Chain-of-Event: Interpretable Root Cause Analysis for
Microservices through Automatically Learning
Weighted Event Causal Graph

Zhenhe Yao Changhua Pei** Wenxiao Chen
Tsinghua University & HIAS, UCAS & Tsinghua University
BNRist CNIC, CAS Beijing, China
Beijing, China Beijing, China
Hanzhang Wang Liangfei Su Huai Jiang
eBay Inc. eBay Inc. eBay Inc.
Shanghai, China Shanghai, China Shanghai, China
Zhe Xie Xiaohui Nie Dan Pei
Tsinghua University CNIC, CAS Tsinghua University &
Beijing, China Beijing, China BNRist

ABSTRACT

This paper presents Chain-of-Event (CoE), an interpretable model
for root cause analysis in microservice systems that analyzes causal
relationships of events transformed from multi-modal observation
data. CoE distinguishes itself by its interpretable parameter design
that aligns with the operation experience of Site Reliability Engi-
neers (SREs), thereby facilitating the integration of their expertise
directly into the analysis process. Furthermore, CoE automatically
learns event-causal graphs from history incidents and accurately
locates root cause events, eliminating the need for manual con-
figuration. Through evaluation on two datasets sourced from an
e-commerce system involving over 5,000 services, CoE achieves
top-tier performance, with 79.30% top-1 and 98.8% top-3 accuracy
on the Service dataset and 85.3% top-1 and 96.6% top-3 accuracy
on the Business dataset. An ablation study further explores the
significance of each component within the CoE model, offering
insights into their individual contributions to the model’s overall
effectiveness. Additionally, through real-world case analysis, this
paper demonstrates how CoE enhances interpretability and im-
proves incident comprehension for SREs. Our codes are available
at https://github.com/NetManAIOps/Chain-of-Event.

CCS CONCEPTS

- Software and its engineering — Software reliability; Soft-
ware performance.

*Corresponding author.
THIAS, UCAS stands for Hangzhou Institute for Advanced Study, University of Chinese
Academy of Sciences.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

FSE Companion °24, July 15-19, 2024, Porto de Galinhas, Brazil

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0658-5/24/07

https://doi.org/10.1145/3663529.3663827

Beijing, China
KEYWORDS

Interpretable Root Causal Localization, Event-based Root Cause
Analysis

ACM Reference Format:

Zhenhe Yao, Changhua Pei, Wenxiao Chen, Hanzhang Wang, Liangfei Su,
Huai Jiang, Zhe Xie, Xiaohui Nie, and Dan Pei. 2024. Chain-of-Event: In-
terpretable Root Cause Analysis for Microservices through Automatically
Learning Weighted Event Causal Graph. In Companion Proceedings of the
32nd ACM International Conference on the Foundations of Software Engineer-
ing (FSE Companion °24), July 15-19, 2024, Porto de Galinhas, Brazil. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3663529.3663827

1 INTRODUCTION

In the realm of software engineering, microservice architecture has
emerged as a revolutionary approach, enabling the development of
software applications as collections of independently deployable,
small, modular services, offering enhanced scalability and reusabil-
ity, significantly speeding up the software development lifecycle.
Despite its broad adoption due to these advantages, the architec-
ture is inherently susceptible to critical production incidents. Such
incidents refer to unexpected system disruptions or component
failures at any level, which can have substantial adverse effects on
business operations [2, 6, 26, 29, 30]. These challenges underscore
the importance of swiftly identifying and addressing the root causes
of any issues to ensure quick system recovery. This capability is
vital for maintaining the high reliability and robustness of software
systems in a microservice architecture, a cornerstone principle in
software engineering.

The incident recovery process for software reliability mainte-
nance includes three key stages: anomaly detection [33, 40, 45], root
cause analysis (RCA) [31], and remediation. While the detection and
remediation phases follow well-defined procedures, the RCA stage
frequently poses challenges for Site Reliability Engineers (SREs).

Numerous prior studies have attempted to identify diverse root
causes, employing data-type-specific approaches like metric-based
methods [19, 22-24, 32, 34, 37, 39], log-based methods [1, 7, 21, 25,

https://orcid.org/0009-0009-6348-6734
https://orcid.org/0000-0001-9288-4787
https://orcid.org/0000-0001-8852-675X
https://orcid.org/0000-0002-7994-2935
https://orcid.org/0000-0002-5735-6740
https://orcid.org/0000-0001-5049-9178
https://orcid.org/0000-0001-9749-2539
https://orcid.org/0000-0002-0371-854X
https://orcid.org/0000-0002-5113-838X
https://github.com/NetManAIOps/Chain-of-Event
https://doi.org/10.1145/3663529.3663827
https://doi.org/10.1145/3663529.3663827

FSE Companion ’24, July 15-19, 2024, Porto de Galinhas, Brazil

44] and trace-based methods [38, 41]. However, while SREs per-
form RCA with various forms of observation data, including metrics,
logs, and traces, as highlighted in [10, 42], these previous methods
only process a specific type of observation data. This constraint
restricts these approaches from constructing a comprehensive un-
derstanding of the system and deriving the most accurate root cause
conclusions [42], which introduces the first challenge in RCA:

Challenge 1: Multi-Modal Data Integration. RCA meth-
ods should effectively integrate and analyze multi-modal data,
leveraging information from various observation types, in-
cluding metrics, traces, and logs.

To address these challenges, researchers recently proposed algo-
rithms that can handle multi-modal data simultaneously. Eadro [16]
feeds multi-modal data into a deep neural network, learns the corre-
lation and status representations for the multi-modal data through
a three-stage modal fusion, and performs root cause localization
based on the status representations. Nezha [42] converts multi-
modal data into events related to user requests and ranks the root
causes based on the changes in statistics of the event patterns.

Although these algorithms can utilize multi-modal observation
data, they suffer from limited interpretability and do not facili-
tate straightforward human feedback. Eadro’s method uses neural
networks throughout a black-box three-stage modal fusion. For
SREs who usually do not have a background in deep learning, it
is difficult for them to judge whether the parameters learned from
the intermediate layers (such as the self-attention layer) of these
models are reasonable, and they cannot optimize the model’s perfor-
mance without experience in parameter tuning. Nezha introduces
the concept of event pattern, which is relatively abstract, making
it difficult for SREs to intuitively understand what physical mean-
ing is represented by the event pattern’s increasing, decreasing, or
transforming to another pattern. For RCA models with poor inter-
pretability, it is hard for SREs to utilize their valuable experience
accumulated in daily microservice system maintenance to improve
the model, limiting the practicality and reliability of these RCA
models, which introduces the second challenge:

Challenge 2: Interpretability and Straightforward Align-
ment to Human Knowledge. An interpretable RCA algo-
rithm should make it easy for SREs to understand. Its pa-
rameter structure should ideally have a clear and intuitive
physical meaning that aligns with the knowledge of SREs,
such that SREs can easily improve the performance of the
algorithm model by modifying the parameters based on their
operational experience.

To address the previous two challenges, some other methods
are compatible with multi-modal data and align with the oper-
ational experience of SREs while simultaneously suffering from
labor-intensive or tricky manual configuration. PDiagnose [11] first
transforms the multi-modal data into different features of a time-
series, then utilizes manually defined thresholds to detect issues
in the timeseries, and localizes the root cause with the detected
issues. Groot [10] converts multi-modal data into events before

Z.Yao, C. Pei, and W. Chen, H. Wang, L. Su, H. Jiang, Z. Xie, X. Nie, D. Pei

4 1\
@ High CPU Usage @ High GC
“event”: “High GC”,
“related service”: "service B”,
“timestamp”: t;,
] j
® Service Client Error Spike @ Exception E;, Raised
(
“event”: “Service Client Error Spike”, “event”: “Exception E Raised,
“response service®:"service D', “errorservice™ "servce €',
“timestamp”: t;, “timestamp”: t,,
j j
@Sﬂ'wr Scaling @(‘mlc |)up|mumu@(‘ouﬁg Change ...
. J

Multi-Modal Observation and
Operation Activities

Various Events

Figure 1: Illustration of Different Events. Each event com-
prises the event type, associated service, and timestamp in-
formation.

constructing an event-causal graph using expert-configured rules.
The graph is then used to infer the root cause event through a
customized PageRank algorithm. These manually configured rules
specify whether one event can be triggered by another.

However, although threshold filtering and event-causal relation-
ships closely align with SREs’ operational expertise, the manual
configuration required in these methods introduces an extra work-
load for SREs, thus posing the third challenge in RCA:

Challenge 3: Automatic Causality Learning. An effective
RCA algorithm should be able to automatically learn causality
in microservice systems, thereby minimizing or eliminating
the necessity for manual configuration.

Among all the methods performing RCA on multi-modal data,
some [10, 42] introduce a framework that converts multi-modal
data into events before performing root cause analysis based on
these events. The transformation from multi-modal data to events
is illustrated in Fig. 1. This framework allows SREs to freely choose
the way events are generated based on their own needs. For exam-
ple, SREs can generate events based on their chosen threshold rules
or time series anomaly detection algorithms from metric data, or
they can generate events with keyword parsing statistics on logs.
Compared to directly mining the relationships within vast quanti-
ties of data across various modalities, learning causality at the event
level can achieve generalized multi-modal root cause localization,
maintaining the granularity of crucial original information[10, 42].

To address the three challenges mentioned earlier, we propose
CoE. CoE utilizes an event-based RCA framework and implements
workflow that automatically learns interpretable model parame-
ters. Based on the event-based RCA framework, CoE demonstrates
good adaptability to multi-modal data, and our experiments show
promising performance on both service-level and business-level
event datasets. The interpretability of CoE is excellent as its pa-
rameters have clear physical meanings: (1) the likelihood of one
event causing another and (2) the importance of an event within
the entire system. The physical meanings behind these parame-
ters align well with SREs’ operational experience, facilitating the
integration of their valuable knowledge through human feedback.

Chain-of-Event: Interpretable Analysis for Microservices through Automatically Learning Weighted Event ...

These parameters of CoE are obtained through automatic learning,
eliminating the need for manual configuration.
In summary, the key contributions of CoE are outlined below:

e We present an RCA algorithm, CoE, that follows the event-
based RCA framework and automatically learns the causality
between events in the microservices, ensuring compatibility
with multi-modal data and eliminating the need for manual
weight configuration.

o CoE has good interpretability and straightforward alignment
to human knowledge, as its parameters with clear physi-
cal meanings, such as the likelihood of one event causing
another and the importance score of an event within the
microservice system, align well with SREs’ operational ex-
perience, facilitating the integration of SREs’ expertise.

o To address the computational overhead of enumerating all
event chains when calculating the probability of root causes,
we propose an approximation method and provide theoreti-
cal analysis for it, ensuring a tight upper bound on approxi-
mation error.

e Evaluation on datasets from a global top-5 e-commerce sys-
tem shows that CoE outperforms the baselines, achieving
79.30% top-1 and 98.8% top-3 accuracy on the service dataset
and 85.3% top-1 and 96.6% top-3 accuracy on the business
dataset collected from online production services. Ablation
studies confirm the effectiveness of model components.

2 RELATED WORKS

Recently, various methodologies have emerged for diagnosing the
root causes of distributed software systems. These approaches typi-
cally leverage information about the system’s state through moni-
toring metrics, microservice traces, system or application logs, and
operational records kept by SREs.

However, a significant limitation of most prior research is the
underutilization of diverse data types [4, 7, 12, 17-19, 27, 28, 36—
38, 41], as illustrated in Table 1. In this table, the C1 column indi-
cates whether the model can handle multi-modal inputs, including
metrics, traces, and logs. Notably, RCA Graph([3] is categorized as
"Partial” due to its support for multi-modal inputs at the service
level only.

More recent models [10, 11, 16, 42] have been designed to process
metrics, traces, and logs together. However, they commonly suffer
from two critical drawbacks, as presented by the columns C2 and
C3in Table 1:

Limited Interpretability and Restricted Human Knowl-
edge Alignment. Eadro [16] employs deep learning techniques,
including dilated causal convolution and self-attention layers, to
learn system status representations. While effective, this approach
reduces model interpretability, making it challenging for SREs with-
out a deep learning background to comprehend the model and
fine-tune its parameters. Nezha [42], although a white-box model,
transforms multi-modal inputs into events and infers root causes
based on the relative changes in event pattern frequencies between
fault-free and fault stages. However, Nezha’s interpretability is also
limited because the concept of event pattern frequency is somewhat
abstract and does not directly align with SREs’ practical experience.
For example, while it may detect a significant change from e; — e

FSE Companion ’24, July 15-19, 2024, Porto de Galinhas, Brazil

Table 1: Recent Works and Their Compliance with the
Requirements from the Challenges. Here, C1 represents
whether the model can accept metrics, logs, and traces as
multi-modal inputs; C2 represents whether the model can
achieve satisfying interpretability; C3 represents needing NO
manual configuration. RW represents whether the model
is validated in Real-World datasets. Here, the blanks in the
table represent that we do not discuss whether the models
address some challenges because they have already failed to
address the previous challenge(s), aiming for visual clarity.

Work Year C1 C2| C3| RW
FChain [27] 2013 X X
Causelnfer [4] 2014 X X
MicroScope [18] 2018 X X
APG [36] 2018 | X X
Seer [7] 2019 X Partial
MicroRCA [37] | 2020 | X X
Causality RCA [28] | 2020 X X
MicroHECL [19] 2021 X v
MicroRank [41] 2021 X v
RCD [12] 2022 | X X
Dejavu [17] 2022 X v
GTrace [38] 2023 X v
RCA Graph [3] 2020 | Partial X
Eadro [16] 2023 v X X
Nezha [42] 2023 v X X
AlertRCA [43] | 2024 | v X v/
PDiagnose [11] 2021 v X v
Groot [10] 2021 v v | X v
CoE (ours) now v v |/ v

to ey — es3 as root cause, it may not clearly convey the implications
of this "root cause" change to SREs.

Need for Manual Configuration. PDiagnose [11] transforms
original multi-modal data into multiple time series features and
relies on manually designed threshold-based rules to identify actual
issues and perform RCA based on these detected issues. Groot [10]
transforms multi-modal data into events and conducts event-based
RCA using a manually configured event-causal graph that defines
the likelihood of each event causing another. While the threshold
rules in PDiagnose and the event-causal relationships in Groot
enhance interpretability and enable SREs to easily optimize mod-
els based on their experience without extra cognitive burden, the
manual configuration in these models proves to be labor-intensive.

Among the multi-modal approaches, some works [10, 42] adopt
the strategy of initially transforming multi-modal data into fine-
grained events before performing RCA on these events. This event-
based RCA approach presents a flexible and effective graph-based
framework for handling multi-modal inputs in microservice sys-
tems. In our work, we build upon this idea and aim to address the
aforementioned limitations of previous research. Our objective is
to facilitate automatic causality learning without the need for man-
ual configuration while ensuring the model remains interpretable.
Additionally, we strive to empower SREs to seamlessly integrate
their valuable experience into the model.

FSE Companion ’24, July 15-19, 2024, Porto de Galinhas, Brazil

3 PRELIMINARIES

In this section, we will first introduce the definition of events and
how to generate events from monitoring metrics, microservices
traces, and system logs in the microservices scenario, as well as
the relative relationship between events and incidents. Then, we
will introduce some concepts in event-based RCA, including causal
links between events, event chains, event-causal graphs consisting
of events and causal links, and naive event-causal graphs employed
to construct event-causal graphs. Finally, we will summarize our
problem statement.

3.1 Event and Incident

3.1.1 Event. In modern software architecture, the diversity and
tremendous volume of monitoring data on distributed systems shall
bring significant challenges for long-term storage and further anal-
ysis in the process of operation [10]. In our case, a global top-5
e-commerce system with over 5,000 distributed online services pro-
duces over 10 TB of daily monitoring data, including KPI metrics,
traces, and logs. To the best of our knowledge, there is currently no
appropriate algorithm to process all the incoming data of such vol-
ume directly to perform RCA at acceptable costs. Meanwhile, much
of the observed data is not of concern to SREs (e.g., , non-failure
segments in metrics, template information in logs, and normal
responses in traces).

Therefore, to tackle these challenges, a natural approach is to
preprocess and aggregate data from different modalities, focus-
ing only on the portions containing critical information, namely
events, and perform root cause analysis at the event level. Fig. 1
illustrates the generation of events. In a microservice system, SREs
can extract important abnormal information, such as unusually
high CPU metrics, abnormally high Garbage Collection (GC) fre-
quencies, increased error request codes between two microservices,
or frequent exceptions reported by a specific microservice code
segment, from raw observation data, including metrics, traces, and
logs, using different algorithms based on their granularity require-
ments for analysis. Typically, an event contains three types of fields:
WHAT, which describes the type of the event (e.g., "CPU HIGH,'
"GC HIGH"); WHEN, which indicates the time or period when the
event occurred; and WHERE, which identifies the service associ-
ated with the event. Apart from the observation data generated
automatically by the monitoring system, some operation activities
performed by SREs can also be categorized as events, such as "Code
Deployment" and "Config Change" in Fig. 1.

Event-based RCA refers to identifying the most likely event
within a collection of events that may have caused other events,
thereby determining the subsequent remediation actions to be taken
by SREs. For example, an event such as "Code Deployment" may
have led to events like "Latency Spike" and "API Call Timeout Error
Spike." Upon discovering the root cause event, SREs would take
actions such as code rollback or hotfix.

Performing RCA based on events not only (1) allows flexible
utilization of multi-modal observation data but also (2) supports
SREs in determining the granularity of root cause analysis based
on their specific requirements. Furthermore, it (3) reduces costs by
avoiding direct correlation mining on vast amounts of raw data,
and additionally (4) diminishes the cognitive burden for SREs in

Z.Yao, C. Pei, and W. Chen, H. Wang, L. Su, H. Jiang, Z. Xie, X. Nie, D. Pei

comprehending the current system status by leveraging events
rather than raw metrics, logs and traces.

Events are abstractions of raw monitoring data, which align
closely with the understanding of SREs. Typically, SREs accumulate
a wealth of experience regarding events during their daily opera-
tions and maintenance. For example, (1) a certain type of event is
likely to be caused by another type of event; (2) a particular type of
event is crucial and requires close attention when it occurs. Integrat-
ing such SRE expertise regarding events into the RCA algorithm
would effectively enhance its usability.

3.1.2 Incident. Due to the complex dependencies within a mi-
croservice system, multiple events often occur simultaneously in a
real failure. We consider a set of related events within a certain time
window as a collection, which we call an incident. An incident is
usually a set of events that cause service disruptions or outages[13].
Event-based RCA is to discover the root cause of an incident.

3.2 Event Graph

3.2.1 Causal Link. Typically, there is a causal relationship between
certain events, meaning that one event can be caused by another.
Considering events as nodes and establishing a directed edge be-
tween events based on potential causal relationships, the edge is
referred to as a Causal Link. A causal link points from the resulting
event e; to the causative event ey, and its weight represents the
likelihood that e is caused by e;.

3.2.2 Event Chain. A particular event may lead to multiple other
events, directly or indirectly, through a series of causal links. We
refer to these chained causal links between multiple events as an
Event Chain. To maintain generality, we define a zero-length event
chain to indicate that an event is not caused by any other event,
thus being its own root cause.

3.2.3 Event-Causal Graph. The graph composed of a set of events
as vertices and the causal links between these events as edges is
called an Event-Causal Graph (ECG), as shown in Fig. 2a. There
are two types of weight information in the Event-causal Graph:
the weights of the vertices (event nodes), which represent the im-
portance of an event, and the weights of the edges (causal links),
which represent the likelihood that one event is caused by another.
It is worth noting that these weights in the event-causal graph are
consistent with the SRE experience introduced in the last paragraph
of Section 3.1.1, thus providing good interpretability and easy ac-
ceptance of straightforward feedback and modifications from SRE.

Depending on the differences in the set of events used to con-
struct the event-causal graph, the event-causal graph can be divided
into two categories: (1) the event-causal graph constructed using
the set of all possible events in a microservices system, referred
to as the overall event-causal graph; (2) the event-causal graph
constructed using the set of events related to a specific incident,
which we call the incident-specific event-causal graph. The latter is
generally a subgraph of the former.

In a microservices architecture, the overall event-causal graph
can help SREs understand the entire system and allow for the inte-
gration of SRE knowledge. It is a useful approach to construct an
incident-specific event-causal graph for a certain incident before
using this graph to perform root cause localization.

Chain-of-Event: Interpretable Analysis for Microservices through Automatically Learning Weighted Event ...

© Event
=1 Service

=——> Learned Causal Link

(a) Event-Causal Graph

(b) Naive Event-Causal Graph

FSE Companion ’24, July 15-19, 2024, Porto de Galinhas, Brazil

______é______

—_———

©

L 7 Service

Event
Event

T 77 Service

——> Possible Causal Link

===

=——> Manual Causal Link

(c) Manual Event-Causal Graph

Figure 2: Illustrations of Event Graphs: (a) The Event-causal Graph comprises events represented as vertices and causal links
represented as directed edges. The blue and red values indicate the significance of events and the strength of causal connections,
respectively. (b) A Naive Event-causal Graph connects all possible causal links between events occurring within the same or
adjacent services. (c) Some approaches build upon (b) to create a Manually Configured Event-Causal Graph, where expert-defined
rules assign binary weights, removing non-existent causal connections by assigning them a zero weight.

3.24 Naive Event-Causal Graph. To help construct an event-causal
graph, Naive Event-causal Graph (NEG) is introduced.

The NEG is a uniformly weighted and fully connected ECG where
a set of events serve as vertices, and edges are formed by connecting
all events within the same or adjacent microservices, as depicted in
Fig. 2b.In an NEG, the edges between events within the same service
are bidirectional, while the direction of the edges between events in
adjacent services is determined by the dependencies (e.g., the calls)
of the services. The edges in an NEG represent all possible causal
relationships among the events, including false causal relationships.

The NEG does not require the weights needed in the ECG, mak-
ing it possible to be constructed directly from the event collec-
tion without additional causal prior knowledge. Consequently, con-
structing an NEG from an incident can aid in the creation of an
incident-specific event-causal graph with the following approaches:

e Approach 1: Utilize the NEG directly as the event-causal
graph while assigning all nodes and edges with equal weights.

o Approach 2: Initialize the event-causal graph with the NEG
and supplement binary weights through manually defined
rules, as depicted in Fig. 2c.

o Approach 3: Initialize the event-causal graph with the NEG
and supplement continuous weights using automatically learned
parameters.

Approach 1 is commonly utilized alongside traditional techniques
like PageRank. Some works like Groot [10] employ Approach 2
to construct manually configured binary event-causal graphs. Our
CoE adopts Approach 3 to eliminate additional manual effort.

3.3 Problem Statement

In the inference stage, given an incident as input, our CoE aims to
infer the root cause scores for every event in the incident, indicating
the root cause event. In the training stage, given historical incidents
involving different events and the recorded root cause events of
these incidents, our CoE seeks to automatically learn the causal link
weights and the event importance scores (illustrated by the red and
blue values in Fig. 2a) in an overall event-causal graph involving
all events in the microservice system.

4 ARCHITECTURE

In this section, we begin with an overview of our workflow, proceed
to outline the data preparation stage aimed at generating NEG
(serving as the input for subsequent steps), delve into the intricacies
of the inference stage of our CoE, and finally introduce the training
process of CoE. In addition, we discuss how to integrate human
knowledge into CoE to achieve more accurate RCA and deal with
events that have not been seen before.

4.1 Workflow

In this section, we briefly present the complete workflow of our
CoE, including the training and inference stages, as Fig. 3 shows.

First, in the preparation stage before training, we acquire the
events of historical incidents (serving as the inputs for training) and
the corresponding root cause events for these incidents (serving
as the labels) from the SRE’s fault remediation tickets in history.
The labels are obtained via a keyword search within the tickets. It
is worth noting that although CoE employs a supervised learning
approach, since fault remediation is already part of the SRE’s routine
work, and ticket recording is a natural occurrence, this step does
not incur additional resource overhead.

During the training phase, CoE trains an overall event-causal
graph involving all events in the microservice system. Using the
previously obtained events of historical incidents as inputs, CoE
constructs an NEG for each incident with its events. Then CoE
constructs an incident-specific event-causal graph for each incident
by initializing it with an NEG and assigning the causal link weights
and event importance scores queried from the overall event-causal
graph. Subsequently, based on the incident-specific event-causal
graphs, a graph ranking is performed to provide fault root cause
scores for the events within each incident. Using the scores of the
ground truth root cause events for each incident, a loss value is
calculated and subsequently employed to update the overall event-
causal graph. After training, the learned overall event-causal graph
is saved for the subsequent inference stage. This overall event-
causal graph offers excellent interpretability, making it easy for
SREs to understand and integrate their knowledge.

FSE Companion ’24, July 15-19, 2024, Porto de Galinhas, Brazil

Incident-Specific

Z.Yao, C. Pei, and W. Chen, H. Wang, L. Su, H. Jiang, Z. Xie, X. Nie, D. Pei

war Root Cause Scores

Incident-Specific

. Y History Naive Event- Event-Causal
Incident 1 - :
':: dz:: N % % %%@ Incidents| Tnput Graph Causal Graphs Causal Weight Graphs Graph |, feidentt 00
i ! Construction Assignment Ranking Incident 2 0 060
Incidentn @ D@ D®® Incident n 000
ey |w,]
SRE K g Overall Event-Causal Graph Loss
, I
? .
® (Optional) @5 Update | }
; 3 %
$ &
i o & ®
ey =TT T T
Inference l
i Root Cause Score
New Incident Input Graph Causal Weight Graph | _9 oo
@@@@@@@@ Construction Incident-Specific Assignment Incident-Specific Ranking Q
v Naive Event- Event-Causal v
Root Cause Event (unknown yet) Causal Graph Graph Inferred Root Cause Event

Figure 3: CoE Workflow: Training and Inference

In the inference stage, for a newly occurring incident with an
unknown root cause event, CoE constructs an NEG based on the in-
cident’s event set. Then, CoE queries the saved overall event-causal
graph for causal link weights and event importance scores before
assigning them to the causal links and event nodes, constructing
an incident-specific event-causal graph initialized by the NEG. Af-
terward, a graph ranking is performed to provide root cause scores
for the events related to this incident. The event with the highest
root cause score is expected to be the real root cause event.

4.2 Input Graph Construction

As previously introduced in Section 3.2.4, an incident can be trans-
formed into an incident-specific NEG. In a microservice system,
the invocation relationships between microservices can be easily
obtained from traces and logs, while events record the associated
service information. Therefore, for a given incident, CoE constructs
the corresponding NEG using the following approach: the events
in the incident are treated as nodes, and for any two events, (1)
if they are associated with the same service, bidirectional causal
links are set between them, indicating the likelihood of their mu-
tual causation; (2) if they are associated with adjacent services, a
unidirectional causal link is set between them, with the direction
consistent with the service invocation dependencys; (3) if there is
no direct dependency relationship between the services they are
associated with, no causal link is set between them.

It is worth noting that even if two events are not directly con-
nected by a causal link, there may still be an indirect causal relation-
ship between them, but such a causal relationship can be expressed
through an event chain.

The incident-specific NEG serves as the input for inferring the
root cause scores of the incident’s events in the next step.

4.3 Root Cause Inference in CoE

This section introduces how to calculate the root cause score of
each node in CoE based on a given NEG. Denoting a given NEG as
G, we define CoE (G) as the root cause score of events in G. The
algorithm is shown in Algorithm 1, which mainly includes:

4.3.1 Inputs and Parameters. The input of the CoE function is an
NEG transformed from an incident, denoted as G.

The trainable parameters include R, Ry, and S. R; and R rep-
resent the causal link weights for inter-service and intra-service
causal links. S is the event importance scores of the event nodes,
measuring how important each event is in the whole system and
indicating a crucial event chain starting from this event. R¢,R;, and
S contain information about the event-causal graph composed of
all events in the microservice system. How to update them through
training will be introduced in Section 4.4.

The parameters « and T jointly determine the algorithm’s ap-
proximation error bound, (ﬁ)Tﬂ, as described in Appendix A.
T is the upper limit for event chain length. « is the normalization
factor. Readers can set a based on their error requirements. We set
a to 0.2 in our experiments with T = 100, achieving an approxima-
tion error less than 1e-8, which is relatively small compared to the
average event root cause score of approximately le-2.

4.3.2 Causal Weights Assignment. This section corresponds to
Lines 2-18 in Algorithm 1.

Given an NEG, G, with its event nodes V, we first assign a weight
to each causal link in G with the overall event-causal graph pa-
rameters R; and Ry, where R; and R; stores the causal weights
of inter-service and intra-service causal links, respectively. The
weight assigned to the causal link a — b is denoted as E[(a,b)].
We calculate the sum of causal link weights originating from event
node v, denoted as sum|[v], and compute the a-biased mean value
of these sums, denoted as k = mean,(sum|[v]) X a. For an event
node v, sum[v] and k indicate the probability weight of this event
being caused by other nodes versus being its own root cause.

Next, we assign event importance scores to each node with the
global event-causal graph’s event importance score S and normalize
them to obtain Q°. Q° represents the probabilities of each event
serving as the starting point of an event chain.

4.3.3 Graph Ranking. This section corresponds to Lines 19-29 in
Algorithm 1. With an incident-specific event-causal graph, the root
cause score of each event node is as follows:

Calculate Event Root Cause Score. For a specific event in an
incident, its root cause score is contributed by all the event chains
pointing to it.

Chain-of-Event: Interpretable Analysis for Microservices through Automatically Learning Weighted Event ...

Algorithm 1: CoE Inference with NEG

1 def CoE(G):

Input :G, naive event-causal graph, whose event
nodes are V;

Parameter : R, inter-service causal weights; R;,
intra-service causal weights; S, event
importance scores; T, the limit for event
chain length; a, the normalization factor;

Output :C, the root cause scores of V;

/* Causal Weights Assignment: Constructing

Incident-specific Event-causal Graph */
2 k =0,C = EmptyArray, sum = EmptyArray
3 for ainV do

4 for b neighboring to a do
5 if a, b in the same service then
6 ‘ E[(a,b)] = Rs(a.event, b.event)
7 else
8 ‘ E[(a,b)] = Ry(a.event, b.event)
9 end
10 sum|a] = sum[a] + E[(a,b)]
1 end
12 k =k + sum|a]
13 end
14 k =k/size(V) x«
15 for ainV do
16 ‘ 0°[a] = S(a.event)
17 end

18 0° = normalize(Q°)
/* Graph Ranking: Calculate Root Cause Scores

of the Events */
19 fori=1toTdo
20 Q! = EmptyArray
21 for ainV do
22 for b neighboring to a do
23 | Q'[b] += Q' '[a] * E[(a, b)]/(sum[a] + k)
24 end
25 end
26 for ainV do
27 ‘ Cla] += Q'[a]#k/(sum[a]+k)*length_bonus|[i]
28 end
29 end
30 return C

We denote the set of event chains in an event-causal graph as
{li, 1o, ..., In} where [; represents the i-th event chain of the event
nodes. Denoting the root cause score of event v as P(v) and the
root cause score contributed by event chain [as p(I). Then it can
be expressed as:

P= > () M

I; ends with v

The event chain contribution p(l;) in Eqn. (1) is computed from:

FSE Companion ’24, July 15-19, 2024, Porto de Galinhas, Brazil

Calculate Event Chain Contribution. For a given event chain,
its contribution to the root cause score of the terminal node is deter-
mined by (1) the importance score of the starting node; (2) the joint
probability of each event node being caused by its next event along
the event-chain; (3) the probability of the terminal event not being
caused by another event, and (4) the length bonus term of the event
chain.

Assuming an event chain J; is Udfi) — vdé” — ...

(&)

where v}
J

(i) >
dll |

represents the index of the j-th event node in /; and |/;|

represents the event number of I;. Then p([;) is:

[l:]-1
[P logm #Term(s,n) * LB(Ii)

j=1
()
Here, the first term, Sporm, is the normalized importance score
of each event, corresponding to the normalized Q¥ in Alg. 1. In the
second term, p(vd(,-) |0d(,-)) represents the probability of vd(i) being

p(i) = Snorm(vd<i)) *
1

directly caused by Ud(L) correspondlng tothe E[(a,)] /(sum[1+k)
in Alg. 1. The th1rd term, Term(vd(,)) is referred to as out-edge
bonus term, representing the probablhty of event v e being NOT
I

caused by another event (thus being the root cause‘o‘f itself), cor-
responding to the k/(sum|[a] + k) in Alg. 1. The last term, LB(|l;|),
represents the length bonus term of the event chain of length |;],

corresponding to the length_bonus[i] in Alg. 1. LB is designed
to reward the contribution of longer event chains. In practice,
LB[i] = min(1.0,0.01 % 2~1) and it is at most 1 to avoid expo-
nential explosion. In the following context, the out-edge bonus
term and the length bonus term are referred to as bonus terms.

While Eqn. (1) and Eqn. (2) provide a clear definition for calculat-
ing event root cause scores, due to the complex causal relationship
in microservice systems, it is not efficient to directly enumerate the
event chains and accumulate their contributions to the root cause
scores of their terminal nodes. Here, we introduce:

Efficient Calculation. To compute the root cause scores of events,
we can iteratively calculate the root cause scores contributed by event
chains clustered by chain length.

In the Appendix A, a comprehensive proof of this step is pre-
sented, accompanied by a theoretical analysis establishing an upper
bound, (ﬁ)Tﬂ, on the approximation error when T is not infinite.
T and « are parameters previously introduced in Section 4.3.1. The
Alg. 1 follows this design, where Q*[0] is the bonus-terms-excluded
contribution of all i-length event chains to event v

4.4 Training and Testing

The training process of the CoE is geared towards learning the
learnable parameters, denoted as R, Ry, and S, in the overall event-
causal graph, eliminating manual configuration.

Here, we introduce the training algorithm for CoE, as outlined in
Alg. 2. The CoE model is trained to maximize the normalized root
cause scores of the ground-truth root cause using the loss function
L as depicted in Eqn. (3). o represents the parameters including
Ry, Rs, and S, trained using the Adam optimizer [14] along with
an L2 penalty [20].

FSE Companion ’24, July 15-19, 2024, Porto de Galinhas, Brazil

Algorithm 2: Train CoE
1 def TrainCoE(G,Y):

Input :training data G, NEGs; training labels Y, the
ground-truth root cause events;

Output: w, parameters including Ry, Rs, and S;
2 w « initialize(G)
3 for i = 1 to max_epoch do
4 for (G, y) is a batch in (G, Y) do
5 L =2 CoE(Gi) [yi]
6 w — Adam(—Vy, Le, w)
7 end
8 end
9 return o

Lc =-Eg,, CoE(G)[y] (3)

In online mode, training can be regularly conducted, with inci-
dents accumulating over time.

4.5 Integration of Human Knowledge

A significant advantage of the CoE model is that it is a white-box
algorithm with an illustrative event-causal graph. This design en-
sures the model is transparent and intuitive for SREs, allowing them
to easily comprehend and even modify the automatically learned
parameters. Leveraging their expertise, SREs can fine-tune these
parameters to enhance the precision of root cause identification.

For instance, as shown in Fig.3, based on historical data, CoE
learns the causal link weights (Rs and R;) and event importance
scores (S). These parameters have clear physical meanings and align
with the SREs’ cognitive processes and observations during daily
operations, ensuring ease of comprehension. A large causal link
weight signifies that one event is highly probable to be triggered
by another, whereas a high event importance score denotes that
an event holds significance within the overall system, thereby ne-
cessitating its rigorous monitoring. Therefore, unlike models that
require deep learning knowledge from SREs, CoE supports SREs in
adjusting its parameters based on their experience, even without
relevant parameter-tuning expertise, to improve the RCA output.

However, it is still necessary to note that while CoE allows SREs
to easily modify model parameters based on their experience, the
overall event-causal graph automatically learned by CoE is already
outstanding without additional manual intervention. In the exper-
iments in Section 5.2, we compared CoE with the overall event-
causal graph learned entirely on its own against a completely man-
ually configured event-causal graph. The results showed that the
former still performs better. This section solely emphasizes that
CoE supports further human knowledge integration based on the
automatically learned causality.

5 EVALUATION

To evaluate the performance of CoE, we carry out a comprehen-
sive set of experimental studies addressing the following research
questions:

Z.Yao, C. Pei, and W. Chen, H. Wang, L. Su, H. Jiang, Z. Xie, X. Nie, D. Pei

e RQ1:Effectiveness, how does the CoE improve the RCA ac-
curacy by learning the overall event-causal graph compared
with Groot and other baselines?

e RQ2:Ablation Study, what are the individual contributions
of each component within CoE?

e RQ3:Interpretability, how does CoE achieve interpretabil-
ity in real-world cases?

5.1 Experimental Design

5.1.1 Dataset. We evaluate CoE on datasets collected from a global
top-5 e-commerce system with over 5,000 services in three data cen-
ters, serving 185 million active users. Our dataset contains events
from 46 monitoring signals per service, aggregated from 800,000
monitoring signals. Our datasets consist of two subsets: Service
dataset and Business dataset. The Service dataset includes service-
level incidents (e.g., connection stacking issues), while the Business
dataset covers customer/business impact incidents (e.g., failed inter-
actions) related to business-to-business relationships. Both datasets
contain 170 service incidents and 782 business incidents collected
from Jan. 2020 to Apr. 2021, evenly split for training and testing
through multiple rounds of random splitting.

5.1.2 Baselines. As previously mentioned, extracting the overall
event-causal graph is crucial for interpretable SRE-friendly RCA
algorithms in microservices systems. We primarily select some
baseline algorithms to learn the event-causal graph from historical
incidents and further perform root cause localization. Our baselines
include:

e Groot [10]. Groot is an RCA algorithm with a manually config-
ured event-causal graph.

e Groot with NEG. Groot runs on a naive event-causal graph

without manual configuration.

PageRank. Employing Approach 1 in Section 3.2.4, the PageRank

is applied to the NEG to locate the root cause by updating the

value of nodes by their adjacent nodes and out-edge numbers.

GCN. GCN [15] has achieved remarkable results in graph em-

bedding, graph classification, and node classification. RCA in the

NEG is a binary node classification task.

GAT [35]. [35] propose GAT to assign corresponding weights to

different adjacent nodes. Unlike GCN, GAT predicts the impor-

tance of other neighboring nodes. Recent works like Eadro [16]

and AlertRCA[43] use GAT to learn the dependency-aware sta-

tus of the microservice system. We employ GAT with historical

incidents to learn the event-causal graph.

o GraphSAGE [9]. GraphSAGE can be generalized to the unseen
graph (different from the training graph).

Groot and PageRank represent existing RCA approaches. GCN,
GraphSAGE, and GAT are the popular graph neural networks in
node classification, graph classification, link prediction, and graph
embedding [9, 15, 35].

Some other approaches do not support multi-modal root causes,
as shown in Table 1. The traditional graph-based approaches (e.g.,
Causelnfer [4] and Microscope [18]) do not perform well as in-
troduced in [10, 42]. Other works include log-based methods [1,
7, 19, 21, 25, 44]. Some other methods [8] do not concentrate on
event-level RCA and can not extract the causality between events.

Chain-of-Event: Interpretable Analysis for Microservices through Automatically Learning Weighted Event ...

Table 2: Performance of CoE and baselines, with MEG repre-
senting that the algorithm uses a Manual Event-causal Graph
constructed based on rules defined by human experts. In this
table, bold indicates the best performance.

Service Business

Model MEG Top-1 Top-3 Top-1 Top-3
PageRank 16.1% 253% 1.2% 1.8%

, GraphSAGE 62.2% 781% 81.1% 93.7%
o GAT 12.2% 47.6% 60.5% 79.2%
3 GCN 293% 57.3% 69.2% 85.3%
& Groot w/o MEG 17.1% 48.8% 23.2% 45.5%

Groot v 74% 92% 81% = 96%

g CoE with MEG v 781% 93.9% 787% 95%
o) CoE 79.3% 98.8% 85.3% 96.6%

We use GCN [15], GraphSAGE [9] and GAT [35] to solve RCA as
a binary node classification task. BERT [5] is used in GCN, Graph-
SAGE, and GAT to transform the event name and service name into
an embedding vector as the node’s feature.

5.1.3 Metrics. We use top-1 and top-3 accuracy rates as metrics.
The top-k accuracy is the ratio of incidents where the RCA score
in the top-k sorts its ground-truth root cause.

5.1.4 Environment and efficiency. Our experiments run with an
Intel(R) Core(TM) 19-9980HK CPU, an 11GB GTX1080Ti GPU, and
32GB memory. It takes about 45 minutes to train the CoE with all
the incidents in each dataset. The average execution time and event
number are 4.06s and 18.73 for the Business incidents and 2.16s
and 14.70 for Service incidents. Its speed is close to Groot (2.98s for
the Business dataset and 3.16s for the Service dataset), requiring
minimal storage cost at just 52.06KB.

5.2 ROQ1:Effectiveness

We evaluate CoE on the Service and Business datasets, compared
with other approaches in Table 2. In the experiments, we use a
minimum learning rate (4e-5) and few parameters in CoE to ensure
reproducibility. As a result, the training is stable, and the top-1 and
top-3 accuracy of CoE keep the same in five repeated experiments.

Among all the baselines, Groot [10] significantly outperforms
most other baselines. However, it’s worth noting that when an
event-causal graph defined by manually configured rules is un-
available, Groot’s performance is noticeably diminished (refer to
"Groot without MEG"). We also explored the performance of widely-
used graphical models, including GCN [15], GraphSAGE [9], and
GAT [35] , which do not perform well when learning from the
NEGs, as demonstrated in Table 2.

Compared to Groot, CoE not only eliminates the need for labor-
intensive configuration but also boosts performance, with a 5.3%
top-1 and 6.8% top-3 improvement in the Service dataset and a 4.3%
top-1 improvement in the Business dataset.

Intriguingly, CoE not only surpasses Groot but also exceeds
CoE with an event-causal graph completely configured by human
experts (refer to "CoE with MEG"). This finding implies that CoE’s
ability to encapsulate causality surpasses that of human expertise.

FSE Companion ’24, July 15-19, 2024, Porto de Galinhas, Brazil

Table 3: Length bonus and out-edge bonus ablation study.

Service Business
Topl Top3 Topl Top3
CoE 79.3% 98.8% 85.3% 96.6%
CoE w/o length bonus 793% 96.3% 83.2% 96.1%

CoE w/o out-edge bonus 75.6% 96.3% 83.4% 95.3%
CoE w/o both bonus terms 75.6% 93.9% 83.4% 95.3%

Table 4: Performance enhancements for each component
integrated into a naive CoE sequentially.

Service Business
Top1l Top3 Topl Top3
Naive CoE 31.7% 64.6% 71.7% 90.3%
+bonus terms 33.0% 67.1% 72.1% 90.5%
+learn S 51.2% 81.7% 82.1% 95%
+learn R; 51.2% 86.6% 84.5% 95.5%
+learn R; 79.3% 98.8% 85.3% 96.6%

We believe this enhancement primarily stems from the superiority
of continuous types for casual weights, as opposed to the binary
edges built according to the expert-configured manual rules. This
methodology facilitates a more precise representation of event
relationships.

5.3 RQ2: Ablation Study

In this part, an ablation study is performed on the following com-
ponents in CoE:

e Out-edge bonus term, Term, and length-bonus term, LB
e Event importance scores, S

o Inter-service causal link weights, Ry

e Intra-service causal link weights, Rs

We initiated our analysis with an ablation study to investigate
the impact of two essential terms, the out-edge bonus and length
bonus terms, on CoE performance, as illustrated in Table 3. When
we remove a term, we set this term as a constant 1. The experiments
validate our intuition that bonus terms can lead to a more reasonable
contribution to an event chain.

Subsequently, we conducted two additional sets of ablation ex-
periments on CoE. In the first set, we incrementally introduced and
evaluated the impact of each component on performance improve-
ment, as elucidated in Table 4. In the second set, we systematically
assessed the model’s overall performance by removing each compo-
nent individually, as outlined in Table 5. The results shed light on the
significance of each component: The incorporation of component
S led to a substantial enhancement in performance. Component
R, contributed to a modest improvement. Notably, component R
played a pivotal role in elevating the performance of the Service
dataset, suggesting that incidents within this dataset are typically
associated with a single service.

FSE Companion ’24, July 15-19, 2024, Porto de Galinhas, Brazil

Table 5: Impact of removing individual steps in CoE.

Service Business
Topl Top3 Topl Top3
CoE 79.3% 98.8% 85.3% 96.6%

CoE w/o learning S 75.6% 96.3% 84.5% 96.1%
CoE w/o learning R; 78.1% 97.6% 84.5% 95.8%
CoE w/o learning Ry~ 51.2% 86.6% 84.5% 95.5%
CoE w/o bonus terms 75.6% 93.9% 83.4s% 95.3%

Table 6: Each step in CoE, where blanks represent 0 and
Q'[j] represents bonus-terms-excluded root cause score con-
tributed by all i-length event chains to node j.

Nodes | i=0 | i=1]i=2|i=3]i=4
O'[0] | 0.15
1] | 0.15 | 0.107
2] | 0.12 | 0.135 | 0.097
3] | 0.12 | 0.005 | 0.005 | 0.004
4] | 0.08 | 0.097 [0.004 | 0.004 | 0.003
0.02 | 0.103 | 0.116 | 0.083
6] | 0.08 | 0.018 | 0.092 | 0.104 | 0.074
71 | 0.08
8] | 0.12 | 0.143
9] | 0.08

.

~

QQIQIQIQIQIQ|IQ 1O
SslG=la=sis=

5.4 RQ3: Interpretability

In this section, we demonstrate how the CoE outputs can provide
interpretability for SREs from three aspects in the real-life case in
Fig. 2a. The causal link weights and event importance scores, as
learned by CoE (depicted by the red and blue numbers in Fig. 2a),
along with the bonus-terms-excluded root cause contribution of
event chains of various lengths (as depicted in Table 6), collectively
contribute to the interpretability of the model. This is exemplified
in the case study presented in Fig. 2a, where these elements are used
to answer three common questions SREs ask during fault diagnosis:

Firstly, how do the events influence each other? CoE pro-
vides insights into the propagation probabilities between events.
By intelligently trimming redundant paths to eliminate spurious
causality, CoE enhances clarity. For instance, the edge from Node 2
to Node 3 isn’t outright severed but is assigned a weight of 0.07, sig-
nificantly lower than the edge from Node 2 to Node 5. This weight
assignment makes Node 2 more likely to be directly influenced by
Node 5. The causal links between irrelevant events are automati-
cally assigned zero weights after CoE training. Using continuous
and differentiable causal link weights better represents the direct
impacts between events than binary-style edges in the event-causal
graphs defined by manually configured rules, facilitating a more
comprehensive grasp of the system for SREs.

Secondly, how exactly does the model arrive at its conclu-
sion? CoE not only computes the root cause score of nodes but
also unveils the fault propagation process in each round, as shown
in Table 6. For example, although events such as 7, 8, and 9 are as-
signed initial scores, their root cause scores diminish rapidly within

Z.Yao, C. Pei, and W. Chen, H. Wang, L. Su, H. Jiang, Z. Xie, X. Nie, D. Pei

one or two steps, indicating a limited influence range. Conversely,
Event 6 grows increasingly suspicious in longer propagation paths,
as evidenced by its score proportions of 42.4% for i = 2, 42.5% for
i = 3, and a significant 96.1% for i = 4. This illustrative propaga-
tion process derives the final root cause scores C|j]. For example,
Cl2] = X2, Q![2]+Term(2)+LB(i) = 0.00035,C[4] = 0.00145, and
C[6] = 0.01214. These detailed insights into propagation during
each round empower SREs to better understand the entire process.

Thirdly, given an event chain, can SREs determine how
suspicious this event chain is? CoE helps the SRE to evaluate the
contributions of event chains. For the Fig. 2a case, k = 0.195, SREs
can examine the contributions of event chains as the following
examples:

o /4 =5—6,p(l1) =0.00018.

l=0—1—2— 5, p(ly) = 0.000679.
I53=0—>1—2—5— 6, p(l3) = 0.00595.
l4=0—-1—>2—3 >4, p(ly) =0.00237.
15=0—>1—>8,p(15)=0.
Is =7 — 8, p(lg) = 0.000722.
By comparing p(l1) with p(l2), SREs can discern that the presence
of Event 0 contributes more significantly to the root cause score
of Event 6 than the presence of Event 5 does. Despite I, and I3
originating from the same node, the fact that p(ly) < p(I3) suggests
that Event 0 is more likely to designate Event 6 as the root cause
rather than Event 5. Furthermore, a comparison between p(l3)
and p(ly) allows SREs to infer that Event 0 is more likely to be
propagated from Node 6 along I3, as opposed to from Event 4 along
ls. p(I5) is zero, indicating that the fault in Event 0 is irrelevant to
Event 8. In contrast, a nonzero p(lg) implies that Event 8 is more
likely to cause the issue in Event 7.

These three aspects of CoE enable SREs to understand the in-
cident better, encompassing the root cause event and the fault
propagation details.

6 CONCLUSION

In this paper, we present a white-box algorithm, CoE, to automati-
cally learn the event-causal graph and accurately detect root causes
while ensuring interpretability and enabling SREs to integrate hu-
man knowledge. CoE eliminates the need for time-consuming man-
ual configuration by automatically learning the parameters in an
overall event-causal graph. Furthermore, it helps SREs compre-
hend fault propagation and event chains within the event-causal
graphs, guaranteeing interpretability. Our evaluations, conducted
on two datasets encompassing 952 real-life incidents sourced from
SRE remediation records, illustrate CoE’s superiority over baseline
methods. Our ablation study provides insight into the effectiveness
of each component of the CoE algorithm. In our future work, we
plan to delve further into causality relationships, exploring avenues
such as unsupervised or active learning techniques.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation
of China under grants 62072264 and 62202445, the Beijing National
Research Center for Information Science and Technology (BNRist)
key projects, and the National Key Research and Development
Program of China under grant 2022YFB2901800.

=

REFERENCES

[1] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener, Patrick Reynolds, and

Athicha Muthitacharoen. 2003. Performance debugging for distributed systems
of black boxes. In Proceedings of the Nineteenth ACM Symposium on Operating Sys-
tems Principles (Bolton Landing, NY, USA) (SOSP *03). Association for Computing
Machinery, New York, NY, USA, 74-89. https://doi.org/10.1145/945445.945454
Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. 2016. Microservices
Architecture Enables DevOps: Migration to a Cloud-Native Architecture. IEEE
Software 33, 3 (2016), 42-52. https://doi.org/10.1109/MS.2016.64

Alvaro Brandén, Marc Solé, Alberto Huélamo, David Solans, Maria S Pérez,
and Victor Muntés-Mulero. 2020. Graph-based root cause analysis for service-
oriented and microservice architectures. Journal of Systems and Software 159
(2020), 110432. https://doi.org/10.1016/j.jss.2019.110432

Pengfei Chen, Yong Qi, Pengfei Zheng, and Di Hou. 2014. Causelnfer: Auto-
matic and distributed performance diagnosis with hierarchical causality graph in
large distributed systems. In IEEE INFOCOM 2014 - IEEE Conference on Computer
Communications. 1887-1895. https://doi.org/10.1109/INFOCOM.2014.6848128
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
In Proceedings of the 2019 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), Jill Burstein, Christy Doran, and Thamar Solorio (Eds.).
Association for Computational Linguistics, Minneapolis, Minnesota, 4171-4186.
https://doi.org/10.18653/v1/N19-1423

Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Mazzara,
Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. 2017. Microservices: yes-
terday, today, and tomorrow. Present and ulterior software engineering (2017),
195-216. https://doi.org/10.1007/978-3-319-67425-4_12

Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna Pancholi,
and Christina Delimitrou. 2019. Seer: Leveraging Big Data to Navigate the
Complexity of Performance Debugging in Cloud Microservices. In Proceed-
ings of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems (Providence, RI, USA) (ASP-
LOS ’19). Association for Computing Machinery, New York, NY, USA, 19-33.
https://doi.org/10.1145/3297858.3304004

Xiaofeng Guo, Xin Peng, Hanzhang Wang, Wanxue Li, Huai Jiang, Dan Ding,
Tao Xie, and Liangfei Su. 2020. Graph-based trace analysis for microservice
architecture understanding and problem diagnosis. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering (Virtual Event, USA) (ESEC/FSE
2020). Association for Computing Machinery, New York, NY, USA, 1387-1397.
https://doi.org/10.1145/3368089.3417066

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. In Advances in Neural Information Processing Systems,
1. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett (Eds.), Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/
paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebead-Paper.pdf
Wang Hanzhang, Wu Zhengkai, Jiang Huai, Huang Yichao, Wang Jiamu, Ko-
pru Selcuk, and Xie Tao. 2021. Groot: An Event-graph-based Approach for
Root Cause Analysis in Industrial Settings. In 2021 36th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). 419-429. https:
//doi.org/10.1109/ASE51524.2021.9678708

Chuanjia Hou, Tong Jia, Yifan Wu, Ying Li, and Jing Han. 2021. Diagnosing
Performance Issues in Microservices with Heterogeneous Data Source. In 2021
IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data
& Cloud Computing, Sustainable Computing & Communications, Social Com-
puting & Networking (ISPA/BDCloud/SocialCom/SustainCom). 493-500. https:
//doi.org/10.1109/ISPA-BDCloud-Social Com-SustainCom52081.2021.00074
Azam Ikram, Sarthak Chakraborty, Subrata Mitra, Shiv Saini, Saurabh Bagchi,
and Murat Kocaoglu. 2022. Root Cause Analysis of Failures in Microservices
through Causal Discovery. In Advances in Neural Information Processing Systems,
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (Eds.), Vol. 35.
Curran Associates, Inc., 31158-31170. https://proceedings.neurips.cc/paper_files/
paper/2022/file/c9fcd02e6445c7dfbad6986abee53d0d-Paper-Conference.pdf

[13] Jiajun Jiang, Weihai Lu, Junjie Chen, Qingwei Lin, Pu Zhao, Yu Kang, Hongyu

Zhang, Yingfei Xiong, Feng Gao, Zhangwei Xu, Yingnong Dang, and Dongmei
Zhang. 2020. How to mitigate the incident? an effective troubleshooting guide
recommendation technique for online service systems. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering (Virtual Event, USA) (ESEC/FSE
2020). Association for Computing Machinery, New York, NY, USA, 1410-1420.
https://doi.org/10.1145/3368089.3417054

Diederik Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimiza-
tion. In International Conference on Learning Representations (ICLR). San Diega,
CA, USA.

Chain-of-Event: Interpretable Analysis for Microservices through Automatically Learning Weighted Event ...

[15]

[16]

(17

[18

[19

)
=

[21

[22

[23

[24]

[25]

[29

[30

[31

[32

[33

(34]

FSE Companion ’24, July 15-19, 2024, Porto de Galinhas, Brazil

N. Thomas Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. international conference on learning representa-
tions (2017). https://openreview.net/forum?id=SJU4ayYgl

Cheryl Lee, Tianyi Yang, Zhuangbin Chen, Yuxin Su, and Michael R. Lyu. 2023.
Eadro: An End-to-End Troubleshooting Framework for Microservices on Multi-
Source Data. In Proceedings of the 45th International Conference on Software
Engineering (Melbourne, Victoria, Australia) (ICSE °23). IEEE Press, 1750-1762.
https://doi.org/10.1109/ICSE48619.2023.00150

Zeyan Li, Nengwen Zhao, Mingjie Li, Xianglin Lu, Lixin Wang, Dongdong
Chang, Xiaohui Nie, Li Cao, Wenchi Zhang, Kaixin Sui, Yanhua Wang, Xu
Du, Guogiang Duan, and Dan Pei. 2022. Actionable and interpretable fault
localization for recurring failures in online service systems. In Proceedings of
the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (, Singapore, Singapore,) (ESEC/FSE
2022). Association for Computing Machinery, New York, NY, USA, 996-1008.
https://doi.org/10.1145/3540250.3549092

JinJin Lin, Pengfei Chen, and Zibin Zheng. 2018. Microscope: Pinpoint perfor-
mance issues with causal graphs in micro-service environments. In International
Conference on Service-Oriented Computing. Springer, 3-20.

Dewei Liu, Chuan He, Xin Peng, Fan Lin, Chenxi Zhang, Shengfang Gong, Ziang
Li, Jiayu Ou, and Zheshun Wu. 2021. MicroHECL: High-Efficient Root Cause
Localization in Large-Scale Microservice Systems. In 2021 IEEE/ACM 43rd In-
ternational Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). 338-347. https://doi.org/10.1109/ICSE-SEIP52600.2021.00043

Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization.
In International Conference on Learning Representations. https://openreview.net/
forum?id=Bkg6RiCqY7

Siyang Lu, BingBing Rao, Xiang Wei, Byungchul Tak, Long Wang, and Ligiang
Wang. 2017. Log-based Abnormal Task Detection and Root Cause Analysis for
Spark. In 2017 IEEE International Conference on Web Services (ICWS). 389-396.
https://doi.org/10.1109/ICWS.2017.135

Meng Ma, Weilan Lin, Disheng Pan, and Ping Wang. 2019. MS-Rank: Multi-
Metric and Self-Adaptive Root Cause Diagnosis for Microservice Applications.
In 2019 IEEE International Conference on Web Services (ICWS). 60-67. https:
//doi.org/10.1109/ICWS.2019.00022

Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. 2018. Pivot Tracing: Dynamic
Causal Monitoring for Distributed Systems. ACM Trans. Comput. Syst. 35, 4,
Article 11 (dec 2018), 28 pages. https://doi.org/10.1145/3208104

Yuan Meng, Shenglin Zhang, Yonggian Sun, Ruru Zhang, Zhilong Hu, Yiyin
Zhang, Chenyang Jia, Zhaogang Wang, and Dan Pei. 2020. Localizing Failure
Root Causes in a Microservice through Causality Inference. In 2020 IEEE/ACM
28th International Symposium on Quality of Service (IWQoS). 1-10. https:
//doi.org/10.1109/IWQ0S549365.2020.9213058

Vinod Nair, Ameya Raul, Shwetabh Khanduja, Vikas Bahirwani, Qihong Shao,
Sundararajan Sellamanickam, Sathiya Keerthi, Steve Herbert, and Sudheer Dhuli-
palla. 2015. Learning a Hierarchical Monitoring System for Detecting and Di-
agnosing Service Issues. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (Sydney, NSW, Australia)
(KDD ’15). Association for Computing Machinery, New York, NY, USA, 2029-2038.
https://doi.org/10.1145/2783258.2788624

Sam Newman. 2021. Building microservices. " O’Reilly Media, Inc".

Hiep Nguyen, Zhiming Shen, Yongmin Tan, and Xiaohui Gu. 2013. FChain:
Toward Black-Box Online Fault Localization for Cloud Systems. In 2013 IEEE
33rd International Conference on Distributed Computing Systems. 21-30. https:
//doi.org/10.1109/ICDCS.2013.26

Juan Qiu, Qingfeng Du, Kanglin Yin, Shuang-Li Zhang, and Chongshu Qian. 2020.
A causality mining and knowledge graph based method of root cause diagnosis
for performance anomaly in cloud applications. Applied Sciences 10, 6 (2020),
2166. https://doi.org/10.3390/app10062166

Chris Richardson. 2018. Microservices patterns: with examples in Java. Simon and
Schuster.

Jacopo Soldani and Antonio Brogi. 2022. Anomaly Detection and Failure Root
Cause Analysis in (Micro) Service-Based Cloud Applications: A Survey. ACM
Comput. Surv. 55, 3, Article 59 (feb 2022), 39 pages. https://doi.org/10.1145/
3501297

Marc Solé, Victor Muntés-Mulero, Annie Ibrahim Rana, and Giovani Estrada.
2017. Survey on models and techniques for root-cause analysis. arXiv preprint
arXiv:1701.08546 (2017). https://doi.org/10.48550/arXiv.1701.08546

Yonggian Sun, Youjian Zhao, Ya Su, Dapeng Liu, Xiaohui Nie, Yuan Meng, Shiwen
Cheng, Dan Pei, Shenglin Zhang, Xianping Qu, and Xuanyou Guo. 2018. HotSpot:
Anomaly Localization for Additive KPIs With Multi-Dimensional Attributes. IEEE
Access 6 (2018), 10909-10923. https://doi.org/10.1109/ACCESS.2018.2804764
Liang Tang, Tao Li, Florian Pinel, Larisa Shwartz, and Genady Grabarnik. 2012.
Optimizing system monitoring configurations for non-actionable alerts. In
2012 IEEE Network Operations and Management Symposium. 34-42. https:
//doi.org/10.1109/NOMS.2012.6211880

Jorg Thalheim, Antonio Rodrigues, Istemi Ekin Akkus, Pramod Bhatotia,
Ruichuan Chen, Bimal Viswanath, Lei Jiao, and Christof Fetzer. 2017. Sieve:

https://doi.org/10.1145/945445.945454
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1016/j.jss.2019.110432
https://doi.org/10.1109/INFOCOM.2014.6848128
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1145/3297858.3304004
https://doi.org/10.1145/3368089.3417066
https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://doi.org/10.1109/ASE51524.2021.9678708
https://doi.org/10.1109/ASE51524.2021.9678708
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00074
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00074
https://proceedings.neurips.cc/paper_files/paper/2022/file/c9fcd02e6445c7dfbad6986abee53d0d-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c9fcd02e6445c7dfbad6986abee53d0d-Paper-Conference.pdf
https://doi.org/10.1145/3368089.3417054
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1109/ICSE48619.2023.00150
https://doi.org/10.1145/3540250.3549092
https://doi.org/10.1109/ICSE-SEIP52600.2021.00043
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.1109/ICWS.2017.135
https://doi.org/10.1109/ICWS.2019.00022
https://doi.org/10.1109/ICWS.2019.00022
https://doi.org/10.1145/3208104
https://doi.org/10.1109/IWQoS49365.2020.9213058
https://doi.org/10.1109/IWQoS49365.2020.9213058
https://doi.org/10.1145/2783258.2788624
https://doi.org/10.1109/ICDCS.2013.26
https://doi.org/10.1109/ICDCS.2013.26
https://doi.org/10.3390/app10062166
https://doi.org/10.1145/3501297
https://doi.org/10.1145/3501297
https://doi.org/10.48550/arXiv.1701.08546
https://doi.org/10.1109/ACCESS.2018.2804764
https://doi.org/10.1109/NOMS.2012.6211880
https://doi.org/10.1109/NOMS.2012.6211880

FSE Companion ’24, July 15-19, 2024, Porto de Galinhas, Brazil

[35]

[36]

[37]

[38]

[39]

[40]

actionable insights from monitored metrics in distributed systems. In Proceedings
of the 18th ACM/IFIP/USENIX Middleware Conference (Las Vegas, Nevada) (Mid-
dleware ’17). Association for Computing Machinery, New York, NY, USA, 14-27.
https://doi.org/10.1145/3135974.3135977

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph Attention Networks. ICLR (2018).
https://openreview.net/forum?id=rJXMpikCZ

Jianping Weng, Jessie Hui Wang, Jiahai Yang, and Yang Yang. 2018. Root Cause
Analysis of Anomalies of Multitier Services in Public Clouds. IEEE/ACM Transac-
tions on Networking 26, 4 (2018), 1646-1659. https://doi.org/10.1109/TNET.2018.
2843805

Li Wu, Johan Tordsson, Erik Elmroth, and Odej Kao. 2020. MicroRCA: Root
Cause Localization of Performance Issues in Microservices. In NOMS 2020 -
2020 IEEE/IFIP Network Operations and Management Symposium. 1-9. https:
//doi.org/10.1109/NOMS47738.2020.9110353

Zhe Xie, Changhua Pei, Wanxue Li, Huai Jiang, Liangfei Su, Jianhui Li, Gao-
gang Xie, and Dan Pei. 2023. From Point-wise to Group-wise: A Fast and
Accurate Microservice Trace Anomaly Detection Approach (ESEC/FSE 2023).
Association for Computing Machinery, New York, NY, USA, 1739-1749. https:
//doi.org/10.1145/3611643.3613861

Haowen Xu, Wenxiao Chen, Nengwen Zhao, Zeyan Li, Jiahao Bu, Zhihan Li,
Ying Liu, Youjian Zhao, Dan Pei, Yang Feng, Jie Chen, Zhaogang Wang, and
Honglin Qiao. 2018. Unsupervised Anomaly Detection via Variational Auto-
Encoder for Seasonal KPIs in Web Applications. In Proceedings of the 2018 World
Wide Web Conference (Lyon, France) (WWW 18). International World Wide Web
Conferences Steering Committee, Republic and Canton of Geneva, CHE, 187-196.
https://doi.org/10.1145/3178876.3185996

Jingmin Xu, Yuan Wang, Pengfei Chen, and Ping Wang. 2017. Lightweight and
Adaptive Service API Performance Monitoring in Highly Dynamic Cloud En-
vironment. In 2017 IEEE International Conference on Services Computing (SCC).

Received 2024-02-08; accepted 2024-04-18

[41

[42

[43

[44

[45

Z. Yao, C. Pei, and W. Chen, H. Wang, L. Su, H. Jiang, Z. Xie, X. Nie, D. Pei

35-43. https://doi.org/10.1109/SCC.2017.80

Guangba Yu, Pengfei Chen, Hongyang Chen, Zijie Guan, Zicheng Huang, Linxiao
Jing, Tianjun Weng, Xinmeng Sun, and Xiaoyun Li. 2021. MicroRank: End-to-
End Latency Issue Localization with Extended Spectrum Analysis in Microser-
vice Environments. In Proceedings of the Web Conference 2021 (Ljubljana, Slove-
nia) (WWW ’21). Association for Computing Machinery, New York, NY, USA,
3087-3098. https://doi.org/10.1145/3442381.3449905

Guangba Yu, Pengfei Chen, Yufeng Li, Hongyang Chen, Xiaoyun Li, and Zibin
Zheng. 2023. Nezha: Interpretable Fine-Grained Root Causes Analysis for Mi-
croservices on Multi-modal Observability Data. In Proceedings of the 31st ACM
Joint European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering (ESEC/FSE 2023). Association for Computing Ma-
chinery, New York, NY, USA, 553-565. https://doi.org/10.1145/3611643.3616249
event-place: , San Francisco, CA, USA,.

Zhaoyang Yu, Qianyu Ouyang, Changhua Pei, Xin Wang, Wenxiao Chen, Liangfei
Su, Huai Jiang, Xuanrun Wang, Jianhui Li, and Dan Pei. 2024. Causality Enhanced
Graph Representation Learning for Alert-Based Root Cause Analysis. In Proceed-
ings of the 24th IEEE/ACM International Symposium on Cluster, Cloud and Internet
Computing (CCGRID).

Hamzeh Zawawy, Kostas Kontogiannis, and John Mylopoulos. 2010. Log filtering
and interpretation for root cause analysis. In 2010 IEEE International Conference
on Software Maintenance. 1-5. https://doi.org/10.1109/ICSM.2010.5609556
Nengwen Zhao, Panshi Jin, Lixin Wang, Xiaoqin Yang, Rong Liu, Wenchi Zhang,
Kaixin Sui, and Dan Pei. 2020. Automatically and Adaptively Identifying Severe
Alerts for Online Service Systems. In IEEE INFOCOM 2020 - IEEE Conference on
Computer Communications. 2420-2429. https://doi.org/10.1109/INFOCOM41043.
2020.9155219

https://doi.org/10.1145/3135974.3135977
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.1109/TNET.2018.2843805
https://doi.org/10.1109/TNET.2018.2843805
https://doi.org/10.1109/NOMS47738.2020.9110353
https://doi.org/10.1109/NOMS47738.2020.9110353
https://doi.org/10.1145/3611643.3613861
https://doi.org/10.1145/3611643.3613861
https://doi.org/10.1145/3178876.3185996
https://doi.org/10.1109/SCC.2017.80
https://doi.org/10.1145/3442381.3449905
https://doi.org/10.1145/3611643.3616249
https://doi.org/10.1109/ICSM.2010.5609556
https://doi.org/10.1109/INFOCOM41043.2020.9155219
https://doi.org/10.1109/INFOCOM41043.2020.9155219

	Abstract
	1 Introduction
	2 Related Works
	3 Preliminaries
	3.1 Event and Incident
	3.2 Event Graph
	3.3 Problem Statement

	4 Architecture
	4.1 Workflow
	4.2 Input Graph Construction
	4.3 Root Cause Inference in CoE
	4.4 Training and Testing
	4.5 Integration of Human Knowledge

	5 Evaluation
	5.1 Experimental Design
	5.2 RQ1:Effectiveness
	5.3 RQ2: Ablation Study
	5.4 RQ3: Interpretability

	6 Conclusion
	Acknowledgments
	References

