““‘\\\\\\“..
£ P 'v,‘ .

y- X

4 N S
Y
5
: \ Z
] g
=

X I~

NG . . .
gyt Tsinghua University

PER M5
.: HEHFEER S y
Computer Network Information Center,

Chinese Academy of Sciences

Chain-of-Event: Interpretable Root Cause Analysis for
Microservices through Automatically Learning

Weighted Event Causal Graph

Zhenhe Yao!, Changhua Pei?, Wenxiao Chen, Hanzhang Wang,
Liangfei Su, Huai Jiang, Zhe Xie, Xiaohui Nie, Dan Pei

|.  Presenter. Email: yaozh20@mails.tsinghua.edu.cn

2.  Corresponding Author



m Background

m Design

Outline

m Evaluation

m Conclusion




Microservice Architecture

Payment Shopping

g

Browsing Comment

&

S
lw)
ad b Ad

Various User Activities 3



Microservice Architecture

Refund Request
Refund

v

Payment Shopping

Confirmation Request

. 2‘ Checkout Request

Browsing Comment

&

[

> Confirmation

> Checkout

S
iwb

ad 4d Ad

Various User Activities Web Applications 3




Microservice Architecture

Refund Request ( )
Refund

v

A 4

Checkout Service A

Service B

Payment Shopping

Confirmation Request <

> Confirmation / Service C
— Checkout Request % Service D Service E
Checkout

[
»

Browsing Comment L Checkout Application

&

S
!wb

ad 4d Ad

Various User Activities Web Applications Thousands of Microservices 3




Microservice Reliability Maintenance

~

External
Checkout 4
Request r )
=L Checkout ]—' Service A 4{ Service B ]
J
\ 4
N\
Service C
[ Service D ] Service E
J
L Checkout Application

Checkout-related Microservices

Software Reliability Engineers (SREs)



Microservice Reliability Maintenance

External
Checkout
Request

®

-

~

\_

{&Checkout ]—'

&ServiceA 4{©Service8 ]
\, J

—

[ Service D ]

4 )

. J

Checkout Application

Checkout-related Microservices

Software Reliability Engineers (SREs)

@’)\ Anomaly Detection



Microservice Reliability Maintenance

External
Checkout
Request

®

-

~

\_

{&Checkout ]—'

&ServiceA 4{©Service8 ]
\, J

—

[ Service D ]

( )

. J

Checkout Application

Checkout-related Microservices

% Software Reliability Engineers (SREs)

@’)\ Anomaly Detection

@ Root Cause Analysis



Microservice Reliability Maintenance

External

Checkout 4 )

Request @ ( r ) Software Reliability Engineers (SREs)
» Checkout ]—' Service A 4{ Service B ]

VL . J
e ) @’)\ Anomaly Detection
/ ervice C
[ Service D ] Service E y@ @ Root Cause Anal)’SiS

L Checkout Application

@’)\ Fault Recovery
Checkout-related Microservices



Microservice Reliability Maintenance

External
Checkout 4 \ o .
Request @ ( r ) Software Reliability Engineers (SREs)
>L Checkout ]—' Service A 4{ Service B ]
e ) @’)\ Anomaly Detection
ervice C :
L ) Comprehensive
/ Analysis
[ Service D ] Service E y@ @ Root Cause Anal)’SiS
Checkout Application Evic!ence- and
\_ J Direction

@’)\ Fault Recovery
Checkout-related Microservices



Multi-modal Monitoring Data in Microservice Architecture

External ( )

Request { Checkout J—> Service A 4’[ Service B J

A 4

/ Service C
[ Service D ] [ Service E ]

% Web Application )




( \ - """ """""" " "” " "=” """ "="—""¥"="-—"”"—"T"> "-—"—-—-""-""—"“"—"—-=

|
External | v  CPU 3 |

( )
Reque . . e y N |
quest { Checkout Service A Service B |-~ S S - —— ==
q J \‘i %)GC Frequency a B B P i
( - ~\ I N/ "/ / |
. [ N J l
Service C e -

. J

[ Service D ] [ Service E ]

% Web Application )




Multi-modal Monitoring Data in Microservice Architecture

——— e ———— — — —— — — — — — — — — — — — —

4 ) B
External | CPU

Request | [ f ) 18 . . ;
£ 1 Checkout J—' Service A 4’[ Service B } lllll = sage e T

. ) \\\ﬁ D

=

GC Frequency

I .
- I .\\-'/ ; - ' \_/” i =
e ™ |
. l eoe
S ervice C ‘_____—_________—_—___________—_________—_—_____-I
J | n Request at Timestamp ¢5 |
J_ ___________ - O =
————————————————————————— (&) Response code 500 |
______ Y e ——— . ___ © Latency 200ms I
s !

I o000
[ Service D ] [ Service E ] . ____ !

% Web Application )




(- )
External | .
- N 7)) CPU
Request J /’l 2 Usage o P .
1 Checkout Service A Service B |-~ S S et
~——__. @
\ J | E GC Frequency P S W
! | QA WA o~
'Y ~ |
. l XX
S ervice C ‘___—_—_—_—_—___—_—_—_—_____—_—_—_—_____—_—_—_—_-I
J | g Request at Timestamp ¢5 |
___________ J———————_——————_—____—_——_J (] ~ Response code 500 |
________ vy e ___ E Latency 200ms |
| = XX I

\_

p—
-_—
_—
—_—

Web Application )

o
o by...

—— e —— —— e —— o —— —— —— —— — —— —— — —— —— — —— — — — — —




4 )
External : :
request | [ : s 5 o
eques . . - = sage TN - I i
d 1 Checkout J—' Service A 4{ Service B }::\ S | = =
~-—__ 8
- g | EGC Frequency
! I TALTAY" o
4 ) |
. l [ 2N I ] _
Service C ity |
J | g Request at Timestamp ¢t |
___________ J———————_——————_—____—_—__J (] ~ Response code 500 |
———————— v T ——— E Latency 200ms I
: = oo o |
Service D Service E o ::::;;::::::::::::::::::'l
T T ———___1 % [Timestamp t,, service E] Exception E,, raised
H H o by...
\ Web Application ) g —

—— e —— —— e —— o —— —— —— —— — —— —— — —— —— — —— — — — — —



——— e ———— — — —— — — — — — — — — — — — —

External ( h |
!

|

|

. \ v CPU | |

Request . . -2 Usage e T P I
d { Checkout Service A Service B |-~ S ] St |
Y J T O |

1S GC Frequency ‘ I

v I o NG i - |

'Y ) | |

. | eeoe |

Service C il i e

\. J | % Request at Timestamp ¢t |

___________ J———————_——————_—____—_—__J (] ~ Response code 500 |

———————— e ——— E Latency 200ms |

: = eeoe |

Service D Service E o ::::;;::::::::::::::::::'l

T T T q——o ___ ] % [Timestamp t,, service E] Exception E,, raised I

. . o by... |

\ Web Application ) g — ,

Challenge 1: How to integrate and analyze multi-modal data,
leveraging information from various observation types?
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Challenges

Multi-Modal Data Integration

* Leveraging information from various observation types, including metrics, traces, and logs

Interpretability and Straightforward Alignment to Human Knowledge

* Parameter structure should ideally have a clear physical meaning that aligns with the
knowledge of SREs

» SREs without deep learning background can easily optimize the model based on their
operational experience

Automatic Causality Learning

* Automatically learn causality in microservice systems, minimizing or eliminating the
necessity for manual configuration.
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Experiment Setup

Dataset Construction

* Collected from three eBay datacenters with over 5k services in three

data centers

* 800k monitoring signals transformed into events (46 signals per service)
* Extracted events from |6 basic sources, collected during 16 months
* Two datasets: Business Dataset (170 incidents) & Service Dataset (782

incidents)

* Split half by half as train/test set.
* Labels from historical remediation logs.

Type | Event

Detection Method

| High GC (Overhead)
High CPU |‘=.|§1:'
Out of Memory
LB Connection Stacking
Latency Spike
ITS Spike
Monitoring Data Database Anomaly
Business Metric Anomaly
WebAP] Error
Internal Error
ServiceClhient Error
Bad Host
Hystrix Circuit Break

Rule-based
Rule-based
Rule based
Statistical Model
Statistical Model
Statistical Model
ML Model
ML Madel
Statistical Model
Statistical Model
Statistical Maodel
ML Model
De Facto

ColeDecloywnt. | Deladto
Human Activity Configuration Change De Facto
External URI e Facto
#Service | #Users | #Signals | #Signal/sve #Incident #Month
Business | Service
5k 185m 800k 46 170 782 16
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Experiment Setup

* Top-| and Top-3 accuracy

Experiment Environment and Implementation Efficiency
* Intel(R) Core(TM) i9-9980HK CPU,an | |GB GTXI1080Ti GPU, and 32GB

memory.
* About 45 minutes to train the CoE with all the incidents in each dataset.
° M|n|ma| Storage cost at just 5206KB Model Service (per incident) | Business (per incident)

ExecTime #event | ExecTime #event

 Performance similar to Groot CoE(Ours) | 2,165 1470 | 4.06s 18.73
Groot 3.16s 14.70 2.98s 18.73
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Accuracy Evaluation

Service Business

et fs Top-1 Top-3 Top-1 Top-3
PageRank 16.1% 253% 1.2% 1.8%

. GraphSAGE 62.2% 781% 81.1% 93.7%
& GAT 12.2% 47.6% 60.5% 79.2%
S GCN 29.3% 57.3% 69.2%  85.3%
&  Groot w/o MEG 17.1% 48.8% 23.2% 45.5%

Groot v 74% 92% 81% 96%

% CoE with MEG v 781% 93.9% 78.7%  95%
O CoE 79.3% 98.8% 85.3% 96.6%

MEG: manual event-causal graph
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et fs Top-1 Top-3 Top-1 Top-3
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L CoEwHhMEG  / _781% 939% 7877 9%
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Ablation Study

* Length bonus, LB(n)

* Out-edge bonus (termination term), Term(v)

Service Business
Top1 Top3 Top1l Top3
CoE 79.3% 98.8% 85.3% 96.6%
CoE w/o length bonus 793% 96.3% 83.2% 96.1%
CoE w/o out-edge bonus 75.6% 96.3% 83.4% 95.3%
CoE w/o both bonus terms  75.6% 93.9% 83.4% 95.3%

Service Business
Topl Top3 Topl Top3
CoE 79.3% 98.8% 85.3% 96.6%
CoE w/o learning § 75.6% 96.3% 84.5%  96.1%
CoE w/o learning Ry  78.1% 97.6% 84.5% 95.8%
CoE w/o learning Ry  51.2% 86.6% 84.5% 95.5%
CoE w/o bonus terms  75.6% 93.9% 83.4s% 95.3%

Removing/freezing a certain component

Evaluating the two bonus term

Service Business
Topl Top3 Topl Top3
Naive CoE 31.7% 64.6% 71.7% 90.3%
+bonus terms 33.0% 67.1% 72.1% 90.5%
+learn S 51.2% 81.7% 82.1% 95%
+learn Ry 51.2% 86.6% 84.5% 95.5%
+learn Ry 79.3% 98.8% 85.3% 96.6% 26

Adding components one by one
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* Length bonus, LB(n)

* Out-edge bonus (termination term), Term(v)

Service Business
Top1 Top3 Top1l Top3
CoE 79.3% 98.8% 85.3% 96.6%
CoE w/o length bonus 79.3% 96.3% 83.2% 96.1%
CoE w/o out-edge bonus 75.6% 96.3% 83.4% 95.3%
CoE w/o both bonus terms 75.6% 93.9% 83.4% 95.3%

Evaluating the two bonus term

All the components has its impact, while S is the most significant

Service Business
Topl Top3 Topl Top3
CoE 79.3% 98.8% 85.3% 96.6%
CoE w/o learning S 75.6% 96.3% 84.5% 96.1%
CoE w/o learning Ry  78.1% 97.6% 84.5% 95.8%
CoE w/o learning Ry~ 51.2% 86.6% 84.5% 95.5%
CoE w/o bonus terms  75.6% 93.9% 83.4s% 95.3%

Removing/freezing a certain component

Service Business
Top1l Top3 Topl Top3
Naive CoE 31.7% 64.6% 71.7% 90.3%
+bonus terms 33.0% 67.1% 72.1% 90.5%
+learn S 51.2% 81.7% 82.1% 95%
+learn R 51.2% 86.6% 84.5% 95.5%
+learn R 79.3% 98.8% 85.3% 96.6%

Adding components one by one
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Ablation Study

Service Business
° Length bonus, LB (Tl) Top 1 Top 3 Top 1 Top 3
* Out-edge bonus (termination term), Term(v) CoE 79.3% 98.8% 85.3% 96.6%
CoE w/o length bonus 793% 96.3% 83.2% 96.1%

CoE w/o out-edge bonus 75.6% 96.3% 83.4% 95.3%

* Inter-service causal link Welghts Rd CoE w/o both bonus terms  75.6% 93.9% 834% 95.3%

* Intra-service causal link weights R

Evaluating the two bonus term

The terms has biased impact on different dataset

(e.g., R in the Service Dataset)

: . . l ; ! . Service Business

Incident typically associated | Service | Business

with a single service E Top1 Top3! Top1 Top3 : Topcl Top 3 Top 1 TOI? 3
CoE E 79.3% 98.8%: 85.3% 96.6% Naive CoE 3'1.7;’75 64.6(;3 7‘1.7‘70 90.5?
CoE w/o learning S | 75.6% 96.3% i 84.5% 96.1% +bonus t?rlns 33‘0"’ 67.1% 72.1%  90.5%
CoE w/o learning Ry i 78.1% 97.6% 84.5% 95.8% +learn S ’1.2%  81.7%  82.1% 95%
CoE w/o learning Ry 1 51.2%  86.6% | 84.5%  95.5% +learn Ry 51.2%  86.6%  84.5%  95.5%
CoE w/o bonus terms} 75.6%  93.9% | 83.4s% 95.3% +learn R 79.3% 98.8% 85.3% 96.6% 26

Removing/freezing a certain component Adding components one by one



Discussion: How does CoE Align with Human Knowledge

CoE Model

27



Discussion: How does CoE Align with Human Knowledge

CoE Model

27



Discussion: How does CoE Align with Human Knowledge

CoE Model

27

Event-causal Graph




Discussion: How does CoE Align with Human Knowledge

Input Events of user-defined granularity

Clear physical meanings

Parameters
Easy to understand

Inference process Align with SREs’ daily diagnosis process

Few hyper-parameters No need for deep learning background
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Conclusion

Chain-of-Event (CoE)

-based RCA algorithm utilizing multi-modal monitoring data
parameter design
learning event-causal graph
* High accuracy of root cause analysis evaluated with real-world dataset

Key Designs of CoE

* Incident-specific and overall
with event chains

* Proved effectiveness of the key components in ablation study

Open source code

* https://github.com/NetManAlOps/Chain-of-Event
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