sys-
tems. LWS extracts the workload specification including the
user behavior abstraction and the intervenable workload in-
tensity, combining them for simulated workload generation.

• We perform a case study on an open-source cloud-native
microservice demo application with both well-designed and
real-world workloads to evaluate LWS comprehensively,
demonstrating that LWS can generate effective and inter-
venable simulated workloads which provide the foundation
of generating high-quality AIOps datasets.

Y. Han, Q. Du, J. Xu et al. The Journal of Systems & Software 203 (2023) 111735

2

l
a
s
e
d
b
t
b

2

s
p
q
i
w
b
i
E
m
s
T
b
t
e
o
a
e
d
a
i
w
p
e
e
g
B
a
M
a
p
b
c
a

2

s
o
t
s
F
t
m
L
f
d
M

b
t
T

i
s
s
p
t
g
s

h
r
H
s
b
q
a

. Related work

The key to workload simulation is the extraction of the work-
oad specification. The workload specification describes key char-
cteristics of user interactions with applications and is commonly
ummarized and explained by a workload model (Calzarossa
t al., 2016). We adopt the division in Vögele et al. (2018) which
ivides the extraction of the workload specification into user
ehavior abstraction and workload intensity modeling. We group
he related work into the above parts and explain the differences
etween LWS and existing approaches as follows.

.1. User behavior abstraction

The user behavior sequence characterizes the single user ses-
ion including which and how many operations a user finishes
er session. One common approach is to configure a fixed se-
uence of user operations with manual scripts. This approach
s simple but hardly varies characteristics and is far from real
orkloads (Draheim et al., 2006). For more representative user
ehavior abstraction, approaches based on analysis models are
ntroduced, including approaches based on Markov Chains and
xtended Finite State Machines (EFSMs). Markov-Chain-based
odels assume the memoryless property in the user behavior
equence, which are widely applied in web applications (Li and
ian, 2003). Moreover, Customer Behavior Model Graphs(CBMGs)
ased on Markov chains which represent classes of users are ex-
racted from logs in different systems (Menascé et al., 1999; Ruffo
t al., 2004; Parrott and Carver, 2020). To overcome the limitation
f modeling inter-request dependencies (also known as Guards
nd Actions, GaAs) in Markov-chain-based approaches, Shams
t al. Shams et al. (2006) propose an approach relying on EFSMs to
escribe valid user behavior sequences by predefined state vari-
bles as well as GaA parameters. To reduce the number of states
n EFSMs, the kTails (Biermann and Feldman, 1972) algorithm
hich merges pairs of equivalent states is also applied in the
rocess of extraction (Goldstein et al., 2017). WESSBAS (Vögele
t al., 2018) combines approaches based on CBMGs and EFSMs,
xtracts GaAs from production session logs automatically, and
enerates executable workload models. Schulz et al. (2019) and
arnert and Krcmar (2021) extend WESSBAS to microservice
pplications and databases by tailoring logs and modifying the
arkov chain respectively. Besides, the stochastic form-oriented
nalysis (Draheim et al., 2006; Lutteroth and Weber, 2008), the
robabilistic timed automata (Abbors et al., 2012), the context-
ased sequential action (Zhou et al., 2014) and the latent features
omputed by URI space mapping vectors (Erradi et al., 2019) are
lso applied in user behavior abstraction.

.2. Workload intensity modeling

As introduced in Curiel and Pont (2018), the workload inten-
ity indicating the number of concurrent users can show daily
r weekly access patterns and remarkable increases in short
ime spans. The constant or stepwise increasing workload inten-
ity is widely used in performance testing frameworks such as
aban1 and JMeter2 but cannot describe complex variations of
he highly dynamic real-world workload intensity. To define and
odify the workload intensity in a flexible and intuitive way,
IMBO (v. Kistowski et al., 2014) allows for modeling and con-
iguring the workload intensity with load profiles and variables
escribing seasonal patterns, bursts, noise, and monotonic trends.
any approaches focus on workload intensity forecasting. Herbst

1 http://faban.org/
2 https://jmeter.apache.org/
 t

3

et al. (2014), Erradi et al. (2019), Fei et al. (2020), Feng et al.
(2022) forecast the workload intensity by choosing suitable re-
gression models including the Elastic Net regression model, the
boosting decision tree regression prediction model, the Ridge
regression model, the Lasso regression model, and the Multi-
Layer Perceptron. Time series forecasting approaches including
Telescope and Prophet are also applied to forecast the context-
tailored workload intensity (Schulz et al., 2021). Besides, there
also exist approaches replaying the workload directly (Fattah
et al., 2020).

2.3. Differences between LWS and existing approaches

Most existing approaches only focus on workload specifi-
cation extraction and the replay of original workloads. WESS-
BAS (Vögele et al., 2018) which extracts the relational model from
HTTP request logs, generates the workload intensity based on
LIMBO (v. Kistowski et al., 2014) and uses a domain-specific lan-
guage (DSL) to specify workload models is a classic example and
similar to our approach. Compared with these approaches, LWS
has a fundamentally different goal of reproducing, transferring,
and intervening workload scenarios for generating high-quality
AIOps datasets with diverse scenarios rather than mere perfor-
mance testing. Therefore, LWS focuses on quick, extensible, and
intervenable workload generation instead of the peak or average
workloads commonly used in WESSBAS and other approaches.
As introduced in Section 4, LWS refers to the automatic GaA
extraction process of WESSBAS in user behavior abstraction but
abstracts the user behavior by a more general method and Hier-
archical clustering. Moreover, LWS explores different strategies
of workload intensity modeling and combines them for work-
load simulation which can be intervened effectively for quick,
extensible, and intervenable workload generation. Besides, some
other approaches (Herbst et al., 2014; Erradi et al., 2019; Fei
et al., 2020; Schulz et al., 2021; Feng et al., 2022) attempt to
forecast future workloads based on time series forecasting and
workload specification. Different from these approaches, LWS
provides an e2e framework for workload simulation rather than
specific forecasts for concrete systems.

3. Problem definition

In this section, we present a set of formal descriptions for the
task of workload simulation. First, we introduce the definition of
user behaviors.

Definition 1 (User Behavior). Let T be a session-based SUT. A user
ehavior (denoted by u) is a single logical unit of work executed by
he end user, which can access and possibly modify the contents in
.

A session is a series of contiguous actions by a user on an
ndividual system within a given time frame that is stored on the
erver side, but which action is a user behavior u for workload
imulation? To guarantee that u can be properly selected, we
ropose the ASID properties. We do not claim these properties
o be a complete set of desiderata, but they can be seen as a
ood starting point toward the understanding of u in workload
imulation.

(1) Atomicity: The entire u takes place at once or does not
appen at all. It will not occur partially. For example, an HTTP
equest can only be sent to T or not, and there is no midway.
ence, an HTTP request follows atomicity. On the contrary, a
equence of HTTP requests can be executed one by one in the
eginning and not be executed anymore for the rest. Hence, a se-
uence of HTTP requests disobeys atomicity, and cannot be seen
s the user behavior. The atomicity property helps to determine

he granularity of u.

http://faban.org/
https://jmeter.apache.org/

Y. Han, Q. Du, J. Xu et al. The Journal of Systems & Software 203 (2023) 111735

o
c
s
t
s

w
o
u
c
a

c
e
e
b
t
p
u

t
t
b
t
i
t

D
a
s
w

i
t
I
t
s
d

u
a
s

b
w
p

D
r
w
i

c
f
t
c

D
s
w
p
W
c
f

n
w
s
s
w
o
c
d
i
e
m

t
l
m
b

4

f
c

-

4

c
v
o
i
f
E

n
s
a
Ω
t
r
u
q
i

t
f
b
U
o
a
N

(2) Security: The user behavior umust not result in the failure
f T . For example, if a request leading to SQL injection attacks
an crash the database, then T will not be able to process the
ubsequent requests normally. The security property makes sure
hat T can always process the user behaviors in the original and
imulated workload.

(3) Isolation: Multiple user behaviors can occur concurrently
ithout leading to the inconsistency of the state of T . Changes
ccurring in a particular u will not be visible to any other u
ntil the particular change is written to memory or has been
ommitted. Usually, the isolation property is provided by T for
ll the received requests.

(4) Durability: Once a user behavior u has completed exe-
ution, updates and modifications to T are stored and persist
ven if a system failure occurs. For example, the mouse-move
vent is usually meaningless for the system state and will not
e stored by T . Even though it is a necessary action executed by
he user, it should not be seen as a user behavior. The durability
roperty helps to exclude insignificant actions and focus on key
ser behaviors.

In a web-based application T , a single HTTP request satisfying
he ASID properties can be seen as a user behavior u. According
o the request URL and the request method (GET/POST), user
ehaviors can be further divided into different types. We assume
hat parameters and their values do not affect the taxonomy of u
n this paper. Based on the definition of user behaviors, we define
he user behavior sequence as follows:

efinition 2 (User Behavior Sequence). Let T be a session-based SUT
nd ui be the ith user behavior within a session. A user behavior
equence denoted by S is an ordered sequence of (u1, u2, · · · , ul)
hich can be executed entirely without raising errors in T .

Consider the following case. Assume that ua is the user behav-
or of ‘‘add_to_cart’’ and ub is ‘‘placing_order’’. The SUT T requires
hat ub cannot be executed alone and ua must always precede ub.
f we try to execute an ordered sequence of (ub, ua) forcefully,
hen the sequence is definitely illegal and it may even lead to a
ystem crash in T . Hence, if a sequence could raise an error, we
o not treat it as a user behavior sequence S.
In a web-based application T where a single HTTP request is

, S can be seen as an ordered sequence of HTTP requests within
session. For simplicity, we refer to a user behavior sequence as a
ession, and we use both terms throughout the rest of the paper.
In workload simulation, what to do is important, and it has

een guaranteed by S as the action dimension. On the other hand,
hen to do is also important. The definition of workload intensity
rovides the time dimension:

efinition 3 (Workload Intensity). Let I : t → N+ be the function
eturning the number of active sessions at the timestamp of t. The
orkload intensity, denoted as I, is a sequence of discrete-time data

ndexed in time order whose y-value is I(t).

In a real system, the number of active sessions is usually
ollected by the monitoring facilities with unceasing regularity,
or example, every 15 seconds. Hence, we define x-value t of
he workload intensity I on a discrete domain rather than a
ontinuous domain.
Now we present the definition of workload simulation.

efinition 4 (Workload Simulation). Given a series of user behavior
equences Ω(S) = {S1, · · · , Sk} and the workload intensity I, Ω(S)
ill be executed on the session-based SUT T scheduled by I to
roduce the original workload, and a set of logs will be collected.
orkload simulation aims to produce a new workload containing

haracteristics of the original workload and reasonable interventions
rom existing real workload patterns.
4

It is worth mentioning that the task of workload simulation is
ot to achieve a 1:1 emulation of the original workload or just
orkload execution. On the one hand, a specific user behavior
equence S is meaningless in a workload containing thousands of
essions. We are more interested in how a group of users interact
ith T rather than how a specific user interacts with T . On the
ther hand, workload simulation is not the final purpose but a
ompulsory task for generating high-quality AIOps datasets with
iverse scenarios. We may want to increase the number of users,
mprove the architecture of SUT or transfer the workload to a new
nvironment. User behavior abstraction and workload intensity
odeling will be more helpful.
More concretely, the simulated workload should be similar to

he original workload in terms of user behaviors and the work-
oad intensity while keeping T the same. Moreover, performance
etrics collected by monitoring facilities should also keep similar
etween the original workload and the simulated workload.

. LWS framework

In this section, we zoom in on the details of our proposed LWS
ramework. The architecture has been illustrated in Fig. 2, which
onsists of four different components:

• Log Collection and Transformation: Collect and pre-process
logs from the SUT under the original workload.

• User Behavior Abstraction: Infer a high-level representa-
tion from thousands of sessions to describe user behaviors
in a probabilistic way.

• Workload Intensity Modeling: Describe the number of ac-
tive sessions indicating concurrent users as a time series for
workload simulation.

• SimulatedWorkload Generation: Generate executable work
loads based on user behavior abstraction and workload
intensity.

.1. Log collection and transformation

A wide variety of monitoring facilities can be used for log
ollection. According to the deployment architecture of T , de-
elopers or testers can take suitable solutions to monitor the
riginal workload (as well as the simulated workload), especially
n the cloud-native systems integrating with observability speci-
ications such as OpenTelemetry3 and tools such as Filebeat4 and
lasticsearch5 naturally.
A system can generate hundreds of logs in very little time, but

ot all the collected logs are necessary for workload simulation
uch as standalone logs recording event messages from the oper-
ting system. According to the definition of workload simulation,
(S) = {S0, · · · , Sk} and I provide the action dimension and

he time dimension as the necessary conditions. Therefore, the
equest-related logs to be filtered out are expected to contain the
nique identifier to indicate a session (e.g., session ID), the re-
uest starting time, the request path, and the request parameters
n a session-based application.

After the logs have been collected and filtered, we need to alter
he structure and format of raw data to make it better organized
or the analysis of the original workload. The useless fields will
e removed to save storage space and reduce useless calculations.
nder multiple concurrent requests, the collected logs are usually
ut of order, so we need to group them by the unique identifier
nd sort the logs by the request start time within each session.
ow, the pre-processed logs are ready for the next steps.

3 https://opentelemetry.io/
4 https://github.com/elastic/beats
5 https://github.com/elastic/elasticsearch

https://opentelemetry.io/
https://github.com/elastic/beats
https://github.com/elastic/elasticsearch

Y. Han, Q. Du, J. Xu et al. The Journal of Systems & Software 203 (2023) 111735

i

4

d
n
s
M
c
e
b
t
s
f
n
F

a

Fig. 2. The architecture of the LWS framework.
p

Fig. 3. The Markov probabilistic transition graph constructed on the dataset A
n the case study.

.2. User behavior abstraction

Suppose there are Nu types of user behaviors for T . Inspired
by Markov Chains, the simplest way to abstract user behaviors is
to construct a (Nu + 2) × (Nu + 2) probabilistic transition matrix
enoted by A. The extra two columns/rows represent the dummy
odes of ‘‘start’’ (denoted by us) and ‘‘end’’ (denoted by ue) for the
tart and end of a user behavior sequence, similar to the initial
arkov state and the exit Markov state. Each row Ar,_ or each
olumn A_,c corresponds to a certain type of user behavior, and
ach element Ar,c ∈ A is the transition probability from the user
ehavior ur to uc . Since there will be no node preceding us, the
ransition probability from any node to us must be 0. Similarly,
ince there will be no node following ue, the transition probability
rom ue to any node must be 0. The extraction of S starts from the
ode of us and ends as long as the node of ue is selected. Refer to
ig. 3 for an example.
However, there are two main drawbacks in the above vanilla

bstraction method as follows:

• The Impact of Different Groups of Users: Real-world users
typically have different preferences which can be divided

into different groups. For example, some users just browse

5

without purchasing, while others purchase their essential
items. The vanilla abstraction method ignores differences in
behaviors and proportions of different user groups.

• The Neglect of Possible Temporal Invariants: For example,
an item has to be added to the cart (denoted by uadd_to_cart)
before the customer places the order (denoted by uplacing_
order). However, in Fig. 3, the behavior sequence [us, uhome,
userving_product_page, uview_user_cart , uplacing_order , ue] is possible
which violates the above restriction. The reason for this is
that no temporal invariant has been taken into consideration
when transiting between nodes.

To address these problems, we introduce a user behavior
abstraction method, grouping users by Hierarchical clustering
based on the Markov transition matrix and establishing a rela-
tional model for each user group containing pre-defined temporal
invariants as follows.

4.2.1. User grouping
To identify different groups of users, each user behavior se-

quence needs to be represented as feature embedding for (dis)
similarity or ‘‘distance’’ computation. Inspired by the behavior
model in WESSBAS, we calculate the (Nu + 2) × (Nu + 2) Markov
robabilistic transition matrix Ȧ for each user behavior sequence

and flatten Ȧ to a vector v̇ by Eq. (1) as feature embedding where
Ȧr,c is the element of Ȧ in the rth row and the cth column and v̇i
is the ith element of v̇.

Ȧr,c = v̇r×(Nu+2)+c (1)

Based on the above feature embedding, we can compute the
user behavior sequence similarity and identify different user
groups. Due to the natural hierarchy of user behaviors (Kang et al.,
2010), websites (Lee et al., 2011) and user profiles (Gu et al.,
2020), we build on a typical hierarchical clustering algorithm,
agglomerative clustering which adopts the bottom-up strategy to
organize data into a tree structure (Xu and Wunsch, 2005). All
Ns user behavior sequences are divided into Ns clusters at first.

Then the cluster pair (Ci, Cj) with the minimal variance calculated

Y. Han, Q. Du, J. Xu et al. The Journal of Systems & Software 203 (2023) 111735

b
y Eq. (2) is found where Ṅ denotes the number of clusters, Ci
denotes the ith cluster, v̇h denotes the feature embedding of the
hth user behavior sequence in the cluster, mCp denotes the central
vector of the cluster Cp and ∥·∥ denotes the two-norm of a vector.

∆(Ci, Cj) = min
1≤p,q≤Ṅ

(
∑

h∈Cp∪Cq

v̇h − mCp∪Cq

2
−

∑
h∈Cp

v̇h − mCp

2
−

∑
h∈Cq

v̇h − mCq

2)
(2)

Then Ci and Cj are merged into a new cluster and the new
cluster pair between the new cluster and the other clusters is
searched for a new merger. The process is repeated until all user
behavior sequences are in Nc clusters where Nc is the expected
number of groups.

4.2.2. Relational model establishing for each user group
For each group of user behavior sequences identified in Sec-

tion 4.2.1, we introduce Synoptic (Schneider et al., 2010) which
generates a relational model to model user behaviors with tem-
poral invariants. Three kinds of invariants are pre-defined and
mined in user behavior sequences:

• a Always Followed by b: Whenever the behavior type a
appears, the behavior type b always appears later in the
same user behavior sequence.

• a Never Followed by b: Whenever the behavior type a
appears, the behavior type b never appears later in the same
user behavior sequence.

• a Always Precedes b: Whenever the behavior type b ap-
pears, the behavior type a always appears before b in the
same user behavior sequence.

To mine the above invariants, each user behavior sequence is
traversed once to collect the following counts:

• ∀a, OC[a] denoting the number of user behavior instances of
a.

• ∀a, b, FO[a][b] denoting the number of user behavior in-
stances of a which are followed by one or more user be-
havior instances of b.

• ∀a, b, PR[a][b] denoting the number of user behavior in-
stances of n which are preceded by one or more user
behavior instances of a.

Then the invariants are mined by Eq. (3).

a Always Followed by b ⇔ FO[a][b] = OC[a]
a Never Followed by b ⇔ FO[a][b] = 0

a Always Precedes b ⇔ PR[a][b] = OC[b]
(3)

After mining the invariants, the probabilistic transition matrix
is also constructed as the adjacency matrix of the initial graph
G(V, E) where V denotes the vertex set and E denotes the edge
set. Refinement and coarsening operations are performed in elim-
inating transition processes that violate the invariants (i.e. coun-
terexamples) based on the initial graph as shown in Fig. 4. In the
refinement process (lines 1–16), the Bisim algorithm (Schneider
et al., 2010) is applied to eliminate counterexamples by generat-
ing new partition graphs. A partition is the splitting of the vertex
in V , belonging to the same user behavior type but corresponding
to different instances. First findCounterexample() attempts to find
at least one counterexample for each invariant by traversing the
vertices based on Breadth-First Search (BFS). For each counterex-
ample, findSplit() attempts to find a valid split that can eliminate
the counterexample. The longest prefix of counterexample that

does not violate any invariant is identified and the last vertex

6

Fig. 4. The refinement and coarsening algorithm.

of the prefix is selected to be the candidate split. Then the new
partition graph is generated based on the split. If there is no valid
split but still exists counterexamples, the new partition graph
is generated based on an arbitrary split. The above process is
repeated until there exists no counterexample in the partition
graph.

In the coarsening process (lines 17–32), the kTails algorithm
(Biermann and Feldman, 1972) is applied to reduce the number
of partitions for the sake of brevity. Each pair of two different
partitions belonging to the same user behavior type is chosen to
merge. If there exist new counterexamples in the merged graph,
the merge operation is rolled back. Finally, the most concise graph
with no invariant violations is generated which is the abstraction
of user behaviors.

Synoptic is not the only choice for abstraction. To meet the
actual requirements of the SUT, more (or fewer) temporal invari-
ants can be applied to improve the robustness of the generated
relational model. For example, Perfume (Ohmann et al., 2014)
proposes invariants with constrained resource measurements as
well as WESSBAS proposes the invariant learning guards and
actions (GaAs) which needs more business knowledge. However,
it is impossible to find the exactly right and sufficient invariants
because each invariant is designed for special business scenarios
specific to the SUT. Expert knowledge of the SUT has a positive

effect on the choice of invariants.

Y. Han, Q. Du, J. Xu et al. The Journal of Systems & Software 203 (2023) 111735

4

t
n

4

s
I
l
i
a
i
s
s
o
c
a

R
t
s
i
S
a
s
i
b

b
t
o
r
δ

m
a
f
c
s

t

b
t

4

s
c
f
n
L
c

T
e
o
t
o
b

t
r
p
a

.3. Workload intensity modeling

For better intensity modeling, we propose three methods
o model the workload intensity I from different perspectives,
amely Reproduction, Fitting and Generation.

.3.1. Reproduction
In the reproduction method, we want to reproduce the time

eries of the original intensity I exactly for workload simulation.
n other words, the simulated intensity can be seen as the trans-
ation of the original intensity along the x-axis to a new time
nterval. The goal seems to be clear and straightforward, but it is
lmost impossible to achieve in reality because of the difference
n session lengths (the number of user behaviors belonging to a
ession) or thinking times between the original workload and the
imulated workload. For example, after an interval of 30 min, the
riginal intensity may ramp down to 0 active sessions, but we
annot make sure that the sessions of simulated workload are
lso finished.
To simplify the problem, we follow the principle of Occam’s

azor and only consider the start time of each session rather than
he duration. That is, I(t) denotes the number of sessions which
tarts in the time of t rather than the number of active sessions
n the reproduction method (as well as the other two methods).
uppose that the interval between the start time of the ith session
nd the (i + 1)th session is △t in the original intensity. In the
imulated intensity generated by the reproduction method, the
nterval between the start time of Si and Si+1 is also expected to
e △t .
To make sure that the domain of I , denoted by t ∈ [ts, te], can

e divided into successive equally spaced points to be a standard
ime series, we set up an array of initially empty buckets. Each
f them represents a time span of δ seconds, so from left to
ight each bucket covers the range of [ts, ts + δ), [ts + δ, ts + 2 ×

), · · · , [te − δ′, te] where δ′
= (te − ts) mod δ (mod means the

odulo operation). Then we go over the start time of each session
nd put each session in its bucket. In this way, I(t) discards the
ine-grained information on the start time of each session, but it
an describe the overall intensity in the form of a standard time
eries.
If the original workload consists of NS sessions, we also have

o extract NS user behavior sequences from the relational model
to make sure that the total number of sessions is consistent. Con-
sequently, we can reproduce the original intensity with respect to
the session start time.

4.3.2. Fitting
Sometimes we are not only interested in reproducing the

original intensity, but also interested in the performance of the
SUT if we deliberately change the original intensity. For example,
we may want to produce a workload that is longer than the
original workload and increase the concurrent user capacity to
see how the memory usage will change under the new workload.
The new workload relies on the characteristics of the original
workload rather than the simple translation. To achieve this goal,
we propose the fitting method to learn the characteristics of
the original intensity based on basic mathematical expressions.
The first step is to decompose the original intensity into three
distinct components including seasonality, trend, and noise based
on time series decomposition algorithms such as RobustSTL (Wen
et al., 2019). This step is to make sure that we can take a deeper
investigation into the characteristics of the original intensity. For
example, the intensity in an online game may have a significant
repeating short-term cycle on weekends, and we can analyze
the seasonality independently to increase the peak on weekends
but keep the online players on weekdays unchanged. The next
 T

7

step is to use a set of basic mathematical expressions such as
polynomials to fit the targeted time series and choose the most
suitable expression. Quasi-Newton methods (Dennis and Moré,
1977) are introduced to resolve the non-linear equations so that
we can resolve the time series to a parameterized mathematical
expression. At last, we can adjust the expression parameters to
control the shape of the targeted time series freely.

For the convenience of user interaction when fitting the time
series, we develop a tool with a visual interface of windows,
as shown in Fig. 5. The intensity can be imported from a data
file and subsequently decomposed into different components. It
is worth mentioning that the decomposition algorithm usually
requires the parameter of ‘‘period’’ as the prior knowledge of
the time series. To compute the period value, we perform the
fast Fourier transformation and the largest peak in the frequency
domain can indicate the possible period. Then, a decent interval
rather than the whole range of the time series should be specified
before fitting. The reasons are twofold: (1) The shape of a time
series may be too complex for a basic mathematical expression
to fit. It is better to divide the time series into multiple non-
overlapped intervals and fit them one by one. (2) The shorter
the interval is, the simpler the expression is. Sometimes we are
more interested in the shape of a specific interval, and a simple
expression without higher terms is easier to understand. In the
top middle panel, a total number of 25 fitting expressions are
provided. The tool can choose the best one automatically based
on the metric of RMSE. In the middle panel, the parameters
are displayed to be adjusted. The right panel displays the fitting
results as text, and the bottom panel visualizes the fitting results.

Unlike the reproduction method, even if the original work-
load consists of NS sessions, the number of S extracted from
the relational model is not necessarily NS in the fitting method
ecause the shape of the original intensity has been changed by
he decomposition algorithm.

.3.3. Generation
In the generation method, we create the new intensity from

cratch based on self-specified characteristics. In this way, we
an customize the shape of the simulated workload. For dif-
erent known parameters and required characteristics of the
ew intensity, two existing methods of time series generation,
IMBO (Kistowski et al., 2017) and TSAGen (Wang et al., 2021),
an be integrated into the generation method as follows.

(1) LIMBO-based Method: We follow LIMBO which allows a
DSL-based workload intensity definition and make some changes
for better intervention. The workload intensity is represented
with the trend component trend, the season component season,
the burst component burst , and the noise component noise. The
additive combinator is applied to merge above components:

I(t) = trend(t) + season(t) + burst(t) + noise(t) (4)

able 1 shows the details of each component with related param-
ters and the generation process where mod means the modulo
peration. The noise component is generated by sampling from
he Gaussian distribution N(η9+η8

2 ,
η9−η8

6) where 99.7% of data
ccurs within three standard deviations of the mean constrained
y the minimum value η8 and the maximum value η9. The other

three components are generated by interpolation functions such
as polynomials. The length of the trend component is in multi-
ples of seasonal iterations which is calculated by η1 × η2. Since
he determination of nonlinear interpolation functions generally
equires three points, three representative points, the starting
oint, the endpoint, and the midpoint whose values are c1, c2,
nd c3 respectively are selected for the interpolation of trend.
he generation of the seasonal component is shown in Fig. 6.

Y. Han, Q. Du, J. Xu et al. The Journal of Systems & Software 203 (2023) 111735

a
v
t
e
c

Fig. 5. The developed tool for the fitting method.
Table 1
Details of the generation method based on LIMBO.
Component Parameter Description Generation

trend

η1 number of seasonal periods in one trend

trend(t) = g1(t − ts, η1 × η2, c1, c2, c3)

η2 seasonal period (same as that in season)
c1 starting point value
c2 endpoint value
c3 midpoint value
g1 interpolation function for trend shape

season

η2 period

season(t) =

⎧⎪⎪⎨⎪⎪⎩
g2(tc , ηs, c4, c5, c6), 0 ≤ tc < ηs

g2(tc , ηr , c5, c5, c6 +
(i+1)(c7−c6)

η3−1),
i × ηr ≤ tc − ηs < (i + 1) × ηr

g2(tc , ηs, c5, c4, c7), η2 − ηs ≤ tc ≤ η2

η3 number of peaks
η4 interval between first and last peaks
c4 starting and end value of one iteration
c5 trough between two peaks
c6 first peak where tc = (t − ts) mod η2 , ηs = 0.5 × (ηm + ηr) ,
c7 last peak

ηm = η2 − η4 , ηr = η4/(η3 − 1) and i < η3 − 2, i ∈ Ng2 interpolation function for seasonal shape

burst

η5 first burst peak offset
η6 interval between two bursts

burst(t) =

{
g3(tc , η7, 0, 0, c8), 0 ≤ tc ≤ η7
0, tc > η7η7 burst width

c8 burst peak where tc = (t − ts − η5 + 0.5 × η7) mod η6g3 interpolation function for burst shape

noise η8 minimum value noise(t) = Normal(η9+η8
2 ,

η9−η8
6)

η9 maximum value
D
e
i
s
w
F
m
f
d
r
i
a
r

Given the first peak c6, the lask peak c7, and the number of
peaks η3, additional peaks are derived from linear interpolation
which is the most intuitive. The distance between the starting and
the first peak is assumed to be equal to that between the last
peak and the end, denoted by 0.5 × ηm. In the boundary interval
between the starting and the first trough (or the last trough and
the end), season is generated by interpolation of the boundary
point, the peak, and the trough. In the intervals between two
adjacent troughs, season is generated by interpolation of the
peak and troughs. The burst component defines recurring bursts
under the assumptions of the same recurring interval η6 and the
xisymmetric burst. Only the point in the burst has the non-zero
alue which is also generated by the interpolation function given
he burst width η7 and the burst peak c8 (the starting and the
nd value of a burst is 0). Besides, the first burst peak offset η5
ontrols the offset and is under the assumption of η5 < η6.

(2) TSAGen-based Method: TSAGen is a time series genera-
tion tool for controllable and anomalous key performance indi-
cator data generation. For the property in the task of workload
simulation, only the normal data generation stage is integrated
 P

8

into workload intensity modeling. To be specific, the workload
intensity is represented with the trend component trend, the
seasonal component season, and the noise component noise of the
same length:

I(t) = trend(t) + season(t) + noise(t) (5)

etails of each component with related parameters and the gen-
ration process are shown in Table 2. The trend component
s generated by a linear function by setting the level and the
cope. The seasonal component is generated by connecting cycles
hose shape is modeled by the Random Midpoint Displacement
ractal (RMDF) algorithm (Fournier et al., 1982).

∑⨁
means

ultiple cycles are concatenated in order. ai and fi are the drift
actors of amplitude and frequency sampled from the uniform
istributions U(1, 1 + k1) and U(1, 1 + k2) respectively for rep-
esenting drifts such as holiday effects. cyclei,fi∗1/θ4 denotes the
th cycle of the length fi ∗ 1/θ4 generated by sampling (marked
s samplei) on the function FRMDF obtained from the RMDF algo-
ithm. Fig. 7 displays the RMDF process. Given two initial points
(0, 0), P (1, 0), the control point in the perpendicular bisector
1 2

Y. Han, Q. Du, J. Xu et al. The Journal of Systems & Software 203 (2023) 111735
Table 2
Details of the generation method based on TSAGen.
Component Parameter Description Generation

trend θ1 level of trend trend(t) = θ1 + θ2 × (t − ts)θ2 slope of trend

season

θ3 amplitude
θ4 frequency

season(t) = (
∑θ5

i=1
⨁

(θ3 × ai)cyclei,fi∗1/θ4)t−ts ,θ5 number of cycle
k1 drift degree of amplitude where ai ∼ U(1, 1 + k1), k1 ∈ [0, +∞),
k2 drift degree of frequency fi ∼ U(1, 1 + k2), k2 ∈ [0, +∞),
d1 recursion depth and cyclei,j = samplei(FRMDF (d1, d2), j)
d2 forking depth

noise
θ6 skewness

noise(t) = Gamma(θ6, θ7, θ8)θ7 location
θ8 scale
Fig. 6. Seasonal component of the LIMBO generation method.
Fig. 7. The RMDF process. The black dotted line represents the perpendicular bisector. Blue, purple and green lines represent curves generated by setting d = 1, 2, 3
in RMDF respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
ˆ
c
a
φ

φ

(
f

is chosen. For a relatively smooth shape, the distance between
the control point and the midpoint is sampled from the Gaus-
sian distribution N(0, 0.25) and decreases by half each recursion.
Through trigonometric functions and coordinate operations, the
function of the curve which connects the initial points and the
control point is generated (refer to the blue lines in Fig. 7 for
an example). In each new interval generated by adjacent initial
points and control points, the process is repeated recursively
which is controlled by the recursion depth d (refer to the purple
and yellow lines in Fig. 7 for an example). For small differences in
shape modeling, a base function sharing by all cycles is generated
by setting the certain recursion depth d1. Then d2 recursions are
applied in the base function for each cycle. Based on parameters
θ3, θ4, θ5, k1, k2 controlling characteristics and d1, d2 controlling
shapes, the seasonal component is generated where the value
at the timestamp t is the (t − ts)th element. The Pearson type
III distribution, also known as the Gamma distribution, is used
to generate the noise component due to the nonnegativity of
Gamma-distributed random variables and the controllable statis-
tical properties of the Gamma distribution. Given the skewness
θ6, the location θ7, and the scale θ8, the probability density func-
tion can be calculated. Then the noise component is generated
based on the probability density function.

Similar to the fitting method, the number of S extracted from
the relational model depends on the generated intensity rather
than the original intensity.
 h

9

4.3.4. Think time
Not only is the time attribute of a session characterized by

the start time, but also by think times between consecutive user
behaviors. The aforementioned three methods have modeled the
workload intensity in terms of the session start time. Transitions
between consecutive user behaviors within a session should also
be annotated with the think time. For Nu types of user behaviors,
think times in each session can be denoted by a Nu ×Nu matrix T
where the element Tr,c in the rth row and the cth column denotes
the think time from the user behavior ur to the user behavior uc .
To simplify the problem, we assume think times of different user
behavior pairs share the same distribution and all think times can
be denoted as a random variable τ . To model the distribution of
think times, we use the non-parametric kernel density estimator
(KDE) f̂h(τ):

fh(τ) =
1
ntt

∑ntt
i=1φh (t − ti) =

1
ntth

∑ntt
i=1φ(

t − ti
h

) (6)

where ntt is the number of think times (or the number of two
onsecutive requests) in the original workload, h is the bandwidth
nd φ is the kernel. We define φ as the standard normal density
(τ) ∼ N(0, 1):

(τ) =
1

√
2π

e−
1
2 t

2
(7)

To find the ideal bandwidth h, the rule-of-thumb approach
Silverman, 1998) is applied by estimating standard deviation σtt
rom the think time in the original workload:

= 1.06σ n −1/5 (8)
tt tt

Y. Han, Q. Du, J. Xu et al. The Journal of Systems & Software 203 (2023) 111735

4

l
G

s
m
S
F
u
p
u

1
b
t
t
v
o
L
t
a
t
n
d
i
f
d

5

a
r

5

5

c
B
w
o
a
t
a
a

φ
t
f
3
t
t
w
A

h
t

2

.4. Simulated workload generation

With the preliminaries of user behavior abstraction and work-
oad intensity modeling, we can generate the simulated workload.
iven user groups {C1, C2, · · · , CNc } identified in Section 4.2.1 and

the corresponding numbers of user behavior sequences
{N̂1, N̂2, · · · , N̂Nc }, the probability of each simulated user behavior
equence belonging to the Ci cluster is N̂i/

∑Nc
j=1 N̂j. After deter-

ining the user group, we can extract the user behavior sequence
from the relational model of the group using the idea of Depth-
irst Search (DFS). We start traversal from the dummy node
s and look for its adjacent nodes. According to the transition
robability, we move to the next node and continue this loop
ntil the dummy node ue is selected. We do not mark any node as

visited in the search, so it is possible that a node may be visited
repeatedly when there exists a cycle. This strategy guarantees the
diversity of generated user behavior sequences. For each S, we
need to perform a DFS, and the value of I(t) decides how many S
we need to extract for the bucket containing the timestamp of t .

For the ith bucket which represents the time span of [ts + (i−
)× δ, ts + i× δ), assume there are ki sessions that belong to this
ucket in the simulated workload. If all ki sessions start at the
imestamp of ts + (i−1)×δ, the user concurrency will be skewed
o the left point of each interval especially when δ is set to a large
alue or I(ts + (i − 1) × δ) is too large. To ensure the stability
f T , we suggest distributing each session evenly in the bucket.
et △ti = δ/ki. Then, in the ith bucket, the first session starts at
s + (i − 1) × δ, the second session starts at ts + (i − 1) × δ + △ti
nd so on. The duration of each session is not constant because of
he diversity of S and the probabilistic think time, but we do not
eed to pay attention to when a session ends. We also design a
omain-specific language (DSL) to describe the workload features
n a human-readable way. Non-experts just need to submit a file
ollowing the grammar rules for quick execution of LWS. For more
etails, please refer to Supplemental materials.

. Case study

In this section, we apply the proposed framework LWS to
session-based application and aim to address the following

esearch questions:

• RQ1: How accurately does the simulated workload gener-
ated by LWS match the original workload?

• RQ2: How effective is the intervention of the simulated
workload generated by LWS?

• RQ3: How do different workload intensity modeling meth-
ods impact the effectiveness of the intervention?

.1. Experiment setup

.1.1. Benchmark system
Our studies are conducted in an open-source cloud-native mi-

roservices demo application, Hipstershop (also known as Online
outique).6 It is a typical web-based e-commerce application
idely used in research on the microservice operation. It consists
f 10 microservices written in Java, Python, Go, Node.js, and C#,
nd provides an extra microservice for original workload genera-
ion. For each user session, a unique session ID will be generated
utomatically and recorded in logs. We deploy Hipstershop in
n open-source cloud-native system Kubernetes7 with 5 physical

6 https://github.com/GoogleCloudPlatform/microservices-demo
7 https://kubernetes.io/
10
Table 3
Details of the deployment environment.
System Component Detail

Kubernetes

1 physical master 64-core 2.30 GHz CPU,
64 GB RAM

4 physical nodes 4-core 2.66 GHz CPU,
8 GB RAM

4 virtual nodes 4-core 2.10 GHz CPU,
16 GB RAM

Hipstershop 4 pod replicas for
each microservice

Elasticsearch version 7.13.2
Filebeat version 7.13.2
Prometheus version 2.10.0
Jaeger version 1.28

LWS Driver 1 physical server 64-core 2.40 GHz CPU,
64 GB RAM

Python version 3.6.9

machines and 4 virtual machines. Monitoring tools including Elas-
ticsearch, Filebeat, Prometheus8 and Jaeger9 are also deployed
in the Kubernetes for monitoring data collection. We implement
LWS with Python and deploy the application on another physical
server. The details of the deployment environment are shown in
Table 3. We have also summarized the detailed resource recom-
mendations and requirements, as well as the related deployment
processes and files. For more details, please refer to Supplemental
materials.

5.1.2. Dataset
We use two datasets A and B as subjects where A is the well-

designed original workload and B is the real-world workload in
the production system:

(1) Dataset A: We use K6,10 an open-source load testing
tool, to simulate a real-world load on Hipstershop as the original
workload. The original user behavior sequence S consists of 7 to
20 user behaviors along with 0 to 11 automatic redirections, and
the think time τ is generated independently and identically from
(τ) ∼ N(5, 2). To avoid the negative and exceptional value,
he think time will be resampled from φ(τ) ∼ N(5, 2) until it
alls within the interval [1, 15]. Both the K6 script running for
h and 40 min in total and the scenario with excellent statis-

ical properties such as multiple peaks, obvious seasonality and
rend changes which are intuitive and common in real production
orkloads (Feng et al., 2022) have been applied in 2022 CCF
IOps Challenge.11 The number of virtual users ramps up from

0 to 60 in 10 minutes, keeps 60 for 40 min, ramps down from
60 to 20 in 10 min, keeps 20 for 20 min, ramps up from 20 to
80 in 10 min, keeps 80 for 40 min, ramps down from 80 to 20 in
10 min, keeps 20 for 20 min, ramps up from 20 to 60 in 10 min,
keeps 60 for 40 min and ramps down from 60 to 0 in 10 min. The
user behavior sequence S will not be forcefully interrupted at the
boundary of the test duration and the user number changes. In
case of skewed metrics and unexpected test results, every u ∈ S
will be executed and K6 will wait for any iterations in progress to
finish. Hence, the actual execution time will be little greater than
3 h and 40 min.

(2) Dataset B: The dataset B is generated based on UserBe-
avior12 which is a subset of Taobao user behavior data con-
aining millions of user–item interactions during November 25

8 https://prometheus.io/
9 https://www.jaegertracing.io/

10 https://k6.io/
11 https://www.bizseer.com/index.php?m=content&c=index&a=show&catid=
5&id=83
12 https://tianchi.aliyun.com/dataset/dataDetail?dataId=649

https://github.com/GoogleCloudPlatform/microservices-demo
https://kubernetes.io/
https://prometheus.io/
https://www.jaegertracing.io/
https://k6.io/
https://www.bizseer.com/index.php?m=content&c=index&a=show&catid=25&id=83
https://www.bizseer.com/index.php?m=content&c=index&a=show&catid=25&id=83
https://tianchi.aliyun.com/dataset/dataDetail?dataId=649

Y. Han, Q. Du, J. Xu et al. The Journal of Systems & Software 203 (2023) 111735

t
i
t
d
T
U

r
o

5

t
g

o
b
w
b
o
t
s
b
r
p
T
n
v
t
i
t
q
d
t
s
o
(
o
t

m
i
w
w
p
t
t
l
(
I
t
s
m
[

L
T
w
e

a
H
c

o December 03, 2017, offered by Alibaba. Due to the differences
n business functions and capacities between the production sys-
em of UserBehavior and Hipstershop, it is impossible to repro-
uce the exact workload of UserBehavior based on Hipstershop.
herefore, we refer to the workload intensity characteristics of
serBehavior as the target of the intervention rather than the

complete reproduction. To generate the real-world original work-
load intensity within the capacity of the benchmark system in
Section 5.1.1, we count the number of new concurrent users
per 10 min from November 25 to December 03, 2017 (in UTC+8
Zone), multiply each number by 0.02 and round results down for
adapting to the load capacity in our benchmark system. We adopt
the same strategy in the user behavior and think time in A and
eproduce the workload as the dataset B as the approximated
riginal workload.

.1.3. Evaluation metric
To evaluate the similarity between the original workload and

he simulated workload quantitatively, we introduce two cate-
ories of metrics:

(1) Static Metrics: Static metrics are obtained from statistics
f generated user behavior sequences and thus they will not
e affected by the execution of HTTP requests in the SUT. Two
orkload characteristics, the session length distribution and the
ehavior distribution (including the relative invocation frequency
f different request types and the number of distinct session
ypes) are applied in static metrics. Regardless of dynamic factors
uch as the request time consuming, the session length distri-
ution is determined by two important factors: the number of
equests per session and think time. For the number of requests
er session, we refer to the session metrics used in WESSBAS.
he minimum value (denoted by ‘‘Min’’), the maximum value (de-
oted by ‘‘Max’’), the 25th quartile (denoted by ‘‘Q1’’), the median
alue (denoted by ‘‘Q2’’), the 75th quartile (denoted by ‘‘Q3’’),
he mean value (denoted by ‘‘Mean’’) and the 0.95 confidence
nterval (denoted by ‘‘CI0.95’’) are computed for analysis. For the
hink time, we use the metric Intersection over Union (IoU) which
uantifies the degree of overlap between the original think time
istribution and the estimated think time distribution for evalua-
ion. For the behavior distribution, we refer to the request count
tatistics used in WESSBAS. The relative invocation frequency
f each request type and the number of distinct session types
denoted by ‘‘Nds’’) are computed. Besides, we record the time cost
f user behavior abstraction (denoted by AbstractionTimeCost) for
he evaluation of efficiency.

(2) Dynamic Metrics: Dynamic metrics are computed by
onitoring metrics such as CPU utilization and memory usage

n the form of time series collected from the SUT under the
orkload. Note that the investigation of dynamic metrics in
orkload simulation is proposed in one of our submitted pa-
ers (Li et al., 2023), and thus we directly use its methodology in
his work. Monitoring metrics are grouped into two categories by
he degree of the correlation with business due to their extreme
arge quantity and variety (for more details, please refer to Li et al.
2023)) and the linked dataset in Supplemental material section.
n each category, the Extend-SBD based on the Shape-based dis-
ance (SBD) (Paparrizos and Gravano, 2015) which describes both
hape and intensity similarities given the weighting factor α is
easured for each metric. Then the weighted average distance ∈

0, 2] of the Extend-SBD values in each category is calculated.
ower distance shows the higher similarity between workloads.
he weighted average calculated from metrics weakly correlated
ith business is denoted by ESBD(weak), and the weighted av-

rage calculated from metrics strongly correlated with business

11
is denoted by ESBD(strong). Given the similarity threshold µ, the
normalized similarity score score ∈ [0, 1] is calculated:

score =
µ

µ + distance
(9)

For ESBD(weak) and ESBD(strong), the normalized similarity scores
re calculated and denoted by scorew and scores respectively.
igher score shows a higher similarity between workloads. The
omposite score denoted by scorec is calculated by the weighted
summation where β is a hyperparameter:

scorec = (1 − β)scorew + βscores, β ∈ (0, 1] (10)

We set α = 0.5, µ = 1.0, β = 0.9 in the following evaluation
based on dynamic metrics.

5.2. RQ1: Accuracy of simulated workload

The evaluation of simulation accuracy (RQ1) depends on the
comparison between the original workload (denoted by OW) in
the dataset A and the simulated workload. The output logs and
monitoring metrics under the original workload are collected.
Now, we have to assume that we have no idea of the original
workload which is specified by the K6 script and try to simulate
it via these logs.

5.2.1. Log collection and transformation
Using the regex match, we can remove the redundant logs and

only keep the HTTP request logs. After that, we group these logs
by the field of ‘‘session’’ and sort the logs within each session
by the field of ‘‘timestamp’’. Fig. 8 illustrates an example of two
consecutive HTTP request logs. We can find some useful patterns:
(1) The ‘‘http.req.id’’ field is the unique identifier to group the
HTTP requests within a session. (2) Each HTTP group follows a
common template where the value of the ‘‘message’’ field is ‘‘re-
quest started’’ in the first line and ‘‘request complete’’ in the last
line. (3) The ‘‘message’’ field in the middle line indicates a certain
type of user behavior, and there are 6 different types of user
behaviors in total including ‘‘home’’ ‘‘setting currency’’ ‘‘serving
product page’’ ‘‘view user cart’’ ‘‘adding to cart’’ ‘‘placing order’’.
Note that ‘‘placing order’’ is always followed by ‘‘order placed’’ in
an HTTP group and they refer to the same HTTP request, so we use
‘‘placing order’’ as the name of the user behavior for simplicity.
A possible reason for the unnecessary alias in these logs is bad
coding practice. At last, a total number of 7013 sessions can be
obtained.

5.2.2. User behavior abstraction
In addition to the methodology in Section 4.2 (denoted by SW

(HAC/Markov), cluster num=3), we perform the following different
user behavior abstraction methods for comparison:

• SW (Monolithic): Its user behavior abstraction is based on
a monolithic Markov probabilistic transition matrix without
clustering and a relational model with Synoptic invariants.

• SW (HAC/SGT): Its user behavior abstraction is based on the
Sequence Graph Transform embedding (Ranjan et al., 2022)
with the same cluster and relational model construction
strategy in Section 4.2 (cluster num=3).

• WESSBAS: Its user behavior abstraction is based on the
Markov probabilistic transition matrix, the X-means cluster
algorithm (the cluster num found is 4), and the relational
model with proposed invariants as introduced in Vögele
et al. (2018).

Y. Han, Q. Du, J. Xu et al. The Journal of Systems & Software 203 (2023) 111735

o

(
t
b
1
0
t

s
s
b
n
v
t
i
r
i
D
t
t
e

Fig. 8. An example of two consecutive HTTP request logs.
Fig. 9. The relational model of user group 1 in SW (HAC/Markov) constructed
n A.

The resulting user behavior abstraction of user group 1 in SW
HAC/Markov) is illustrated in Fig. 9 as an example. Pa,b denotes
he transition probability from the user behavior ua to the user
ehavior ub. It can be seen from the figure that Pa,b equals 0.00 or
.00 sometimes. If a transition probability has a value less than
.01, it will be approximated by 0.00. There are two situations
hat result in a transition probability of 1.00:

• One-to-one Transition: For example, in the original work-
load, the first user behavior is always ‘‘home’’. Therefore, the
transition probability from ‘‘initial’’ to ‘‘home’’ is 1.00.

• Redirection: For example, the reason for the transition prob-
ability of 1.00 from ‘‘setting_currency’’ to ‘‘home’’ is that the
HTTP request will be redirected to ub automatically after ua
has been executed. We recommend manually analyzing the
frontend code, or sending the HTTP request for ua to the SUT
and then analyzing the output logs or the HTTP status code
(such as 302) to identify the redirection operation and avoid
redundant user behaviors.

5.2.3. Workload intensity modeling
We use Reproduction which contains no intervention when

imulating the workload ofA. Fig. 10 displays the intensity scatter
etting δ = 10. The shape of the workload intensity generated
y the reproduction method is intuitively similar to that of the
umber of virtual users in the original workload. However, the
alue of the point in the intensity is significantly smaller than
he number of virtual users in the original workload. The reason
s that the number of users set by K6 describes the concurrency
ather than the increment. In other words, K6 will count a user
n the concurrency until behaviors belonging to the user finish.
ifferent from K6, each point in the generated intensity describes
he increment indicating how many additional users will start
heir behaviors. Besides, the points in the intensity are intuitively
ven, which ensures the stability of the simulated workload.
12
Fig. 10. The intensity via Reproduction of A setting δ = 10.

Fig. 11. The modeled probability density function of think times in SW
(HAC/Markov) constructed on A.

For the think time, we calculate the time difference between
the timestamp recorded in the ‘‘request complete’’ log of each
behavior and the timestamp recorded in the ‘‘request start’’ log of
its next behavior as an approximation. Then we set the bandwidth
calculated by Eq. (8) and Fig. 11 displays the estimation result.
The dashed line shows the probability density function modeled
by KDE and the light blue histogram shows the original distribu-
tion of the think time. It can be seen from Fig. 11 that the modeled
probability density function can intuitively fit the distribution of
the think time well although there exist interval limitations in the
original distribution.

5.2.4. Simulated workload generation
We sample 7013 user behavior sequences from the user ab-

straction model and schedule them by the generated workload
intensity. For the simulated workload, the user behavior sequence
in each session differs from each other and we need to send each
HTTP request in an exact timestamp. Traditional load testing tools
which only focus on the number of concurrent users conveniently
are not suitable for this task. For example, K6 executes a group
of sessions simultaneously from a high level while lacking the
fine-grained control of the start time for each HTTP request.
As a result, we develop a useful script based on multithread
scheduling to execute the simulated workload. The whole pro-
cess starting from monitoring the application until the simulated
workload is acquired is around 9 h, including the original work-
load (about 3 h and 40 min), collection and transformation of
logs and monitoring metrics (about 1 hour with another 20 min
waiting for stability in monitoring tools), LWS extraction (about
10 min), and the simulated workload (about 3 h and 40 min).
Most of the time cost is in the workload execution and data
preparation.

Y. Han, Q. Du, J. Xu et al. The Journal of Systems & Software 203 (2023) 111735

l
d
r
c
(
i
1
+

w
a
c
t
c
a
Q
b
t
W
l
i
l
t
d
o
m
T
(
t
a
w
1
W
b
(
W
s
(
a

a
p
(
S
r
w
i

Table 4
Static metrics in terms of the session length distribution and the time cost of user behavior abstraction between the original workload and the simulated workload
in A.
Workload Type Min Q1 Q2 Q3 Max Mean CI0.95 IoU AbstractionTimeCost

OW 7 9 19 24 31 18.74 [18.56,18.91] – –
SW (Monolithic) 4 11 16 24 100 19.29 [19.00,19.58] 73.25% 12.06s
SW (HAC/Markov) 4 9 14 23 155 18.77 [18.41,19.12] 73.46% 26.99s
SW (HAC/SGT) 4 9 15 23 142 18.19 [17.88,18.49] 73.71% 39.27s
WESSBAS 4 10 14 21 93 16.57 [16.33,16.80] 73.45% 24.34s
Table 5
Static metrics in terms of the behavior distribution between the original workload and the simulated workload in A.
Workload Type adding_to_cart home placing_order serving_product_page setting_currency view_user_cart Nds

OW 9.95% 18.05% 2.98% 39.44% 10.67% 18.92% 131415
SW (Monolithic) 9.82% 17.72% 3.01% 40.03% 10.47% 18.95% 135262
SW (HAC/Markov) 9.81% 18.11% 2.97% 39.85% 10.66% 18.61% 131607
SW (HAC/SGT) 9.78% 18.40% 2.97% 39.60% 10.95% 18.30% 127536
WESSBAS 10.10% 18.72% 2.74% 37.88% 11.89% 18.67% 116179
5.2.5. Quantitative analysis of accuracy
We compare the original workload and the simulated work-

oads in the dataset A quantitatively by static metrics and
ynamic metrics after simulated workload generation. Static met-
ics in terms of the session length distribution and the time
ost of user behavior abstraction are displayed in Table 4. SW
HAC/Markov) performs better than other simulated workloads
n Mean (18.74% → 18.77%, +0.03%) and CI0.95 (18.56% →

8.41%, −0.15% in the left boundary and 18.91% → 19.12%,
0.21% in the right boundary), and similar to other simulated
orkloads in Min, Q1, Q2, Q3. However, SW (HAC/Markov) has
low value of 4 in Min and a very high value of 155 in Max

ompared with the original workload. This can be explained by
he fact that a few user behavior sequences with low probabilities
ontaining multiple loops can be sampled from the user behavior
bstraction as shown in Fig. 9. According to the values in Q1,
2, Q3 and CI0.95 of SW (HAC/Markov), the overall differences
etween session length distributions are not excessive in relation
o the extreme values of Min and Max. Besides, each metric in
ESSBAS almost has a lower value than that in other simu-

ated workloads. This can be explained by the fact that temporal
nvariants in WESSBAS have stricter limits than Synoptic and
onger user behavior sequences are more likely to violate. For
he think time of the original distribution and the estimated
istribution, the area of intersection is around 73.25% to 73.71%
f IoU , which means distributions are highly overlapping. Static
etrics in terms of the behavior distribution are displayed in
able 5. SW (HAC/Markov) has the lowest average difference
0.1267%) among all relative invocation frequencies. Besides, the
otal number of distinct session types of SW (HAC/Markov) has
minimal increase by 0.15% (131415 → 131607) compared
ith other workloads. Besides, WESSBAS still has a low value of
16179 in Nds, which also shows fewer long sessions are sampled
ESSBAS due to the stricter limits. For the time cost of user
ehavior abstraction, SW (Monolithic) has the minimal time cost
12.06 s) without clustering and SW (HAC/Markov) as well as
ESSBAS have similar user behavior abstraction time cost (26.99
and 24.34 s). Compared with the total time of the whole process
around 9 h), the time cost of user behavior abstraction is small
nd acceptable.
Table 6 shows dynamic metrics between the original workload

nd the simulated workload in the dataset A. SW (HAC/Markov)
erforms better than other simulated workloads in ESBD(strong)
0.0436), scores (0.9582), and scorec (0.9431), which also shows
W (HAC/Markov) is quite similar with OW shows . In met-
ics weakly correlated with business, SW (HAC/Markov) performs
orse than other simulated workloads possibly because of the

mpact on other system processes or applications.
13
Table 6
Dynamic metrics between the original workload and the simulated workload in
A.
Method ESBD(weak) scorew ESBD(strong) scores scorec
SW (Monolithic) 0.2297 0.8132 0.0481 0.9541 0.9400
SW (HAC/Markov) 0.2376 0.8080 0.0436 0.9582 0.9431
SW (HAC/SGT) 0.2137 0.8239 0.0563 0.9467 0.9345
WESSBAS 0.2300 0.8130 0.1237 0.8899 0.8822

In conclusion, SW (HAC/Markov) outperforms other simulated
workloads in both static and dynamic metrics, and the simi-
larity between SW (HAC/Markov) and OW shows the simulated
workload generated by LWS can match the original workload
accurately.

5.3. RQ2: Effectiveness of intervention

To evaluate the effectiveness of the intervention, we extract
the real-world workload intensity characteristics of the dataset
B and use the fitting method and the generation method to
provide interventions. Although both the fitting method and the
generation method can provide interventions, their different aims
lead to different evaluation criteria. The fitting method learns
the characteristics of the original intensity. Therefore, both the
similarity between the original intensity and the modeled inten-
sity and the similarity between the original workload and the
simulated workload need to be measured. Different from the
fitting method, the generation method customizes the intensity
from the scratch. Therefore, the similarity between the original
intensity and the modeled intensity is not important. It is more
important that the generation process is simple and the simulated
workload is similar to the real-world workload. Therefore, we
use simple parameters to generate the workload similar to the
real-world original workload for the evaluation of the generation
method. For both the fitting method and the generation method,
the original workload is approximated by the workload generated
by Reproduction as described in Section 5.1.2 which is used for
comparison. The whole process starting from monitoring the ap-
plication until the simulated workload is acquired is around 9 h,
including the original workload (about 3 h and 20 min), collection
and transformation of logs and monitoring metrics (about 1 hour
with another 20 min waiting for stability in monitoring tools),
LWS extraction (about 40 min), and the simulated workload
(about 3 h and 20 min). In the process of LWS extraction, we have
invited 10 non-experts with fundamentals of higher mathematics
to fit the original intensity and generate intensity intuitively
similar to the original intensity. All of them can finish each task
in 30 min after reading the 5-minute README file.

Y. Han, Q. Du, J. Xu et al. The Journal of Systems & Software 203 (2023) 111735

t
f

F
w
c
i
t

Fig. 12. User behavior Fitting and Generation result.
Table 7
The overall mathematical expressions of fitting the original intensity in the dataset B.
Method Component Expression SSE R-square RMSE

Fitting - Fourier 2.112 × 104 0.9537 4.319(Origin)

trend Polynomial 79.53 0.9922 0.264
Fitting season Fourier 296.8 0.9993 0.5121
(Decomposition) noise Gaussian 1.403 × 104 0.2838 3.498

merge f (x) = trend + season + noise 1.405 × 104 0.9692 3.541
Table 8
Dynamic metrics between the original workload (approximated by Reproduction) and the simulated workload in the dataset B.
Method ESBD(weak) scorew ESBD(strong) scores scorec
Fitting(Origin) 0.1435 0.8745 0.0123 0.9878 0.9764
Fitting(Decomposition) 0.1113 0.8998 0.0106 0.9894 0.9805
Generation(LIMBO) 0.0989 0.9099 0.0161 0.9840 0.9766
Generation(TSAGen) 0.1400 0.8771 0.0385 0.9629 0.9543
5.3.1. Fitting
We use the tool as shown in Fig. 5 to fit the original in-

ensity. To identify the impact of the decomposition step, both
itting the original intensity directly (denoted by Fitting(Origin))
and fitting each part decomposed by RobustSTL (denoted by
Fitting(Decomposition)) are adopted. Table 7 shows the overall
mathematical expressions and evaluation metrics including the
sum of squares error (denoted by SSE), R-squared value (de-
noted by R-square), and the root mean square error (denoted
by RMSE) of fitting the original intensity. Each mathematical
expression is the most suitable one automatically chosen based
on RMSE. For detailed expressions, please refer to Supplemen-
tal materials. Intensities generated by both Fitting(Origin) and
itting(Decomposition) have high R-square (0.9537 and 0.9692),
hich means that both Fitting(Origin) and Fitting(Decomposition)
an fit the original intensity well. Fig. 12(a) shows the original
ntensity and fitting results. Intensities generated by both Fit-
ing(Origin) and Fitting(Decomposition) are similar to the original
intensity intuitively. The dynamic metrics between the origi-
nal workload (approximated by Reproduction) and the simulated
workload whose intensity is generated by Fitting are shown in Ta-
ble 8. Generally, simulated workloads generated by Fitting(Origin)
and Fitting(Decomposition) have low ESBD(weak)
(0.1435 & 0.1113) and ESBD(strong) (0.0123 & 0.0106) as well
as high scorew (0.8745 & 0.8998), scores (0.9878 & 0.9894) and
scorec (0.9764 & 0.9805), which shows the similarity between the
original workload and the simulated workload.

In conclusion, the original intensity and the modeled inten-
sity by Fitting are similar, and the corresponding workloads are
similar in dynamic metrics as well, which shows that the in-
tervention by Fitting is effective. The detailed differences be-
tween Fitting(Origin) and Fitting(Decomposition) will be discussed
in Section 5.4.

5.3.2. Generation
Based on the observation of the characteristics of the original

intensity (such as the number of cycles is 8 and each cycle length
14
is 144), we choose simple parameters and interpolation functions
such as the linear function and the quadratic function to make
the generation process simple and generate the workload inten-
sity as similar as possible to the original intensity. For detailed
parameters, please refer to Supplemental materials.

It is worth mentioning that the length of the intensity gener-
ated by Generation is usually different from the original intensity.
Therefore, we keep the length of the generated intensity longer
than that of the original intensity and select the part whose
length is equal to that of the original intensity. Fig. 12(b) shows
the original intensity and generation results. The shapes of the
original intensity, the intensity generated by LIMBO, and the
intensity generated by TSAGen have intuitive overall similarities.
However, compared with fitting results as shown in Fig. 12(a),
the intensities generated by Generation have more deviations
from the original intensity. The dynamic metrics between the
original workload (approximated by Reproduction) and the sim-
ulated workload whose intensity is generated by Generation are
shown in Table 8. Generally, the original workload and simulated
workloads generated by Generation still have high-level over-
all similarities (0.9766 & 0.9543 in scorec). However, there are
certain differences reflected in ESBD(strong) and scores. We will
discuss these differences in Section 5.4.

In conclusion, the original workload and the simulated work-
load whose intensity is generated by Generation have high-level
overall similarities, which shows that the intervention by Gener-
ation is effective.

5.4. RQ3: Impact of intensity modeling methods

We compare different intensity modeling methods by inten-
sity shapes and dynamic metrics of simulated workloads. As
shown in Table 7, the polynomial model and the Fourier series
model fit trend and season in the decomposition pretty well
respectively (79.53 and 296.8 in SSE, 0.9922 and 0.9993 in R-
square as well as 0.264 and 0.5121 in RMSE). However, the
exponential model has poor performance in fitting noise in the

Y. Han, Q. Du, J. Xu et al. The Journal of Systems & Software 203 (2023) 111735

d

t
i
t
a
m
t
f
w
d
t
i
t

c
g
G
a
e
p
c
t
t
i
i
s
l

t
t
t
e
t
s
e
e

t
l
i
F
w
c
t
t
a
t
o

6

t
r
i
t
T
e

s
c
a
i
i

w
s

m
a
o
a
p
e

7

c
e
c
W
p
t
p
i
n
t
e
t
l
i
s
a
i
c
a
g

o
a
f
o
f
a
A

C

I
–
R
t

&

ecomposition (1.403 × 104 in SSE, 0.2838 in R-square as well
as 3.498 in RMSE), which is the main source of the deviation
in Fitting(Decomposition). Fitting(Origin) performs worse than Fit-
ing(Decomposition) in SSE, R-square and RMSE. The main reason
s the strong seasonality of the Fourier series model for Fit-
ing(Origin). As shown in Fig. 12(a), the original intensity has
noticeable increase near the last peak, which cannot be well
odeled within the limitation of the Fourier series model. Fit-

ing(Decomposition) can model such intensity well due to the
lexibility of decomposition. The dynamic metrics of simulated
orkloads as shown in Table 8 also reflect the performance
ifferences. The simulated workload with the Fitting(Origin) in-
ensity performs worse than that with the Fitting(Decomposition)
ntensity in all dynamic metrics, which also proves that Fit-
ing(Decomposition) is more effective than Fitting(Origin).

For the intensity generated by Generation, there is a signifi-
ant increase in deviations as shown in Fig. 12(b). The intensity
enerated by the TSAGen-based generation method (denoted by
eneration(TSAGen)) is more irregular, while the intensity gener-
ted by the LIMBO-based generation method (denoted by Gen-
ration(LIMBO)) is smoother. The main reason is that the RMDF
rocess in Generation(TSAGen) brings more randomness which is
loser to reality and Generation(LIMBO) uses interpolation func-
ions with good statistics which are more intuitive and con-
rollable. The simulated workload with the Generation(TSAGen)
ntensity performs worse than that with the Generation(LIMBO)
ntensity in all dynamic metrics as shown in Table 8, which also
hows that Generation(TSAGen) is more random and uncontrol-
able compared with Generation(LIMBO).

Although Fitting and Generation have different aims, both of
hem can help to generate the simulated workload similar to
he original workload. In ESBD(strong), scores and scorec , Fit-
ing(Decomposition) still performs better, while Generation(LIMBO)
ven performs better than Fitting(Origin). It is worth mentioning
hat Generation performs better than Fitting in ESBD(weak) and
corew . The main reason is that there are complex cumulative
ffects of the simulated workload, other applications, and system
vents on ESBD(weak) and scorew .
In conclusion, Fitting(Decomposition) can fit the intensity bet-

er than Fitting(Origin), Generation(LIMBO) can generate control-
able and smooth intensity and Generation(TSAGen) can generate
rregular intensity with more randomness close to reality. Both
itting and Generation can help to generate the effective simulated
orkload. Besides, we suggest that the original workload should
ontain typical trends, seasonality, and sudden changes due to
heir importance in workload intensity modeling. In our practice,
he size of logs and metrics in a few hours is at the gigabyte level
nd suitable to be processed, while more data needs complex
iling and compression technologies. We suggest mapping the
riginal workload into 8 h or less by undersampling.

. Threats to validity

The threat to internal validity mainly lies in the implemen-
ation of LWS. To reduce this threat, we chose integration over
ewriting related tools whenever possible, and carefully checked
f the same output can be guaranteed with the same input be-
ween the original tool and the rewriting component such as
SAGen. Moreover, we carefully checked and tested the code to
nsure that the expected output can be obtained for test cases.
The threat to external validity mainly lies in the benchmark

ystem and the user behavior dataset. We chose an open-source
loud-native microservices application widely used in AIOps tasks
nd used the load testing script that has been applied in an
nfluential AIOps competition as well as a public dataset contain-
ng real user behaviors to produce original workloads. We claim
15
e can use LWS for workload simulation in other session-based
ystems.
The threat to construct validity mainly lies in the evaluation

etrics. We chose two categories of metrics from generation
nd execution perspectives. Due to the large data size, numer-
us types, and phase shifts in monitoring metrics, we adopted
KPI-based quality evaluation of workload simulation method
roposed in one of our submitted paper, giving a comprehensive
valuation result.

. Conclusion and future work

AIOps plays a critical role in the operation and management of
loud-native systems and microservice-based applications. How-
ver, the lack of high-quality datasets with diverse scenarios
onstrains the development and evaluation of AIOps research.
orkload simulation that produces realistic workloads is an im-
ortant task for continually generating such AIOps datasets. In
his paper, we formulate the task of workload simulation and pro-
ose a novel framework, LWS, for log-based workload simulation
n the session-based system. LWS consists of four components,
amely log collection and transformation, user behavior abstrac-
ion, workload intensity modeling, and simulated workload gen-
ration. Hierarchical clustering based on Markov probabilistic
ransition matrix is applied to identify user groups and the re-
ational model based on temporal invariants for each group is
ntended for user behavior abstraction. Three workload inten-
ity modeling methods, namely Reproduction, Fitting, and Gener-
tion, are introduced in workload intensity modeling for better
ntervention. Experiment results on a typical cloud-native mi-
roservices application with both the well-designed workload
nd the real-world workload show that the simulated workload
enerated by LWS is effective and intervenable.
In our future work, we will investigate the automatic selection

f temporal invariants in the relational model in the user behavior
bstraction. Moreover, we will explore workload simulation with
ailures induced by external injection through Chaos engineering
r internal orchestration through well-designed business work-
lows that include faults, which can enrich the failure scenarios
nd further extend our motivation of generating high-quality
IOps datasets.

RediT authorship contribution statement

Yongqi Han: Conceptualization, Methodology, Software,
nvestigation, Data curation, Writing – original draft, Writing
review & editing. Qingfeng Du: Methodology, Validation,

esources, Writing – review & editing, Project administra-
ion. Jincheng Xu: Conceptualization, Methodology, Software,
Investigation, Writing – original draft, Writing – review &
editing. Shengjie Zhao: Validation, Resources, Writing – review

editing. Zhekang Chen: Conceptualization, Methodology,
Validation, Resources, Data curation, Writing – review &
editing. Li Cao: Validation, Resources, Data curation, Writing –
review & editing. Kanglin Yin: Conceptualization, Methodology,
Validation, Resources, Data curation, Writing – review &
editing. Dan Pei: Validation, Resources, Data curation, Writing –
review & editing, Project administration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Y. Han, Q. Du, J. Xu et al. The Journal of Systems & Software 203 (2023) 111735

D

c
B

A

C
e

A

/
c
T
n
C
o

R

A

B

B

C

C

D

D

E

F

F

F

F

G

G

G

H

ata availability

We have shared the link to our data in the Figshare. The source
ode is under the limitations of non-disclosure agreements in the
eijing BizSeer Technology Company

cknowledgments

This work was supported by National Key R&D Program of
hina (Grant No. 2020YFB2103300). We also gratefully acknowl-
dge the support of the Beijing BizSeer Technology Company.

ppendix A. Supplemental material

The supplemental materials can be accessed through https:
/github.com/baiyanquan/LWS. The data of this work can be ac-
essed through https://figshare.com/s/87c50b19706242dc0f1e.
he source code of this work is under limitations of
on-disclosure agreements in the Beijing BizSeer Technology
ompany. Please contact us via the email contact@bizseer.com
r the telephone number 010-82362970 if needed.

eferences

bbors, F., Ahmad, T., Truscan, D., Porres, I., 2012. MBPeT: A model-based
performance testing tool. In: VALID 2012-4th International Conference on
Advances in System Testing and Validation Lifecycle. pp. 1–8.

arnert, M., Krcmar, H., 2021. Simulation of in-memory database workload:
Markov chains versus relative invocation frequency and equal probability
- A trade-off between accuracy and time. In: Proceedings of the ACM/SPEC
International Conference on Performance Engineering. pp. 73–80. http://dx.
doi.org/10.1145/3427921.3450237.

iermann, A.W., Feldman, J.A., 1972. On the synthesis of finite-state machines
from samples of their behavior. IEEE Trans. Comput. C-21, 592–597. http:
//dx.doi.org/10.1109/TC.1972.5009015.

alzarossa, M.C., Massari, L., Tessera, D., 2016. Workload characterization: A
survey revisited. ACM Comput. Surv. 48, 1–43. http://dx.doi.org/10.1145/
2856127.

uriel, M., Pont, A., 2018. Workload generators for web-based systems: Char-
acteristics, current status, and challenges. IEEE Commun. Surv. Tutor. 20,
1526–1546. http://dx.doi.org/10.1109/COMST.2018.2798641.

ennis, Jr., J.E., Moré, J.J., 1977. Quasi-Newton methods, motivation and theory.
SIAM Rev. 19, 46–89. http://dx.doi.org/10.1137/1019005.

raheim, D., Grundy, J., Hosking, J., Lutteroth, C., Weber, G., 2006. Realistic load
testing of web applications. In: Conference on Software Maintenance and
Reengineering. CSMR’06, pp. 57–67. http://dx.doi.org/10.1109/CSMR.2006.43.

rradi, A., Iqbal, W., Mahmood, A., Bouguettaya, A., 2019. Web application
resource requirements estimation based on the workload latent features.
IEEE Trans. Serv. Comput. 14, 1638–1649. http://dx.doi.org/10.1109/TSC.2019.
2918776.

attah, S.M.M., Bouguettaya, A., Mistry, S., 2020. Long-term IaaS selection using
performance discovery. IEEE Trans. Serv. Comput. 15, 2129–2143. http://dx.
doi.org/10.1109/TSC.2020.3036677.

ei, B., Zhu, X., Liu, D., Chen, J., Bao, W., Liu, L., 2020. Elastic resource provisioning
using data clustering in cloud service platform. IEEE Trans. Serv. Comput. 15,
1578–1591. http://dx.doi.org/10.1109/TSC.2020.3002755.

eng, B., Ding, Z., Jiang, C., 2022. FAST: A forecasting model with adaptive sliding
window and time locality integration for dynamic cloud workloads. IEEE
Trans. Serv. Comput. http://dx.doi.org/10.1109/TSC.2022.3156619.

ournier, A., Fussell, D., Carpenter, L., 1982. Computer rendering of stochas-
tic models. Commun. ACM 25, 371–384. http://dx.doi.org/10.1145/358523.
358553.

oeva-Popstojanova, K., Singh, A.D., Mazimdar, S., Li, F., 2006. Empirical charac-
terization of session-based workload and reliability for web servers. Empir.
Softw. Eng. 11, 71–117. http://dx.doi.org/10.1007/s10664-006-5966-7.

oldstein, M., Raz, D., Segall, I., 2017. Experience report: Log-based behavioral
differencing. In: 2017 IEEE 28th International Symposium on Software
Reliability Engineering. ISSRE, pp. 282–293. http://dx.doi.org/10.1109/ISSRE.
2017.14.

u, Y., Ding, Z., Wang, S., Yin, D., 2020. Hierarchical user profiling for E-
commerce recommender systems. In: Proceedings of the 13th International
Conference on Web Search and Data Mining. pp. 223–231. http://dx.doi.org/
10.1145/3336191.3371827.

erbst, N.R., Huber, N., Kounev, S., Amrehn, E., 2014. Self-adaptive workload
classification and forecasting for proactive resource provisioning. Concurr.
Comput.: Pract. Exper. 26, 2053–2078. http://dx.doi.org/10.1002/cpe.3224.
16
Kang, W., Shin, D., Shin, D., 2010. Detecting and predicting of abnormal behavior
using hierarchical Markov model in smart home network. In: 2010 IEEE
17th International Conference on Industrial Engineering and Engineering
Management. pp. 410–414. http://dx.doi.org/10.1109/ICIEEM.2010.5646583.

v. Kistowski, J., Herbst, N.R., Kounev, S., 2014. Modeling variations in load
intensity over time. In: Proceedings of the Third International Workshop
on Large Scale Testing. pp. 1–4. http://dx.doi.org/10.1145/2577036.2577037.

Kistowski, J.V., Herbst, N., Kounev, S., Groenda, H., Stier, C., Lehrig, S., 2017.
Modeling and extracting load intensity profiles. ACM Trans. Auton. Adapt.
Syst. (TAAS) 11, 1–28. http://dx.doi.org/10.1145/3019596.

Kratzke, N., Quint, P.C., 2017. Understanding cloud-native applications after 10
years of cloud computing - A systematic mapping study. J. Syst. Softw. 126,
1–16. http://dx.doi.org/10.1016/j.jss.2017.01.001.

Lee, C.H., Lo, Y.l., Fu, Y.H., 2011. A novel prediction model based on hierarchical
characteristic of web site. Expert Syst. Appl. 38, 3422–3430. http://dx.doi.
org/10.1016/j.eswa.2010.08.128.

Li, P., Du, Q., Zhao, S., 2023. KEWS: a method evaluation of workload simulation
based on KPIs. http://dx.doi.org/10.48550/ARXIV.2301.06530, https://arxiv.
org/abs/2301.06530.

Li, Z., Tian, J., 2003. Testing the suitability of Markov chains as web usage
models. In: Proceedings 27th Annual International Computer Software and
Applications Conference. COMPAC 2003, pp. 356–361. http://dx.doi.org/10.
1109/CMPSAC.2003.1245365.

Li, Z., Zhao, N., Zhang, S., Sun, Y., Chen, P., Wen, X., Ma, M., Pei, D., 2022.
Constructing large-scale real-world benchmark datasets for AIOps. http:
//dx.doi.org/10.48550/arXiv.2208.03938.

Lutteroth, C., Weber, G., 2008. Modeling a realistic workload for performance
testing. In: 2008 12th International IEEE Enterprise Distributed Object
Computing Conference. pp. 149–158. http://dx.doi.org/10.1109/EDOC.2008.
40.

Menascé, D.A., Almeida, V.A.F., Fonseca, R., Mendes, M.A., 1999. A methodology
for workload characterization of e-commerce sites. In: Proceedings of the 1st
ACM Conference on Electronic Commerce. pp. 119–128. http://dx.doi.org/10.
1145/336992.337024.

Notaro, P., Cardoso, J., Gerndt, M., 2021. A survey of AIOps methods for failure
management. ACM Trans. Intell. Syst. Technol. 12, 1–45. http://dx.doi.org/10.
1145/3483424.

Ohmann, T., Herzberg, M., Fiss, S., Halbert, A., Palyart, M., Beschastnikh, I.,
Brun, Y., 2014. Behavioral resource-aware model inference. In: Proceedings
of the 29th ACM/IEEE International Conference on Automated Software
Engineering. pp. 19–30. http://dx.doi.org/10.1145/2642937.2642988.

Paparrizos, J., Gravano, L., 2015. K-shape: Efficient and accurate clustering of time
series. In: Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data. pp. 1855–1870. http://dx.doi.org/10.1145/2949741.
2949758.

Parrott, C., Carver, D., 2020. Lodestone: A streaming approach to behavior
modeling and load testing. In: 2020 3rd International Conference on Data
Intelligence and Security. ICDIS, pp. 109–116. http://dx.doi.org/10.1109/
ICDIS50059.2020.00021.

Ranjan, C., Ebrahimi, S., Paynabar, K., 2022. Sequence graph transform (SGT):
a feature embedding function for sequence data mining. Data Min. Knowl.
Discov. 36, 668–708. http://dx.doi.org/10.1007/s10618-021-00813-0.

Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A., 2012. Heterogeneity
and dynamicity of clouds at scale: Google trace analysis. In: Proceedings of
the Third ACM Symposium on Cloud Computing. pp. 1–13. http://dx.doi.org/
10.1145/2391229.2391236.

Ruffo, G., Schifanella, R., Sereno, M., Politi, R., 2004. WALTy: a user behavior
tailored tool for evaluating web application performance. In: Third IEEE In-
ternational Symposium on Network Computing and Applications, 2004. (NCA
2004). Proceedings. pp. 77–86. http://dx.doi.org/10.1109/NCA.2004.1347765.

Schneider, S., Beschastnikh, I., Chernyak, S., Ernst, M.D., Brun, Y., 2010. Synoptic:
Summarizing system logs with refinement. In: Proceedings of the 2010
Workshop on Managing Systems Via Log Analysis and Machine Learning
Techniques. p. 2. http://dx.doi.org/10.1145/1928991.1928995.

Schulz, H., Angerstein, T., Okanović, D., van Hoorn, A., 2019. Microservice-
tailored generation of session-based workload models for representative load
testing. In: 2019 IEEE 27th International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems. MASCOTS,
pp. 323–335. http://dx.doi.org/10.1109/MASCOTS.2019.00043.

Schulz, H., Okanović, D., van Hoorn, A., Tůma, P., 2021. Context-tailored workload
model generation for continuous representative load testing. In: Proceedings
of the ACM/SPEC International Conference on Performance Engineering.
pp. 21–32. http://dx.doi.org/10.1145/3427921.3450240.

Shams, M., Krishnamurthy, D., Far, B., 2006. A model-based approach for testing
the performance of web applications. In: Proceedings of the 3rd International
Workshop on Software Quality Assurance. pp. 54–61. http://dx.doi.org/10.
1145/1188895.1188909.

Silverman, B.W., 1998. Density Estimation for Statistics and Data Analysis.
Routledge, http://dx.doi.org/10.1201/9781315140919.

https://github.com/baiyanquan/LWS
https://github.com/baiyanquan/LWS
https://github.com/baiyanquan/LWS
https://figshare.com/s/87c50b19706242dc0f1e
mailto:contact@bizseer.com
http://refhub.elsevier.com/S0164-1212(23)00130-9/sb1
http://refhub.elsevier.com/S0164-1212(23)00130-9/sb1
http://refhub.elsevier.com/S0164-1212(23)00130-9/sb1
http://refhub.elsevier.com/S0164-1212(23)00130-9/sb1
http://refhub.elsevier.com/S0164-1212(23)00130-9/sb1
http://dx.doi.org/10.1145/3427921.3450237
http://dx.doi.org/10.1145/3427921.3450237
http://dx.doi.org/10.1145/3427921.3450237
http://dx.doi.org/10.1109/TC.1972.5009015
http://dx.doi.org/10.1109/TC.1972.5009015
http://dx.doi.org/10.1109/TC.1972.5009015
http://dx.doi.org/10.1145/2856127
http://dx.doi.org/10.1145/2856127
http://dx.doi.org/10.1145/2856127
http://dx.doi.org/10.1109/COMST.2018.2798641
http://dx.doi.org/10.1137/1019005
http://dx.doi.org/10.1109/CSMR.2006.43
http://dx.doi.org/10.1109/TSC.2019.2918776
http://dx.doi.org/10.1109/TSC.2019.2918776
http://dx.doi.org/10.1109/TSC.2019.2918776
http://dx.doi.org/10.1109/TSC.2020.3036677
http://dx.doi.org/10.1109/TSC.2020.3036677
http://dx.doi.org/10.1109/TSC.2020.3036677
http://dx.doi.org/10.1109/TSC.2020.3002755
http://dx.doi.org/10.1109/TSC.2022.3156619
http://dx.doi.org/10.1145/358523.358553
http://dx.doi.org/10.1145/358523.358553
http://dx.doi.org/10.1145/358523.358553
http://dx.doi.org/10.1007/s10664-006-5966-7
http://dx.doi.org/10.1109/ISSRE.2017.14
http://dx.doi.org/10.1109/ISSRE.2017.14
http://dx.doi.org/10.1109/ISSRE.2017.14
http://dx.doi.org/10.1145/3336191.3371827
http://dx.doi.org/10.1145/3336191.3371827
http://dx.doi.org/10.1145/3336191.3371827
http://dx.doi.org/10.1002/cpe.3224
http://dx.doi.org/10.1109/ICIEEM.2010.5646583
http://dx.doi.org/10.1145/2577036.2577037
http://dx.doi.org/10.1145/3019596
http://dx.doi.org/10.1016/j.jss.2017.01.001
http://dx.doi.org/10.1016/j.eswa.2010.08.128
http://dx.doi.org/10.1016/j.eswa.2010.08.128
http://dx.doi.org/10.1016/j.eswa.2010.08.128
http://dx.doi.org/10.48550/ARXIV.2301.06530
https://arxiv.org/abs/2301.06530
https://arxiv.org/abs/2301.06530
https://arxiv.org/abs/2301.06530
http://dx.doi.org/10.1109/CMPSAC.2003.1245365
http://dx.doi.org/10.1109/CMPSAC.2003.1245365
http://dx.doi.org/10.1109/CMPSAC.2003.1245365
http://dx.doi.org/10.48550/arXiv.2208.03938
http://dx.doi.org/10.48550/arXiv.2208.03938
http://dx.doi.org/10.48550/arXiv.2208.03938
http://dx.doi.org/10.1109/EDOC.2008.40
http://dx.doi.org/10.1109/EDOC.2008.40
http://dx.doi.org/10.1109/EDOC.2008.40
http://dx.doi.org/10.1145/336992.337024
http://dx.doi.org/10.1145/336992.337024
http://dx.doi.org/10.1145/336992.337024
http://dx.doi.org/10.1145/3483424
http://dx.doi.org/10.1145/3483424
http://dx.doi.org/10.1145/3483424
http://dx.doi.org/10.1145/2642937.2642988
http://dx.doi.org/10.1145/2949741.2949758
http://dx.doi.org/10.1145/2949741.2949758
http://dx.doi.org/10.1145/2949741.2949758
http://dx.doi.org/10.1109/ICDIS50059.2020.00021
http://dx.doi.org/10.1109/ICDIS50059.2020.00021
http://dx.doi.org/10.1109/ICDIS50059.2020.00021
http://dx.doi.org/10.1007/s10618-021-00813-0
http://dx.doi.org/10.1145/2391229.2391236
http://dx.doi.org/10.1145/2391229.2391236
http://dx.doi.org/10.1145/2391229.2391236
http://dx.doi.org/10.1109/NCA.2004.1347765
http://dx.doi.org/10.1145/1928991.1928995
http://dx.doi.org/10.1109/MASCOTS.2019.00043
http://dx.doi.org/10.1145/3427921.3450240
http://dx.doi.org/10.1145/1188895.1188909
http://dx.doi.org/10.1145/1188895.1188909
http://dx.doi.org/10.1145/1188895.1188909
http://dx.doi.org/10.1201/9781315140919

Y. Han, Q. Du, J. Xu et al. The Journal of Systems & Software 203 (2023) 111735

S

T

V

W

W

X

Z

Y
r

oldani, J., Tamburri, D.A., Van Den Heuvel, W.J., 2018. The pains and gains
of microservices: A systematic grey literature review. J. Syst. Softw. 146,
215–232. http://dx.doi.org/10.1016/j.jss.2018.09.082.

aylor, S.J., Letham, B., 2018. Forecasting at scale. Amer. Statist. 72, 37–45.
http://dx.doi.org/10.1080/00031305.2017.1380080.

ögele, C., van Hoorn, A., Schulz, E., Hasselbring, W., Krcmar, H., 2018. WESSBAS:
Extraction of probabilistic workload specifications for load testing and per-
formance prediction—a model-driven approach for session-based application
systems. Softw. Syst. Model. 17, 443–477. http://dx.doi.org/10.1007/s10270-
016-0566-5.

ang, C., Wu, K., Zhou, T., Yu, G., Cai, Z., 2021. TSAGen: Synthetic time series
generation for KPI anomaly detection. IEEE Trans. Netw. Serv. Manag. 19,
130–145. http://dx.doi.org/10.1109/TNSM.2021.3098784.

en, Q., Gao, J., Song, X., Sun, L., Xu, H., Zhu, S., 2019. RobustSTL: A robust
seasonal-trend decomposition algorithm for long time series. In: 33rd AAAI
Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications
of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium
on Educational Advances in Artificial Intelligence. EAAI 2019, pp. 5409–5416.
http://dx.doi.org/10.1609/aaai.v33i01.33015409.

u, R., Wunsch, D., 2005. Survey of clustering algorithms. IEEE Trans. Neural
Netw. 16, 645–678. http://dx.doi.org/10.1109/TNN.2005.845141.

hou, J., Zhou, B., Li, S., 2014. LTF: A model-based load testing framework for web
applications. In: 2014 14th International Conference on Quality Software.
pp. 154–163. http://dx.doi.org/10.1109/QSIC.2014.53.

ongqi Han is a Ph.D student from Tongji University, Shanghai, China. His main
esearch interests include AIOps, root cause analysis, and knowledge reasoning.
17
Qingfeng Du is a Professor with the School of Software Engineering, Tongji
University, Shanghai, China. His main research interests include AIOps, software
testing and big data.

Jincheng Xu is a Ph.D from Tongji University, Shanghai, China. His main research
interests include AIOps, text classification and adversarial attacks

Shengjie Zhao is currently a Professor with the School of Software Engineering,
Tongji University, Shanghai, China. His research interests include big data,
wireless communications, image processing, and signal processing. He is a fellow
of the Thousand Talents Program of China.

Zhekang Chen, the leader of Chaos Engineering team from Beijing Bizseer
Technology Company, is an expert in Chaos Engineering. He was invited by
CAICT to participate in revising the first domestic Chaos Engineering industry
standard in China. He is also the technical core member of AIOps Challenge. His
main research interests are AI, including AIOps and Chaos Engineering.

Li Cao is a Master and she is the general manager of the Innovation Business
Department in the Beijing BizSeer Technology Company. Her main research
interests include AIOps, risk management and Chaos Engineering.

Kanglin Yin is a Ph.D from Tongji University, Shanghai, China and a Postdoctoral
fellow in Tsinghua University, Beijing, China. His researches interests include
AIOps, software engineering and software system resilence.

Dan Pei is currently an associate professor in the Department of Computer
Science and Technology, Tsinghua University. His research interests include
network and service management in general. He is an IEEE senior member and
an ACM senior member.

http://dx.doi.org/10.1016/j.jss.2018.09.082
http://dx.doi.org/10.1080/00031305.2017.1380080
http://dx.doi.org/10.1007/s10270-016-0566-5
http://dx.doi.org/10.1007/s10270-016-0566-5
http://dx.doi.org/10.1007/s10270-016-0566-5
http://dx.doi.org/10.1109/TNSM.2021.3098784
http://dx.doi.org/10.1609/aaai.v33i01.33015409
http://dx.doi.org/10.1109/TNN.2005.845141
http://dx.doi.org/10.1109/QSIC.2014.53

	LWS: A framework for log-based workload simulation in session-based SUT
	Introduction
	Related Work
	User Behavior Abstraction
	Workload Intensity Modeling
	Differences between LWS and Existing Approaches

	Problem Definition
	LWS Framework
	Log Collection and Transformation
	User Behavior Abstraction
	User Grouping
	Relational Model Establishing for Each User Group

	Workload Intensity Modeling
	Reproduction
	Fitting
	Generation
	Think Time

	Simulated Workload Generation

	Case Study
	Experiment Setup
	Benchmark System
	Dataset
	Evaluation Metric

	RQ1: Accuracy of Simulated Workload
	Log Collection and Transformation
	User Behavior Abstraction
	Workload Intensity Modeling
	Simulated Workload Generation
	Quantitative Analysis of Accuracy

	RQ2: Effectiveness of Intervention
	Fitting
	Generation

	RQ3: Impact of Intensity Modeling Methods

	Threats to Validity
	Conclusion and Future Work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix A. Supplemental material
	References

