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Multi-Modal Data Integration

• Leveraging information from various observation types, including metrics, traces, and logs

Interpretability and Straightforward Alignment to Human Knowledge

• Parameter structure should ideally have a clear physical meaning that aligns with the 
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• SREs without deep learning background can easily optimize the model based on their 
operational experience

Automatic Causality Learning

• Automatically learn causality in microservice systems, minimizing or eliminating the 
necessity for manual configuration.
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Dataset Construction

• Collected from three eBay datacenters with over 5k services in three 
data centers

• 800k monitoring signals transformed into events (46 signals per service)

• Extracted events from 16 basic sources, collected during 16 months

• Two datasets: Business Dataset (170 incidents) & Service Dataset (782 
incidents)

• Split half by half as train/test set.

• Labels from historical remediation logs.

Experiment Setup
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Metric

• Top-1 and Top-3 accuracy

Experiment Environment and Implementation Efficiency

• Intel(R) Core(TM) i9-9980HK CPU, an 11GB GTX1080Ti GPU, and 32GB 
memory.

• About 45 minutes to train the CoE with all the incidents in each dataset. 

• Minimal storage cost at just 52.06KB

• Performance similar to Groot

Experiment Setup
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Accuracy Evaluation

25Compared with baseline methods, CoE is indeed effective in detecting the root cause events

Groot seriously 

depends on the 

manual rulebook

The learned weighted 

rulebook in CoE is 

more precise than the 

manual rulebook
MEG: manual event-causal graph
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• Length bonus, 𝐿𝐵(𝑛)
• Out-edge bonus (termination term), 𝑇𝑒𝑟𝑚(𝑣)
• Event Importance 𝑆
• Inter-service causal link weights 𝑅𝑑
• Intra-service causal link weights 𝑅𝑠

Removing/freezing a certain component
Adding components one by one

Evaluating the two bonus term

All the components has its impact, while 𝑆 is the most significant
The terms has biased impact on different dataset

（e.g., 𝑅𝑠 in the Service Dataset）

Incident typically associated 
with a single service
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Conclusion
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Chain-of-Event (CoE)

• Event-based RCA algorithm utilizing multi-modal monitoring data

• Interpretable parameter design aligning with human knowledge

• Automatic learning event-causal graph

• High accuracy of root cause analysis evaluated with real-world dataset

Key Designs of CoE

• Incident-specific and overall event-causal graph

• Graph ranking with event chains

• Chain-length-based acceleration

• Proved effectiveness of the key components in ablation study

Open source code

• https://github.com/NetManAIOps/Chain-of-Event



Paper:  https://doi.org/10.1145/3663529.3663827

Code:  https://github.com/NetManAIOps/Chain-of-Event

Thank You ! 

Chain-of-Event: Interpretable Root Cause Analysis for Microservices 

through Automatically Learning Weighted Event Causal Graph
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https://doi.org/10.1145/3663529.3663827
https://github.com/NetManAIOps/Chain-of-Event

