

Chain-of-Event: Interpretable Root Cause Analysis for Microservices through Automatically Learning Weighted Event Causal Graph

Zhenhe Yao¹, Changhua Pei², Wenxiao Chen, Hanzhang Wang,

Liangfei Su, Huai Jiang, Zhe Xie, Xiaohui Nie, Dan Pei

- I. Presenter. Email: yaozh20@mails.tsinghua.edu.cn
- 2. Corresponding Author

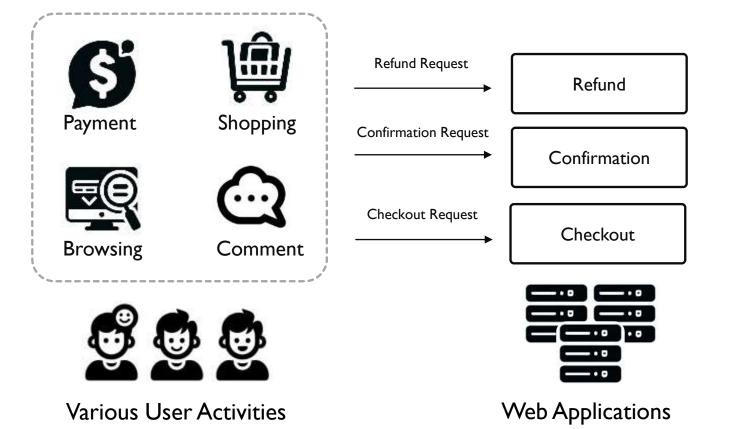
Outline

- Background
- Design
- Evaluation
- Conclusion

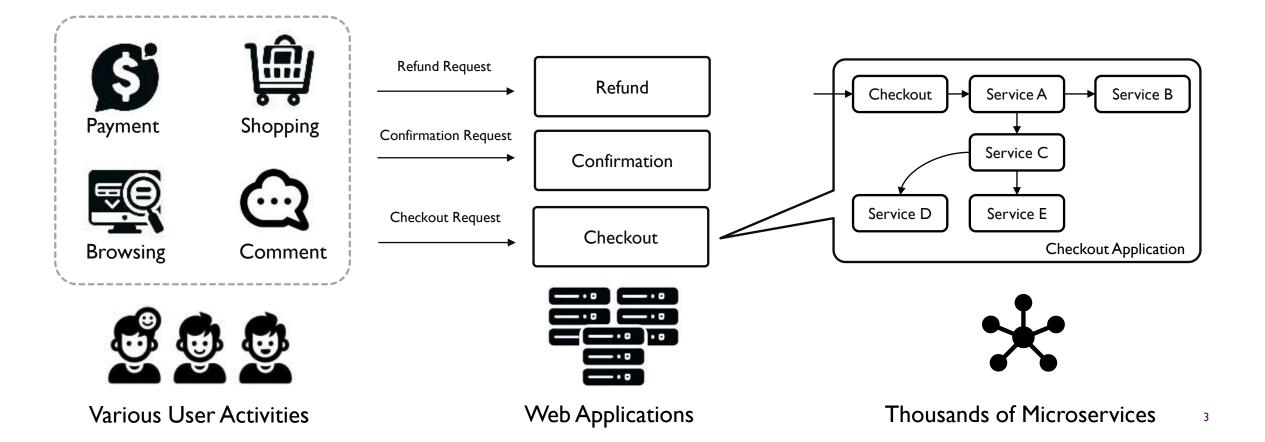
Microservice Architecture

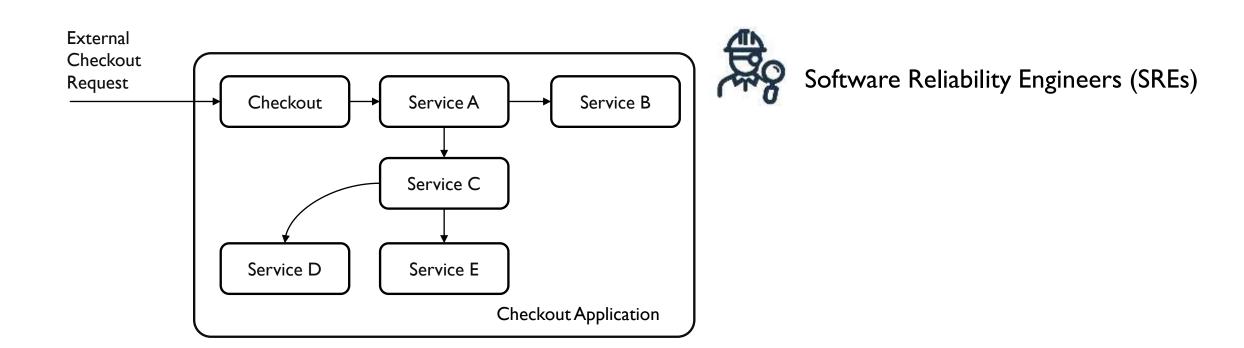
Various User Activities

Microservice Architecture

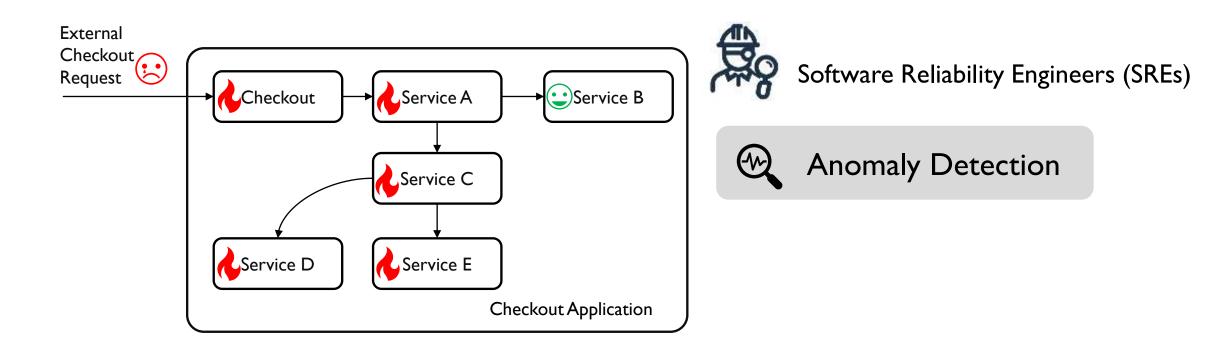


Microservice Architecture

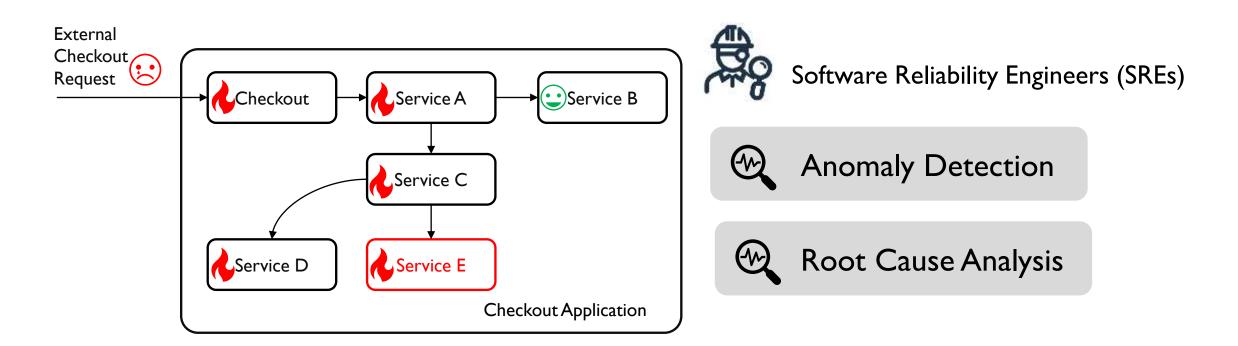




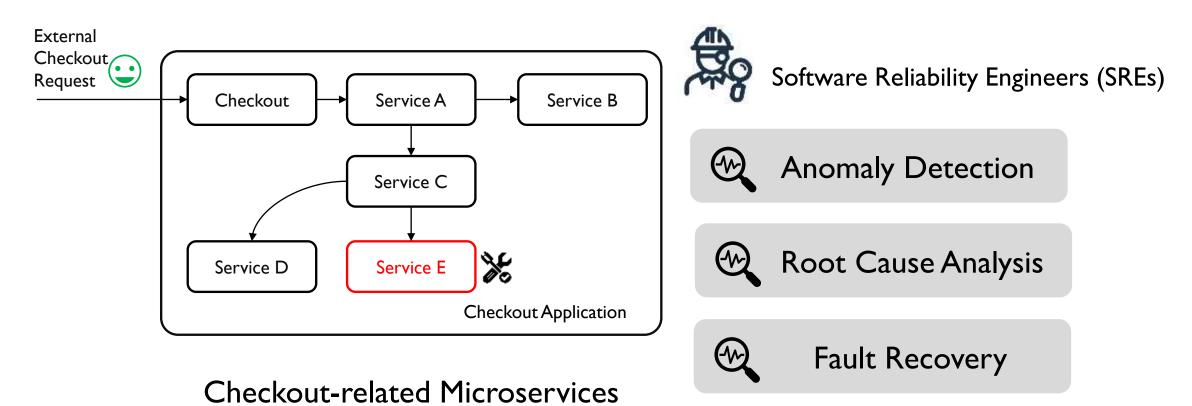
Checkout-related Microservices



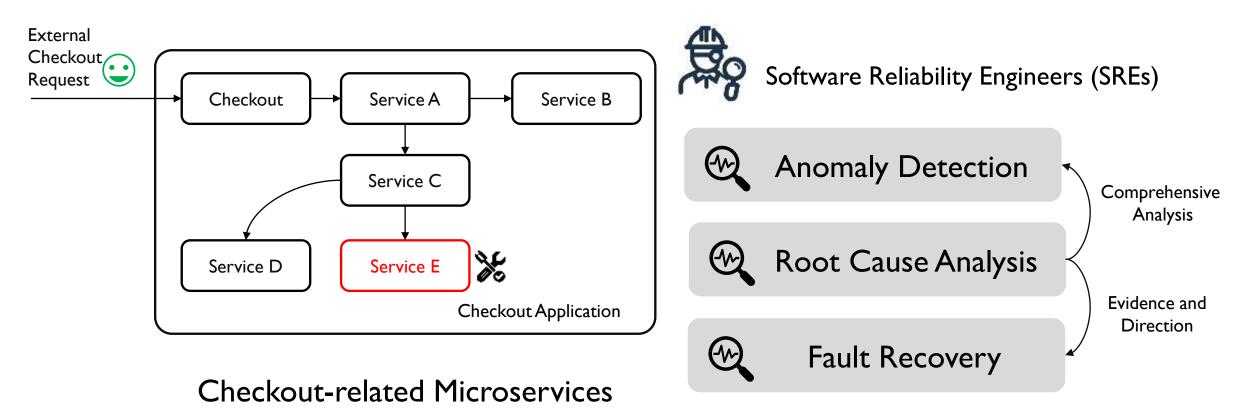
Checkout-related Microservices



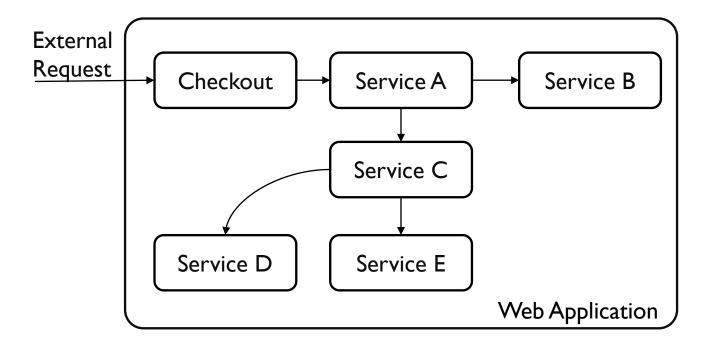
Checkout-related Microservices

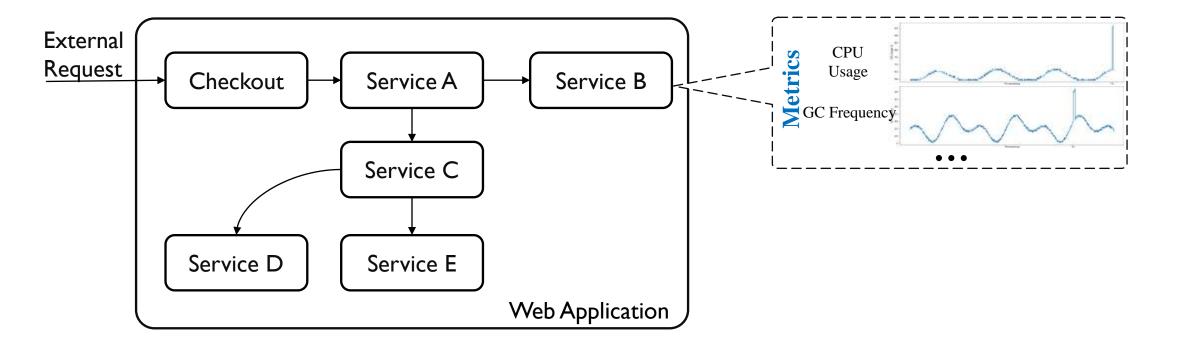


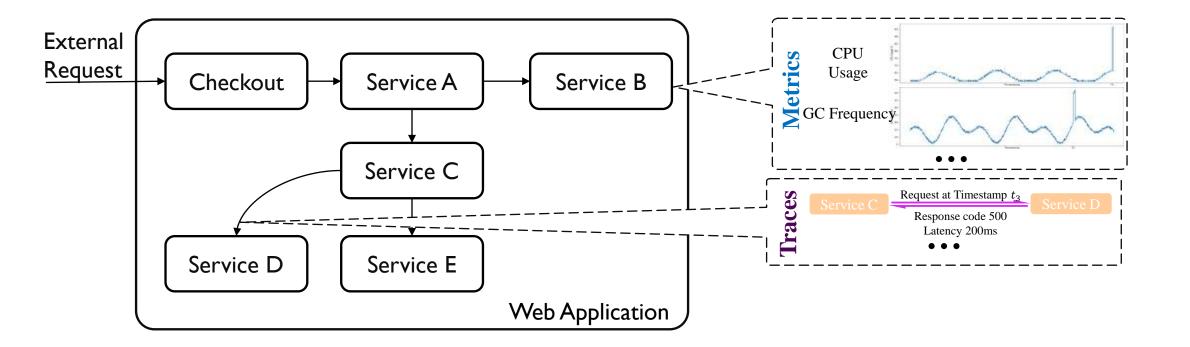
4

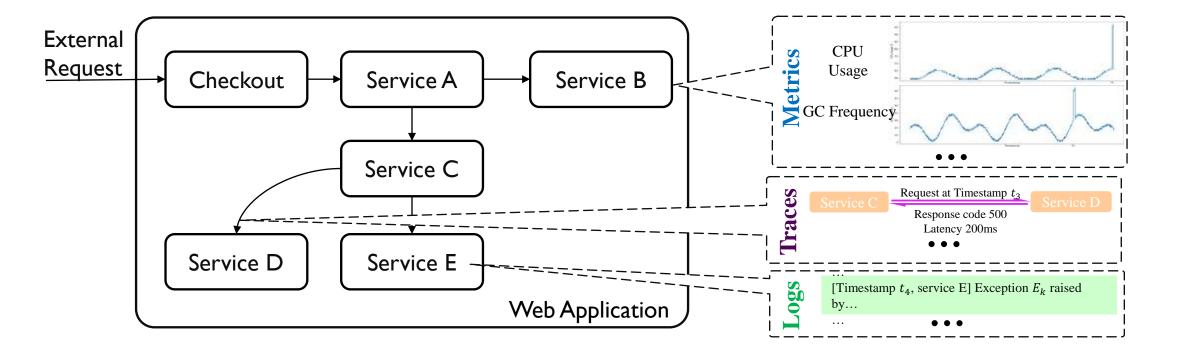


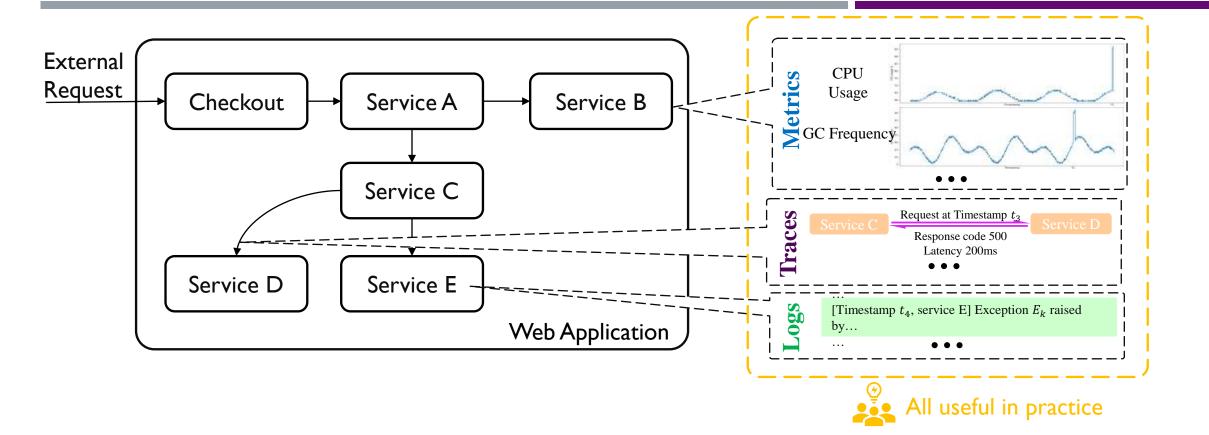
4

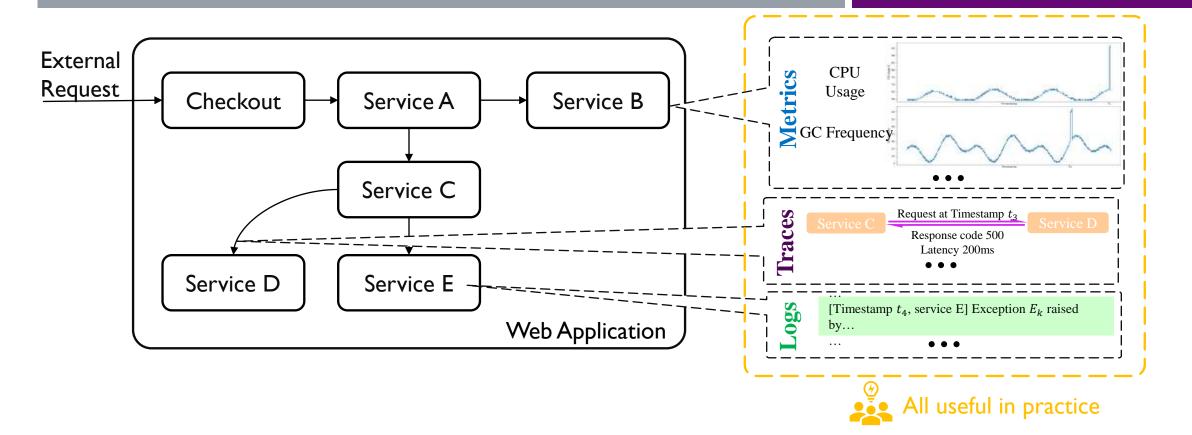








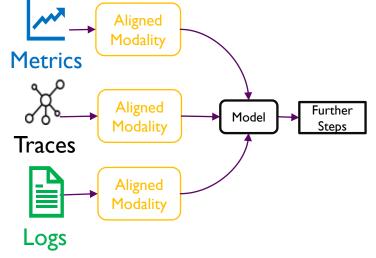


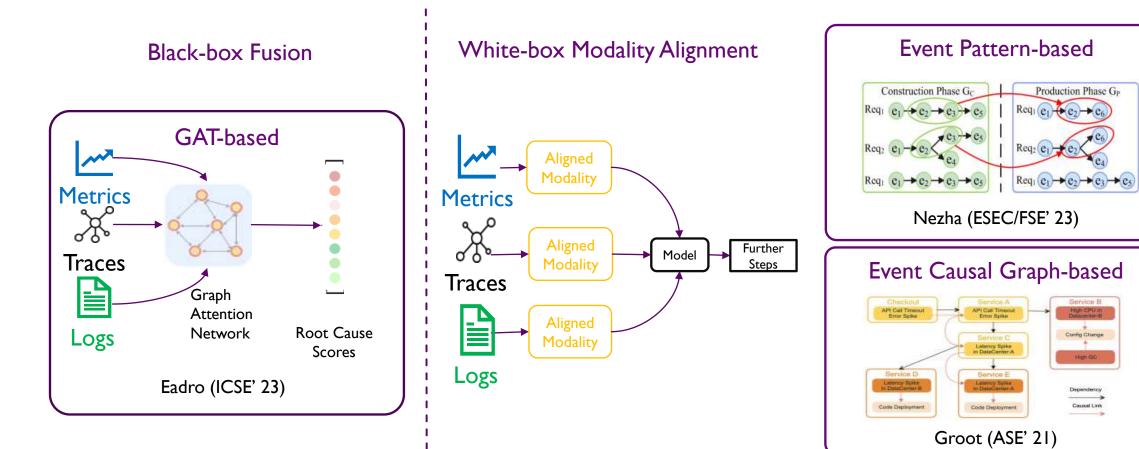


Challenge 1: How to integrate and analyze multi-modal data, leveraging information from various observation types?

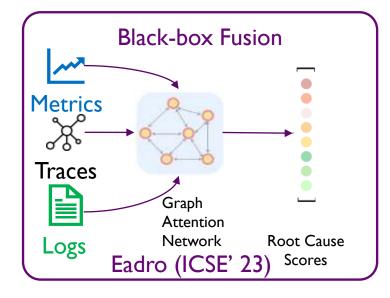
Black-box Fusion Metrics Met

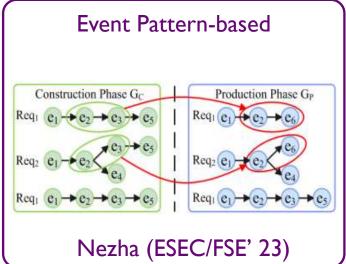
White-box Modality Alignment

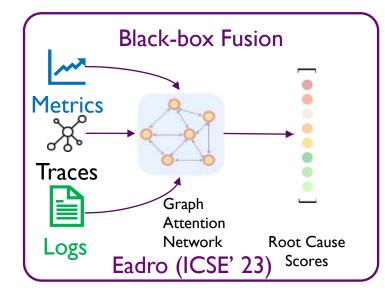


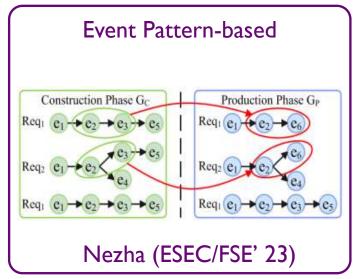


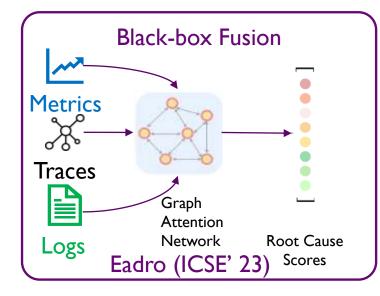
6

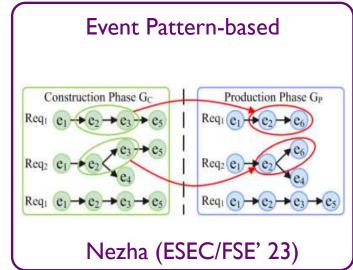






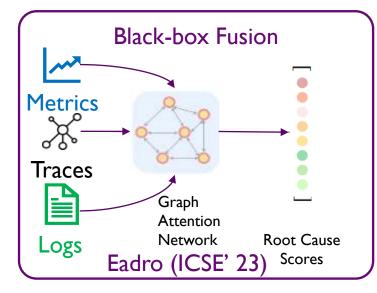


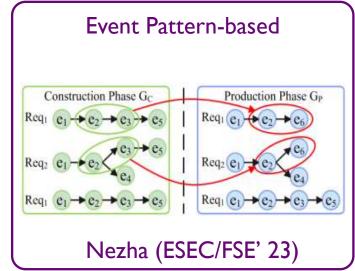




Interpretability

(parameters, outputs, and inference process)





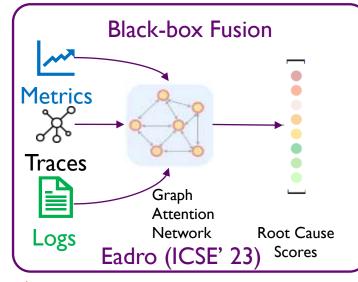
Interpretability

(parameters, outputs, and inference process)

Model

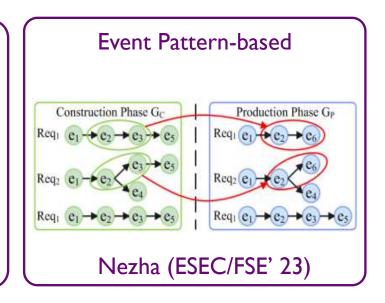
Human Knowledge Alignment

(optimize model with human insights)



Blackbox Causality Learning

Parameters Hard to Understand



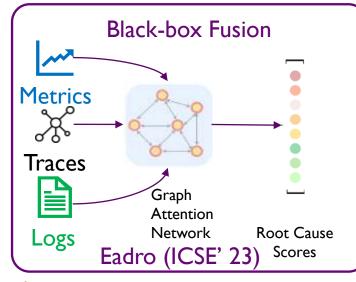
Non-straightforward Output

Interpretability

(parameters, outputs, and inference process)

Model

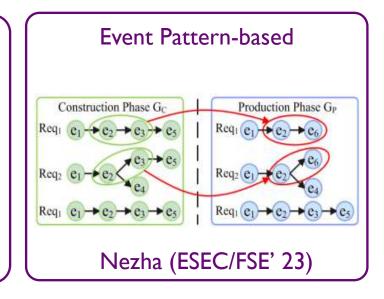
Human Knowledge Alignment (optimize model with human insights)



Blackbox Causality Learning

Parameters Hard to Understand

Requiring Deep-learning Background



Non-straightforward Output

Hard to Integrate Human Knowledge

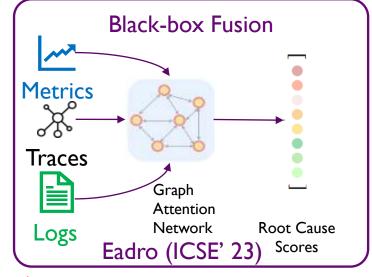
Interpretability

(parameters, outputs, and inference process)

Model

Human Knowledge Alignment

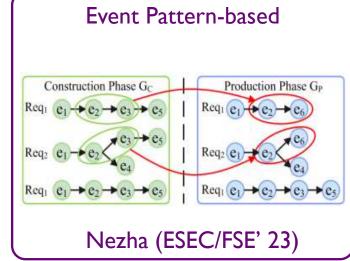
(optimize model with human insights)



Blackbox Causality Learning

Parameters Hard to Understand

Requiring Deep-learning Background



Non-straightforward Output

Interpretability

(parameters, outputs, and inference process)

Model

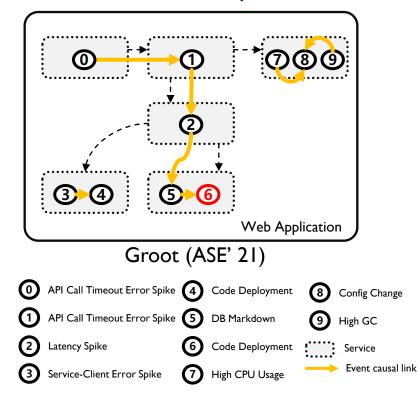
Human Knowledge Alignment (optimize model with human insights)

How Wh Do How

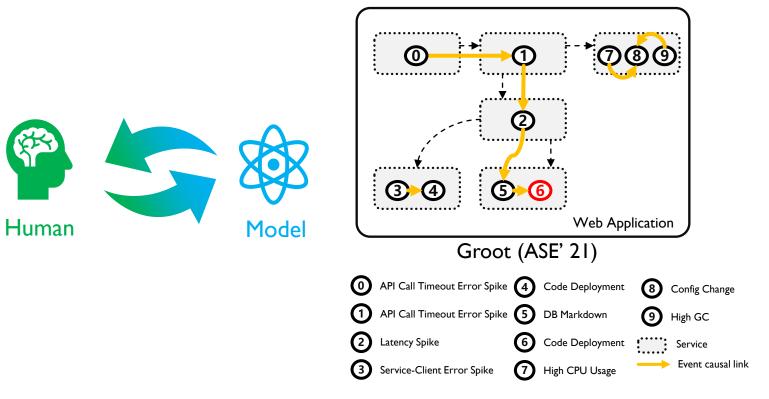
How is this conclusion drawn? What do the parameters mean? What does the result mean? Do these root causes align with my understanding? How to optimize it with my insight of the system?

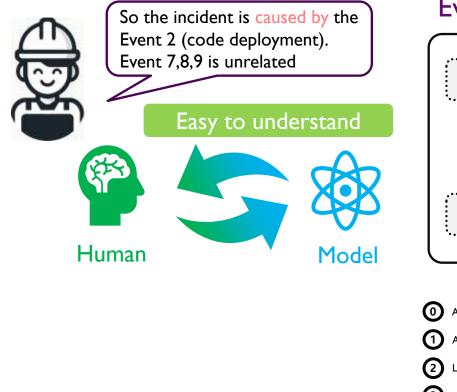
Challenge 2:Interpretability and Straightforward Alignment to Human Knowledge.

Event Causal Graph-based

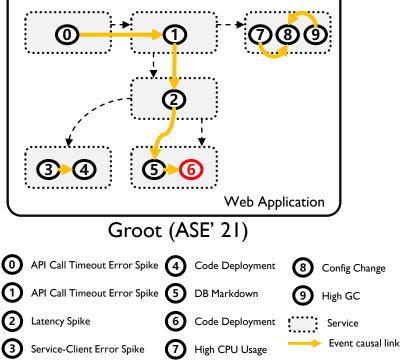


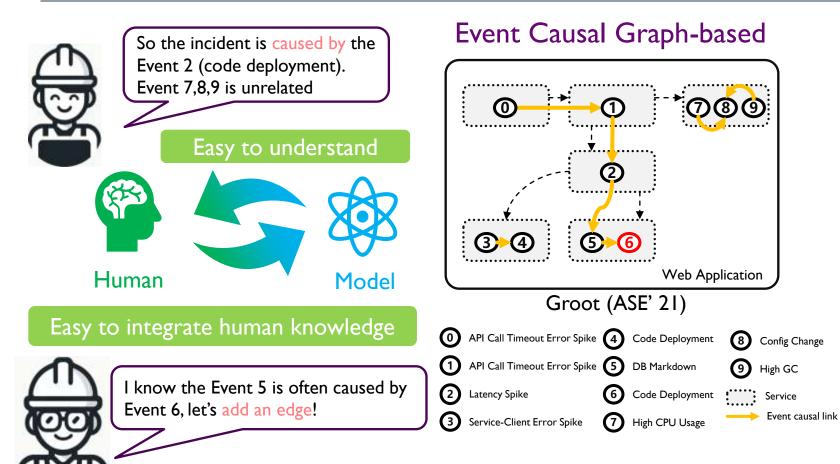
Event Causal Graph-based

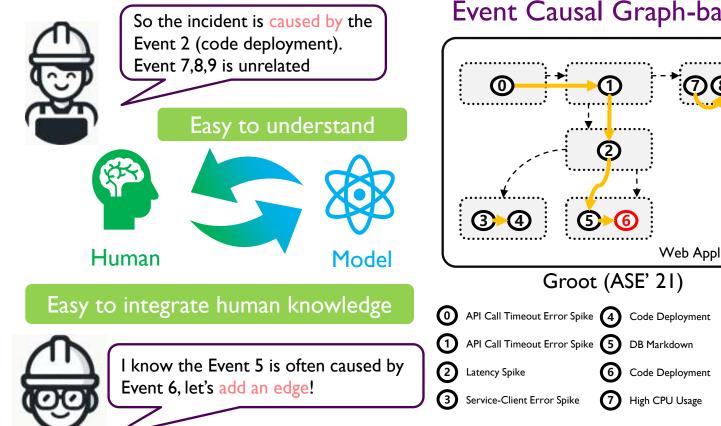




Event Causal Graph-based







Event Causal Graph-based

789

Web Application

Code Deployment

8 Config Change

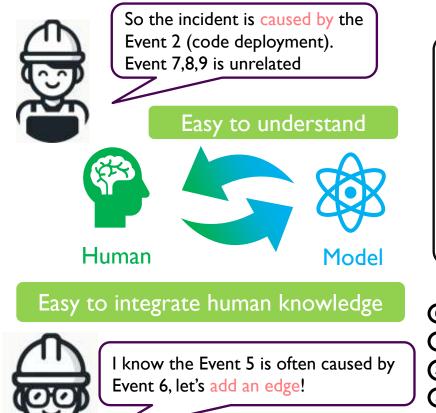
High GC

Service

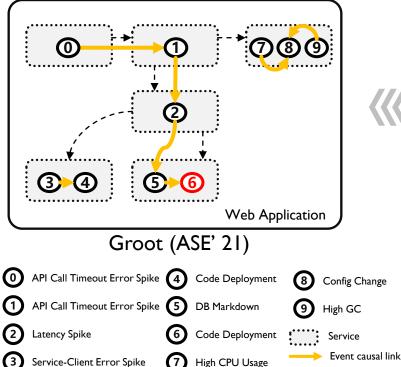
Event causal link

()

Rulebook

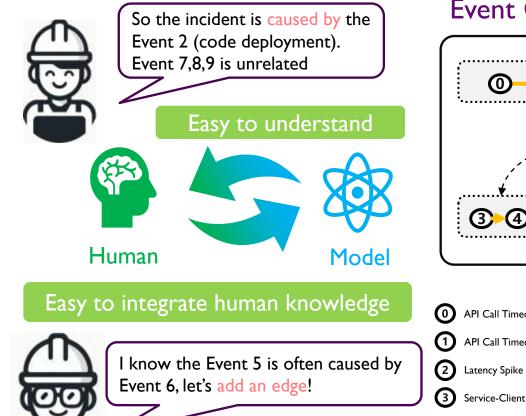


Event Causal Graph-based

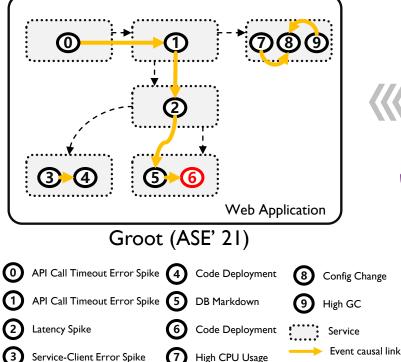


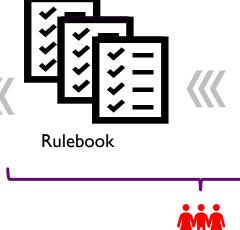
Rulebook

Remediation Logs



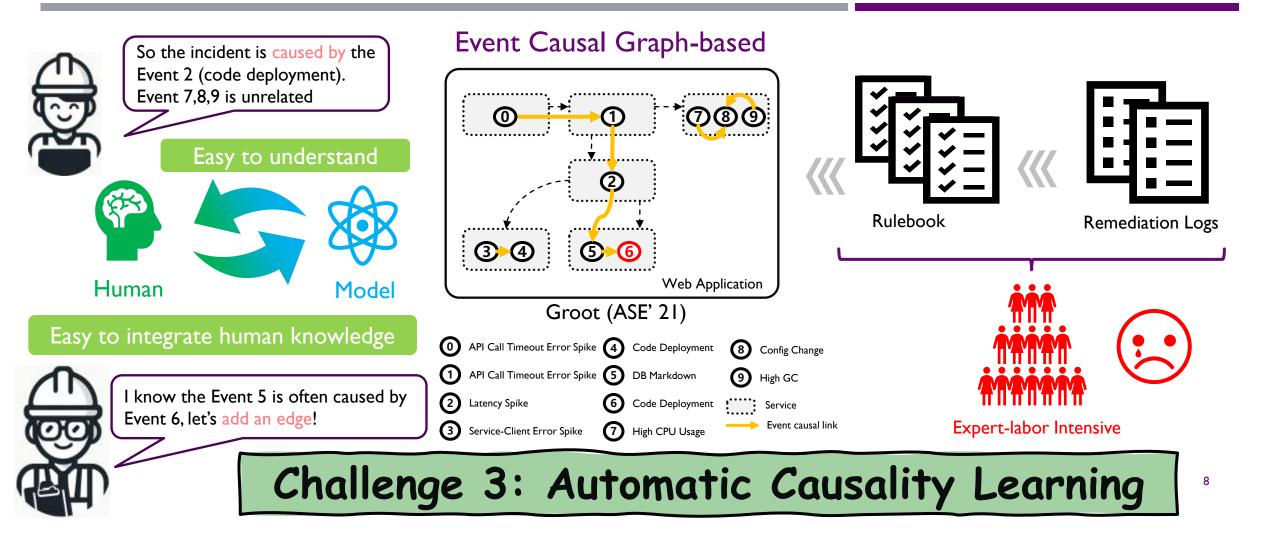
Event Causal Graph-based





Remediation Logs

Expert-labor Intensive



Multi-Modal Data Integration

• Leveraging information from various observation types, including metrics, traces, and logs

Interpretability and Straightforward Alignment to Human Knowledge

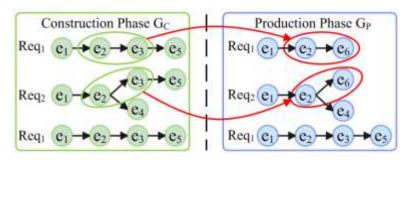
- Parameter structure should ideally have a clear physical meaning that aligns with the knowledge of SREs
- SREs without deep learning background can easily optimize the model based on their operational experience

Automatic Causality Learning

• Automatically learn causality in microservice systems, minimizing or eliminating the necessity for manual configuration.

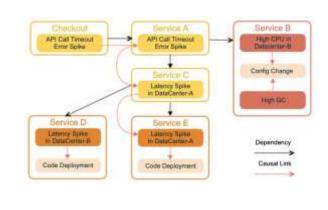
Event-based RCA

Event Pattern-based

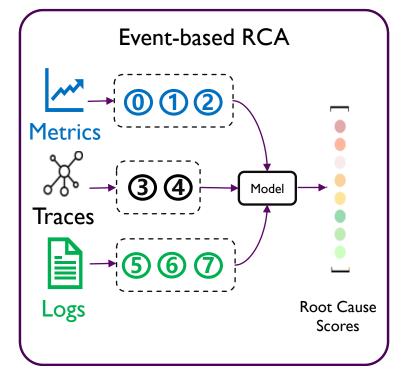


Nezha (ESEC/FSE' 23)

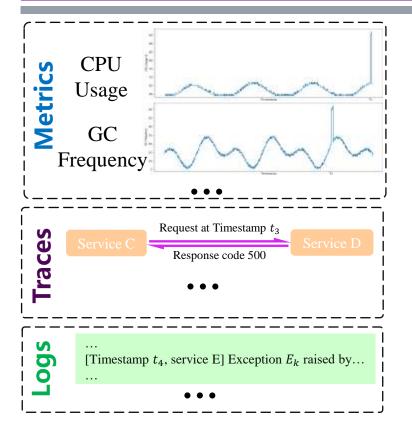
Event Causal Graph-based



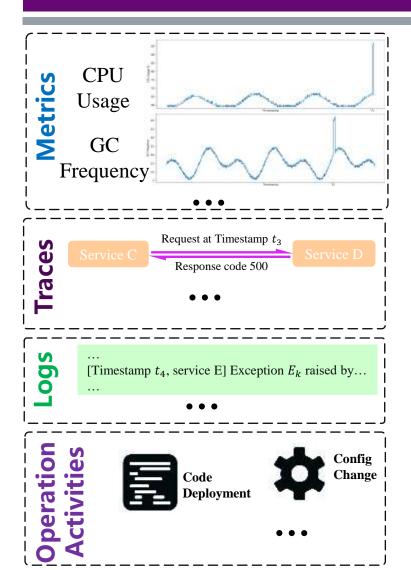
Groot (ASE' 21)

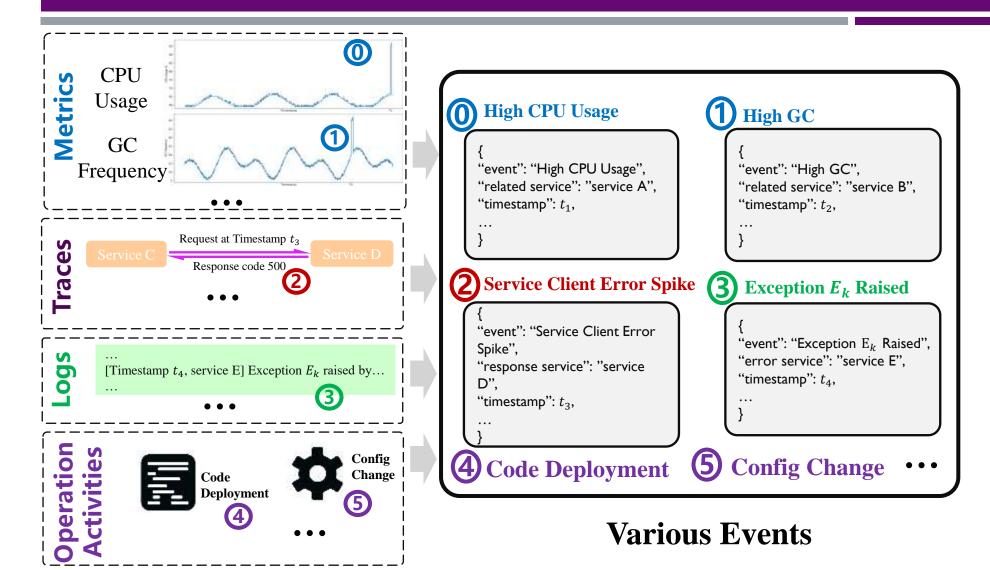


Multi-modal Monitoring Data into Events

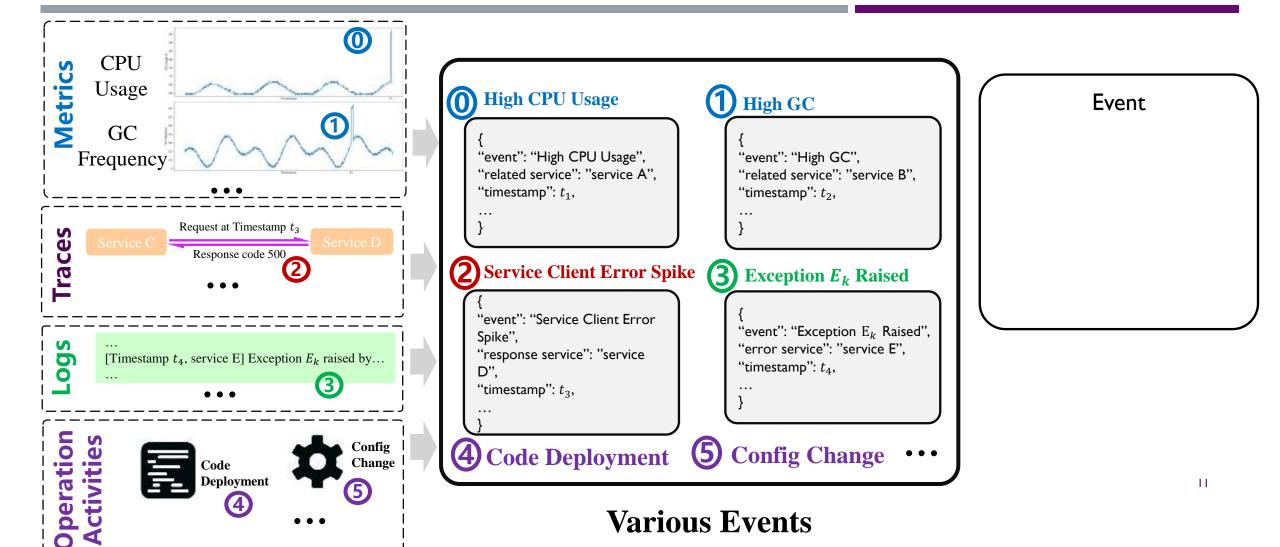


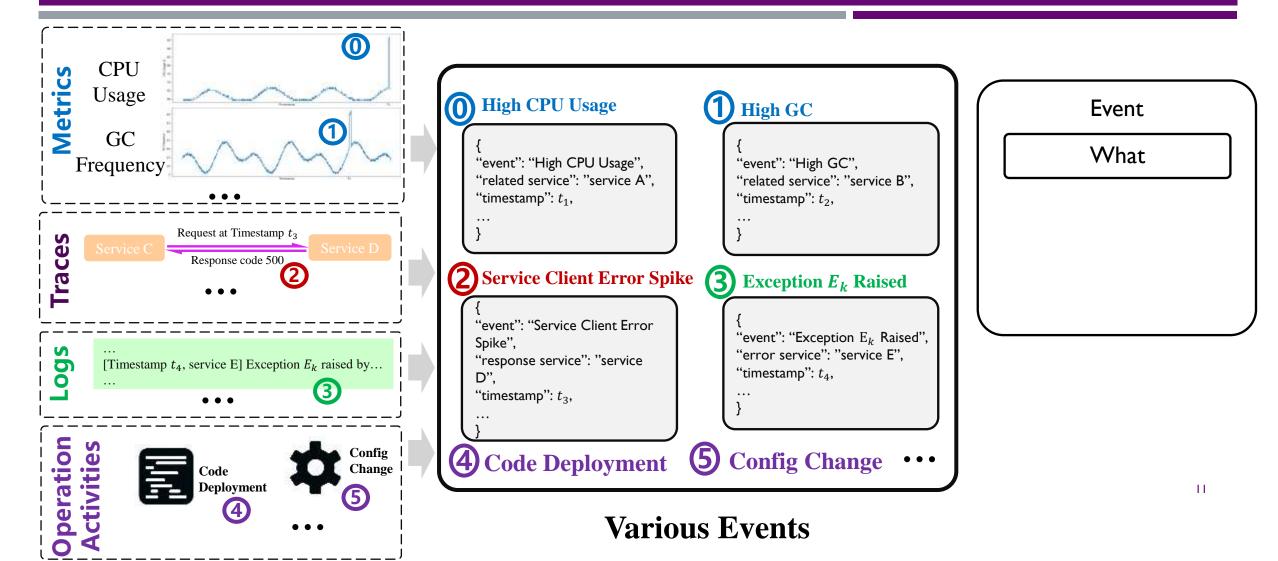
11

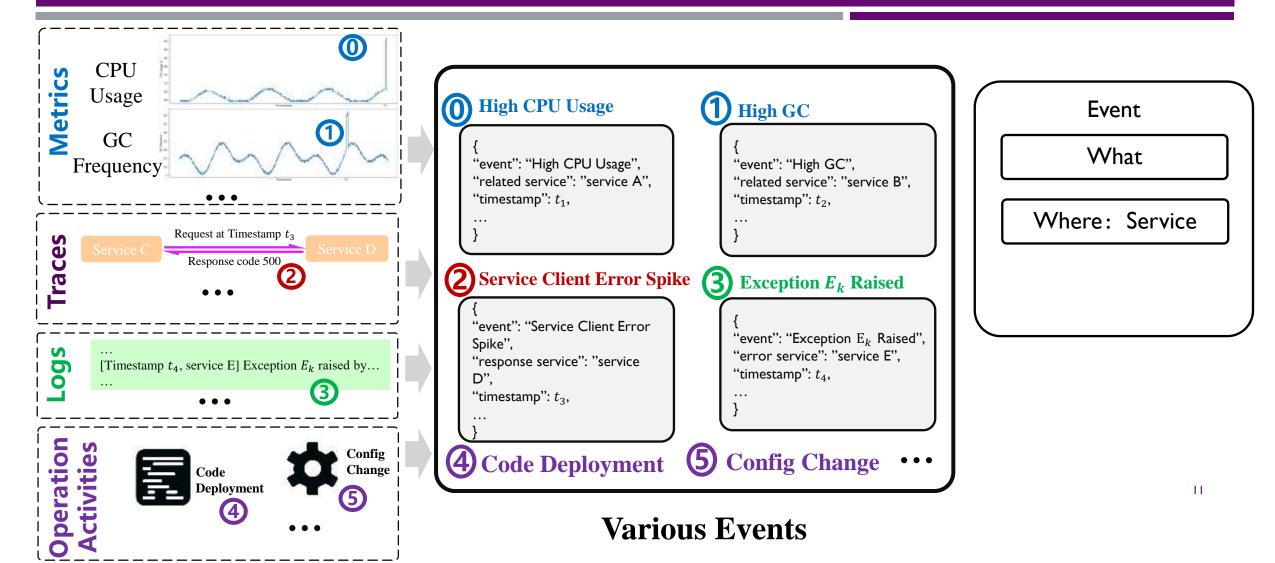


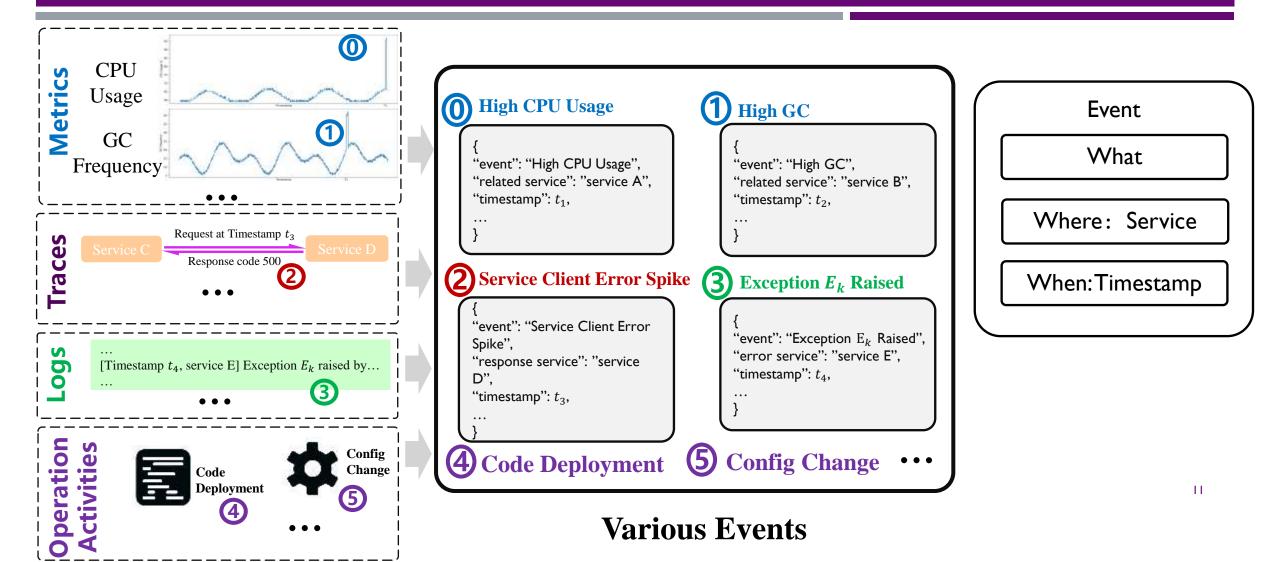


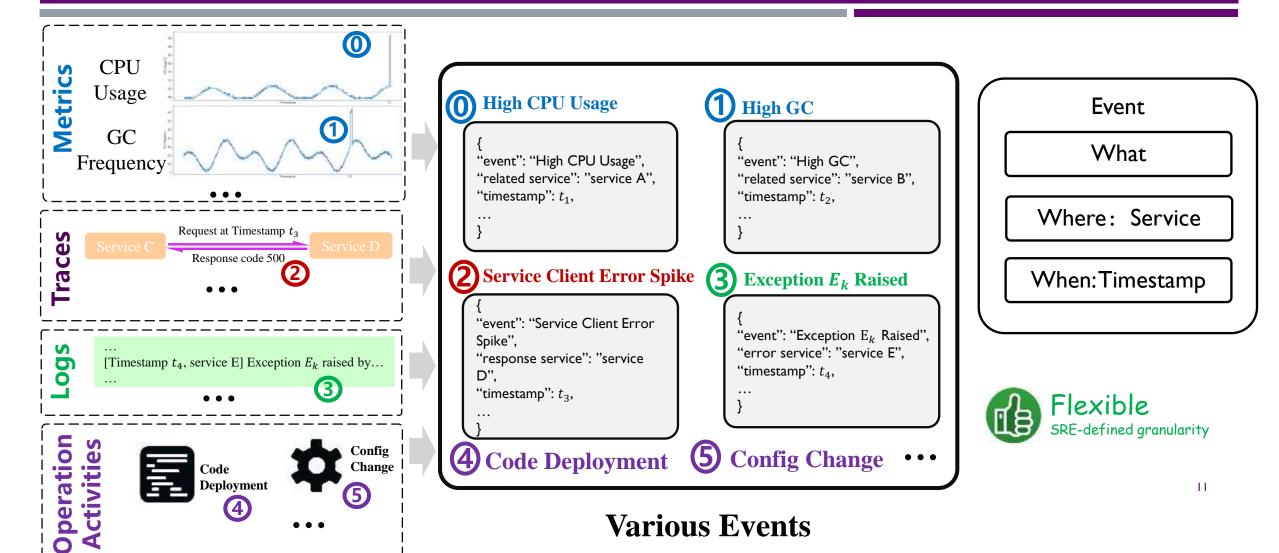
П











Problem Formulation

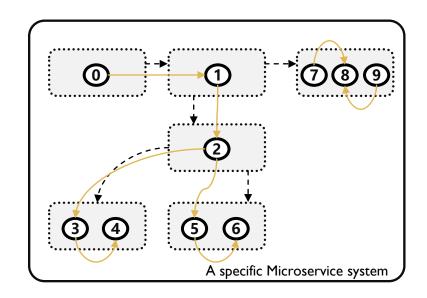
• Given the event collection

API Call Timeout Error Spike
API Call Timeout Error Spike
Latency Spike
Service-Client Error Spike
Code Deployment
DB Markdown
Code Deployment
High CPU Usage
Config Change
High GC

Problem Formulation

- Given the event collection
- Automatically learn the event causal graph

API Call Timeout Error Spike
 API Call Timeout Error Spike
 Latency Spike
 Service-Client Error Spike
 Code Deployment
 DB Markdown
 Code Deployment
 High CPU Usage
 Config Change
 High GC
 Service

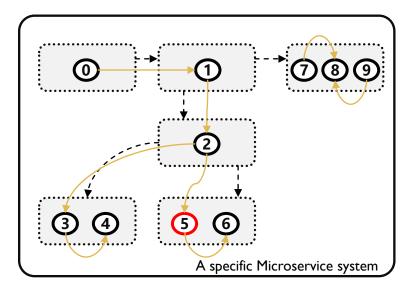


Problem Formulation

- Given the event collection
- Automatically learn the event causal graph
- Infer the real root cause event for a specific incident

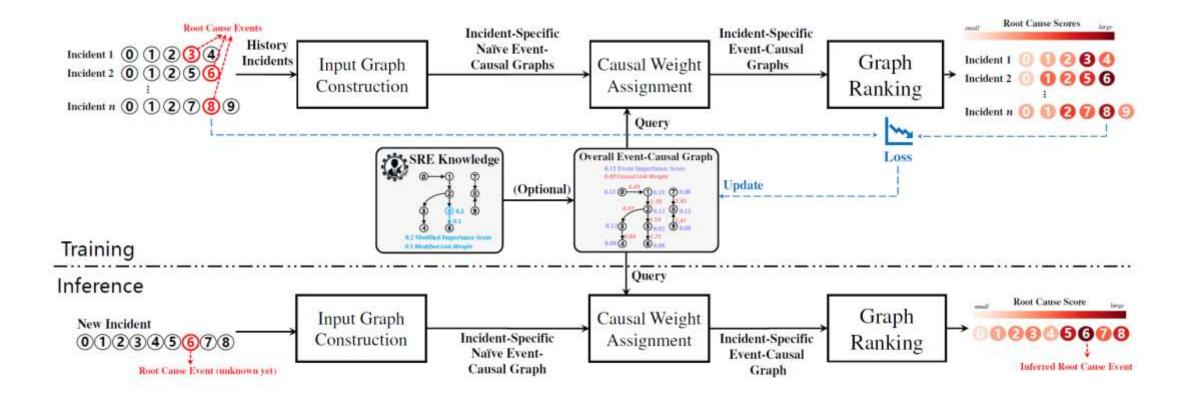
API Call Timeout Error Spike
API Call Timeout Error Spike
Latency Spike
Service-Client Error Spike
Code Deployment
DB Markdown
Code Deployment

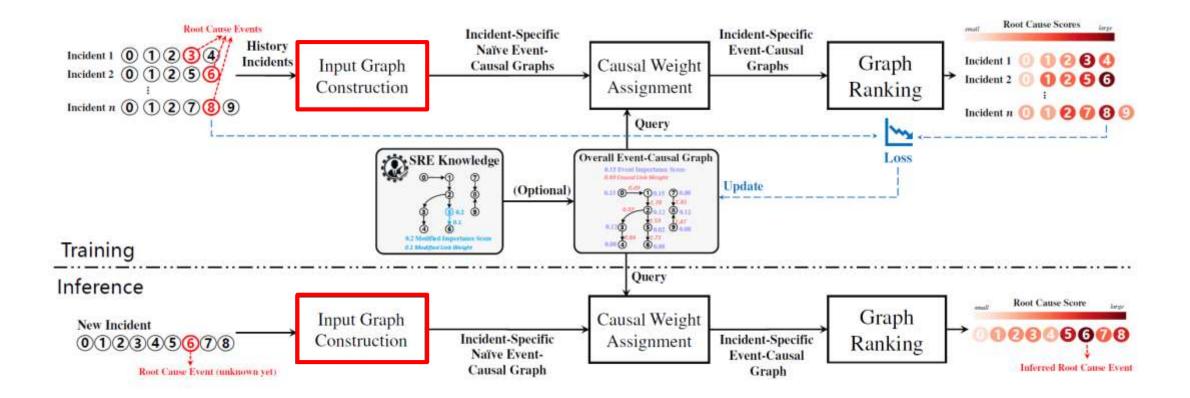
- High CPU Usage
- 8 Config Change9 High GC
- Service
- --► Service Call

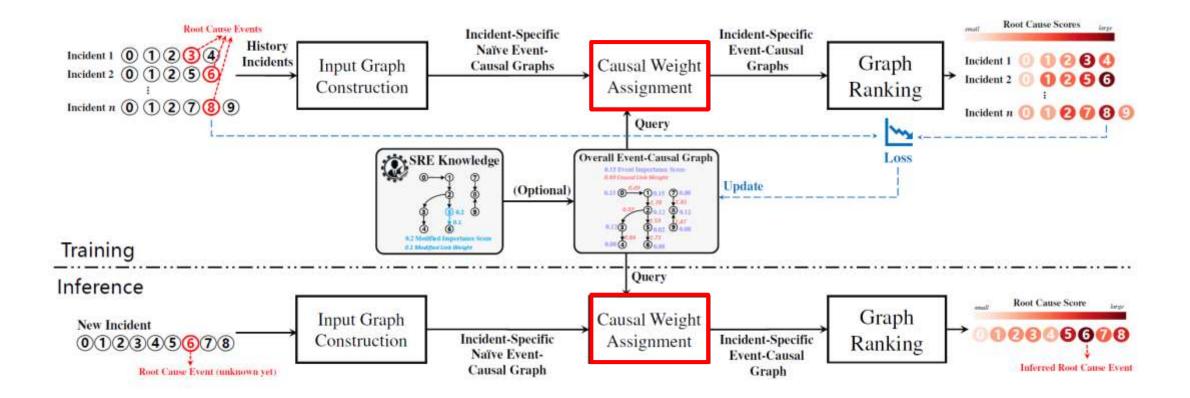


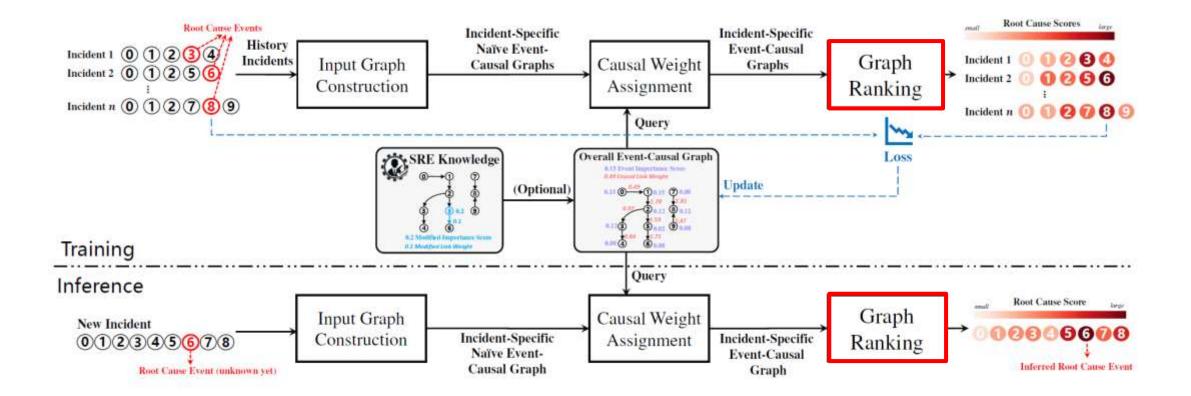
Outline

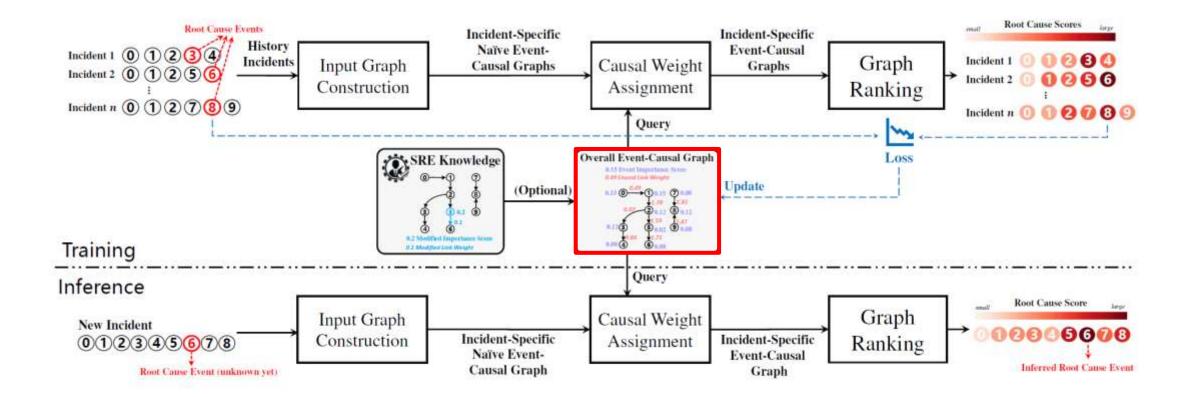
- Background
- Design
- Evaluation
- Conclusion







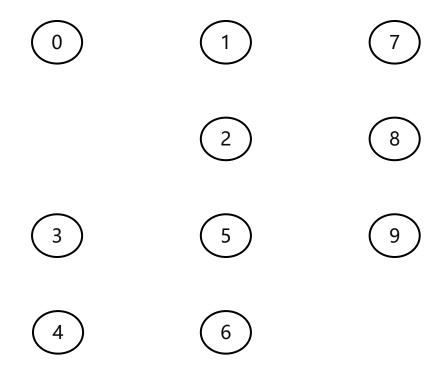


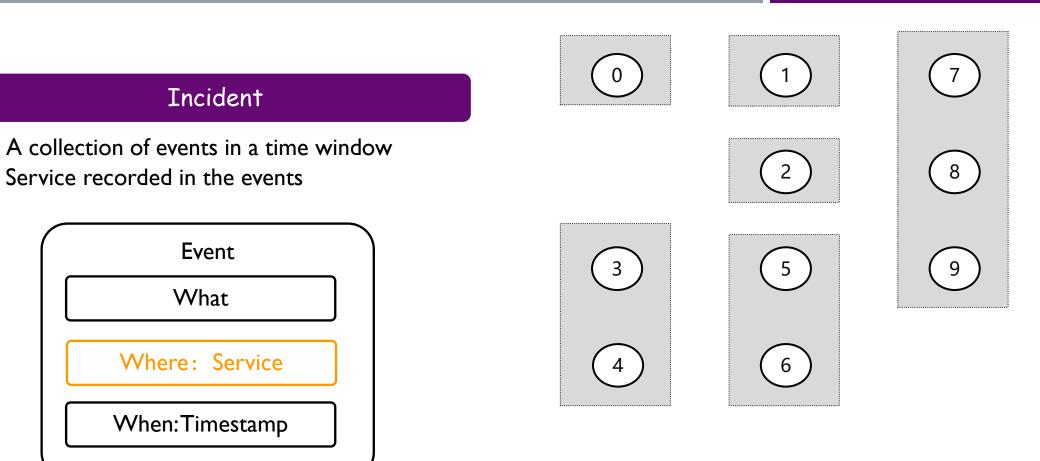


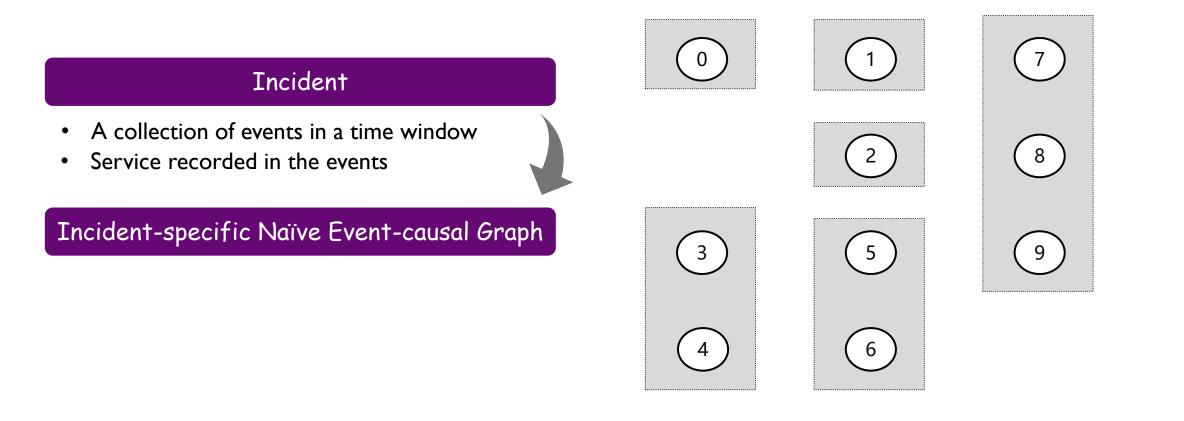
Incident

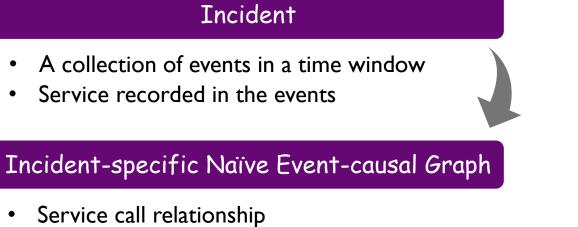
Incident

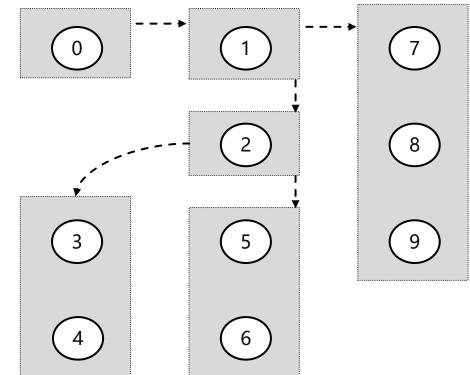
• A collection of events in a time window









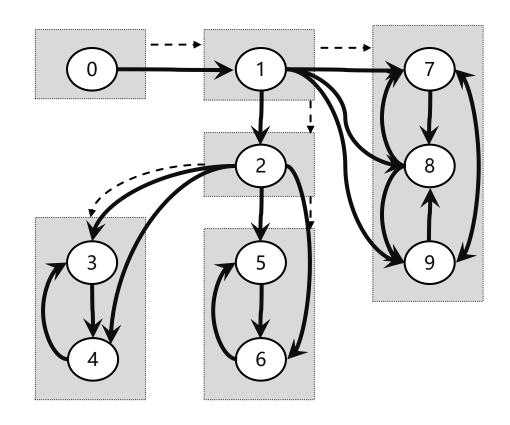


Incident

- A collection of events in a time window
- Service recorded in the events

Incident-specific Naïve Event-causal Graph

- Service call relationship
- All possible event causal links (unweighted) causal link: result event → cause event



all connected along the service call direction

Intra-service

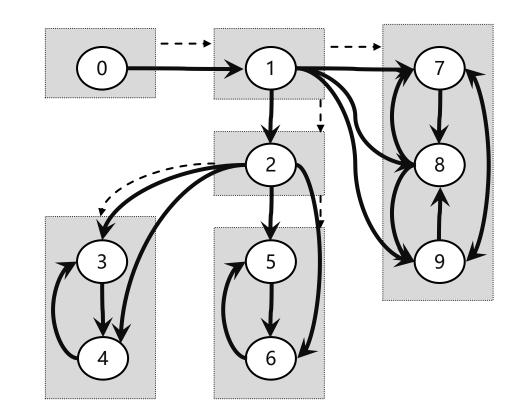
bidirectional within each microservice

Incident

- A collection of events in a time window
- Service recorded in the events

Incident-specific Naïve Event-causal Graph

- Service call relationship
- All possible event causal links (unweighted) causal link: result event → cause event



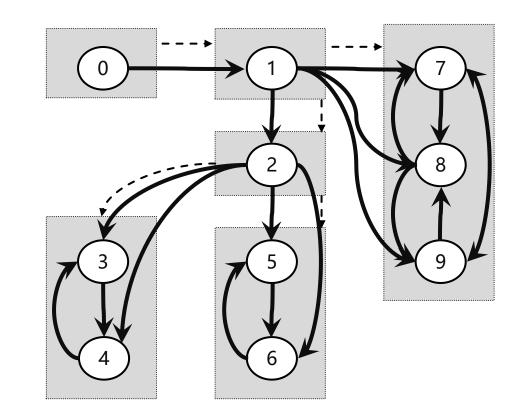
Incident

- A collection of events in a time window
- Service recorded in the events

Incident-specific Naïve Event-causal Graph

- Service call relationship
- All possible event causal links (unweighted) causal link: result event → cause event

Incident-specific Event-causal Graph



Incident

- A collection of events in a time window
- Service recorded in the events

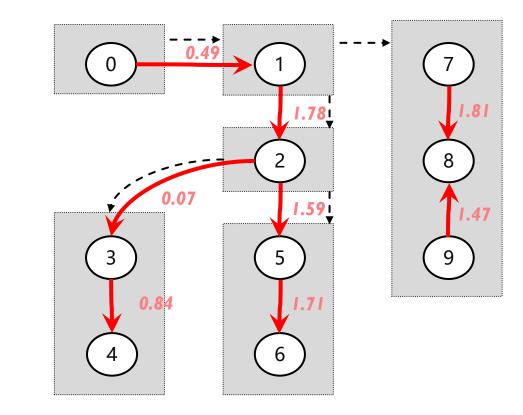
Incident-specific Naïve Event-causal Graph

- Service call relationship
- All possible event causal links (unweighted) causal link: result event → cause event

Incident-specific Event-causal Graph

Weighted event causal links

 (eliminating false links with zero weights)



Incident

- A collection of events in a time window
- Service recorded in the events

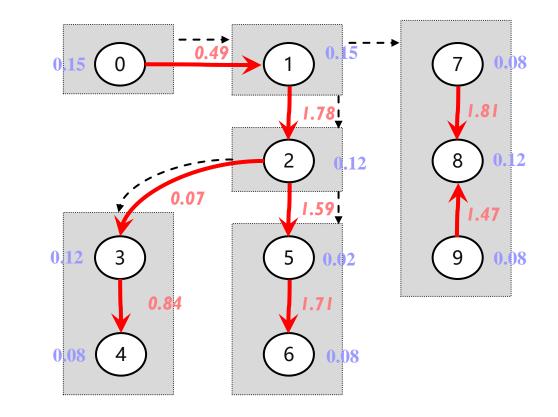
Incident-specific Naïve Event-causal Graph

- Service call relationship
- All possible event causal links (unweighted) causal link: result event → cause event

Incident-specific Event-causal Graph

- Weighted event causal links

 (eliminating false links with zero weights)
- Weighted event importance scores



Incident

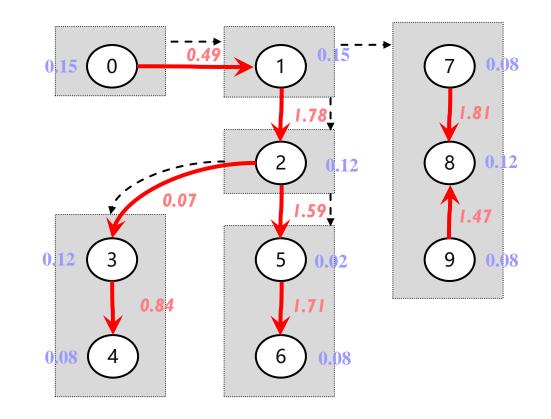
- A collection of events in a time window
- Service recorded in the events

Incident-specific Naïve Event-causal Graph

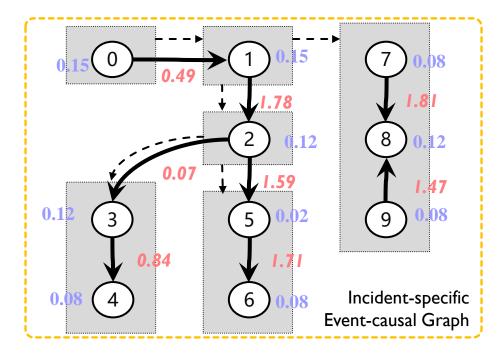
- Service call relationship
- All possible event causal links (unweighted) causal link: result event → cause event

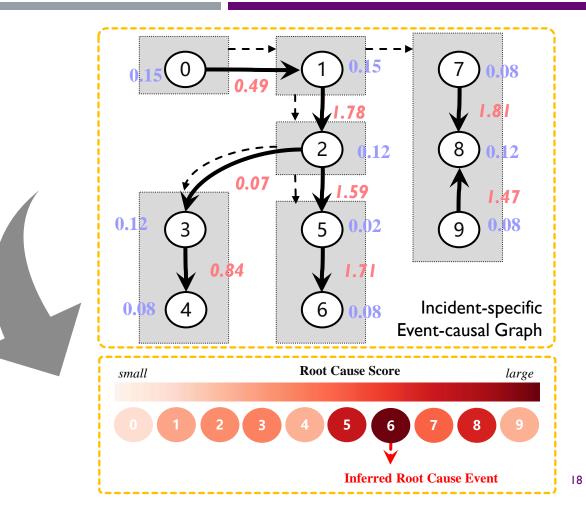
Incident-specific Event-causal Graph

- Weighted event causal links (eliminating false links with zero weights)
- Weighted event importance scores



Incident-specific Event-casual Graph (Subgraph of Overall Event-causal Graph)





78

6

Root Cause Score

.12

8

Inferred Root Cause Event

8

g

Incident-specific

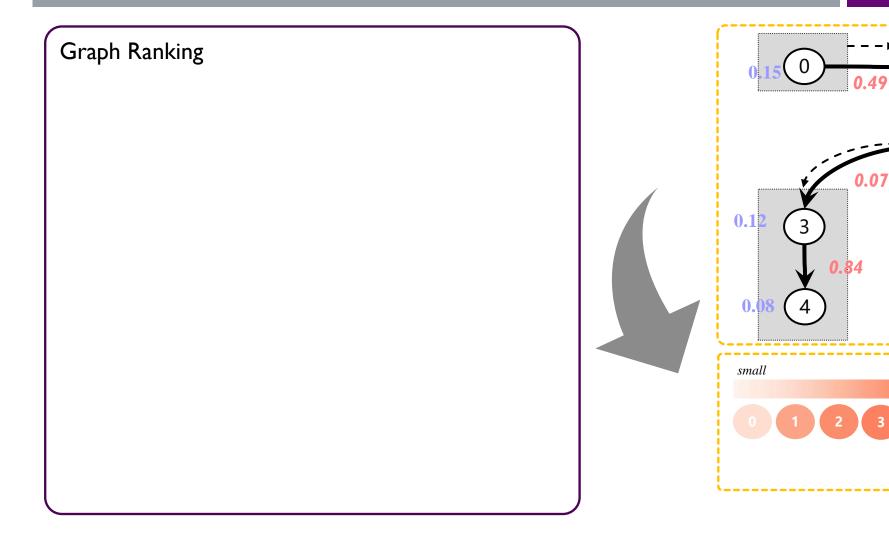
Event-causal Graph

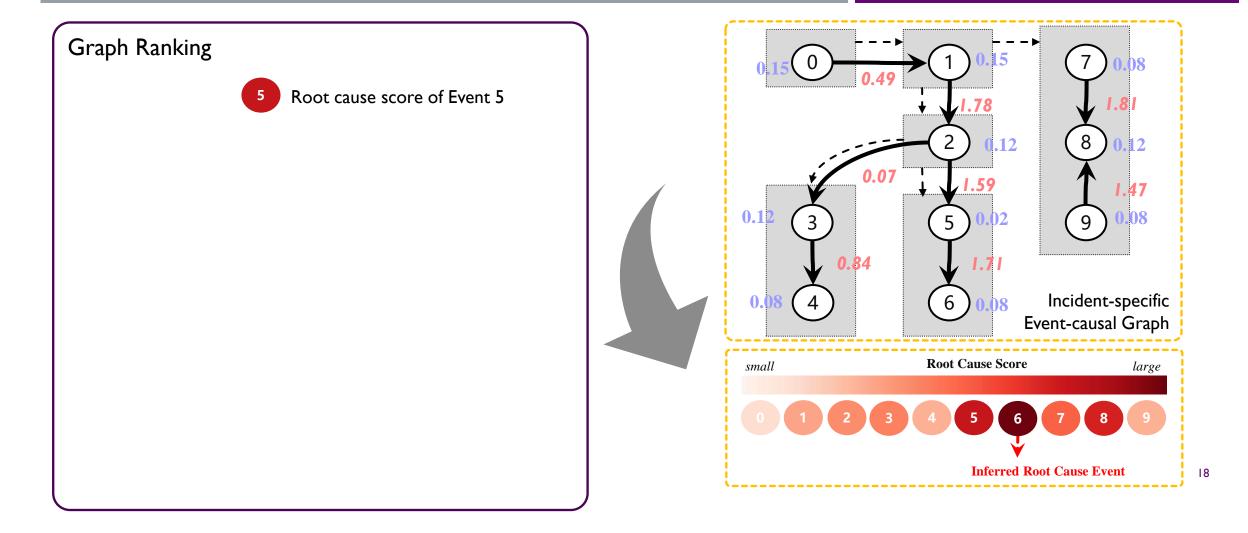
.47

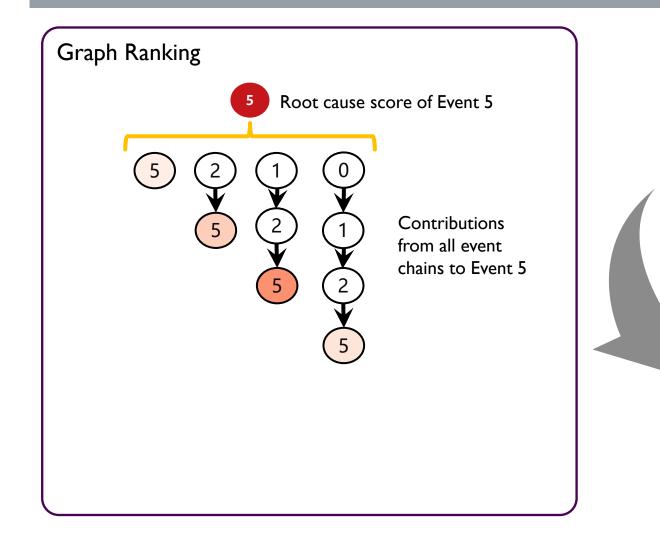
08

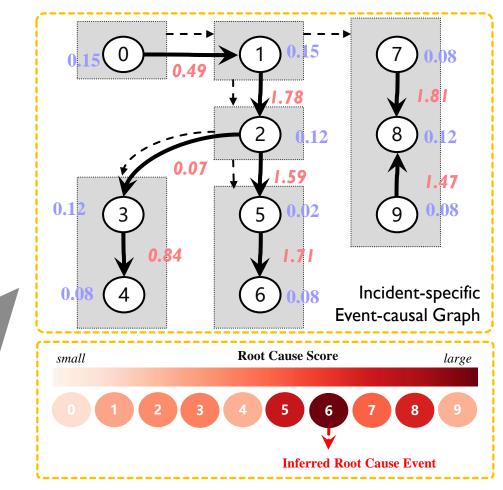
large

18









18

)8

.47

.08

large

18

8

Q

Incident-specific

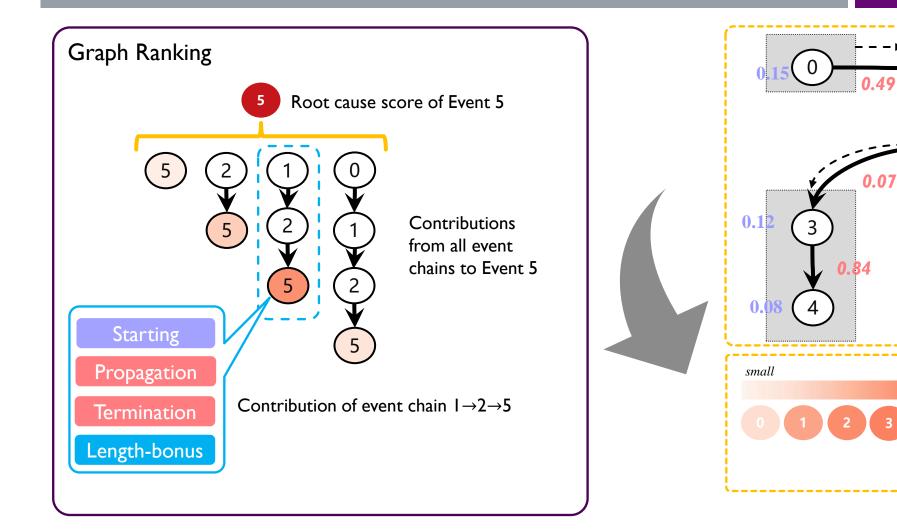
Event-causal Graph

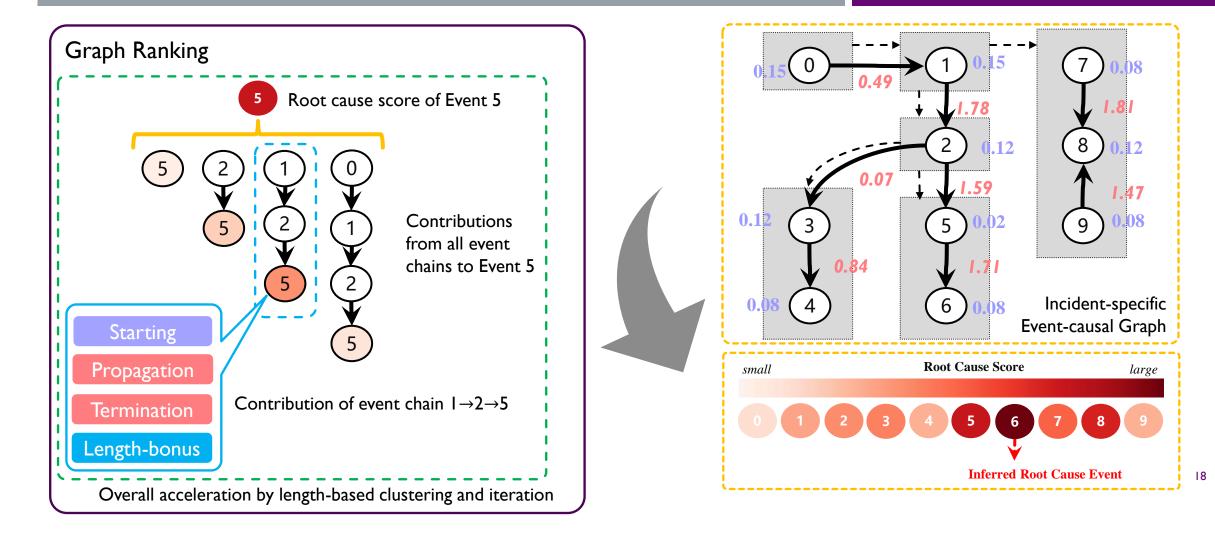
Inferred Root Cause Event

78

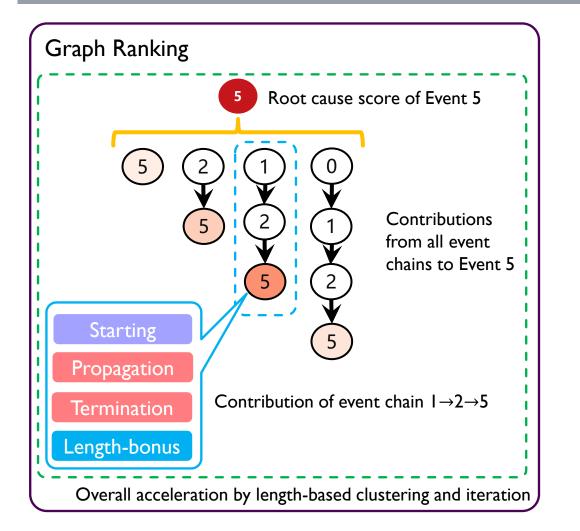
Root Cause Score

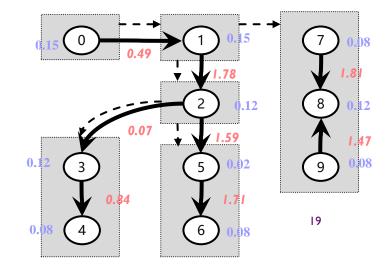
.12

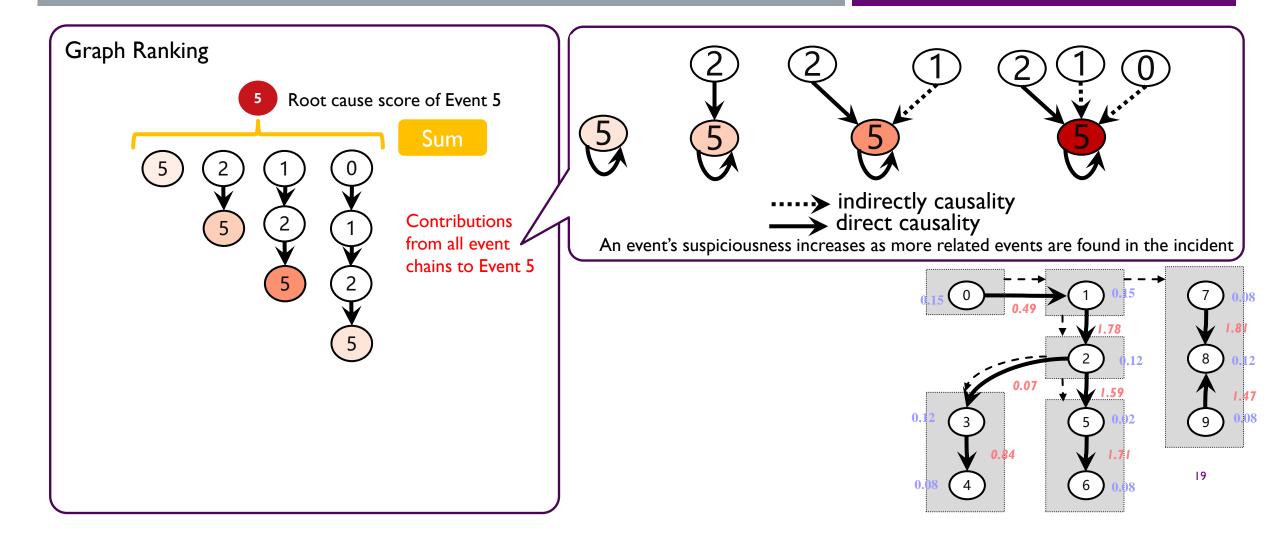


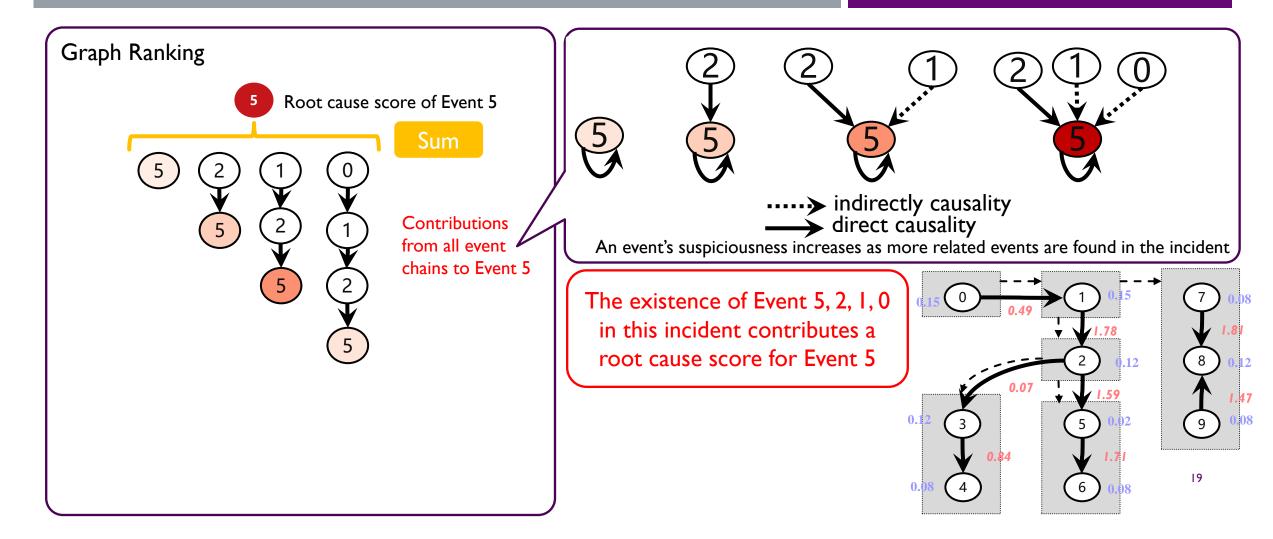


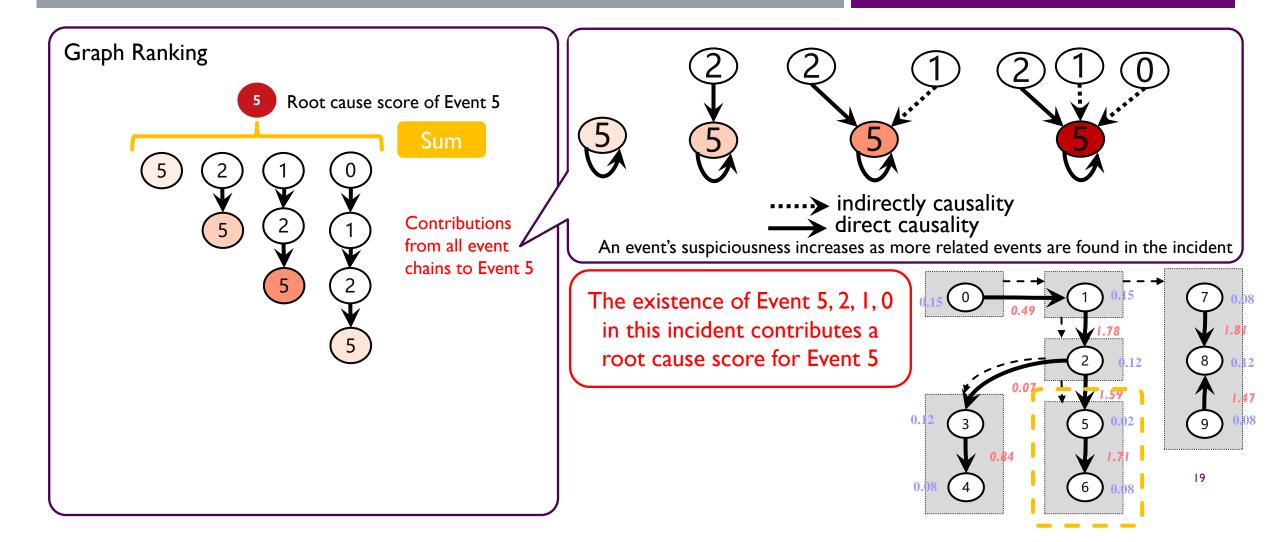
Graph Ranking in Detail

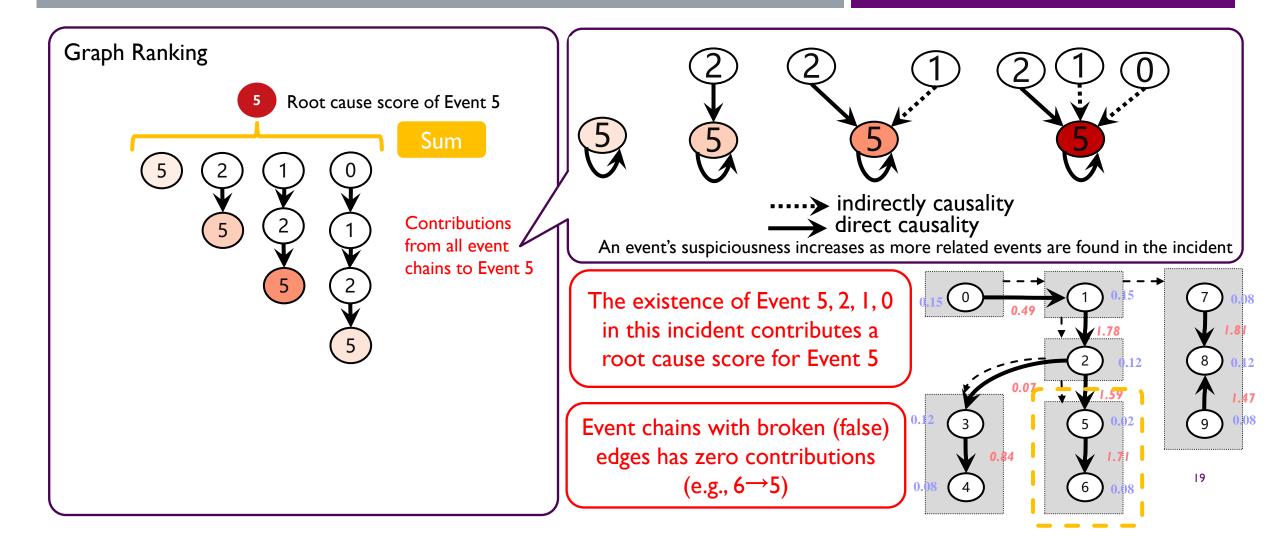


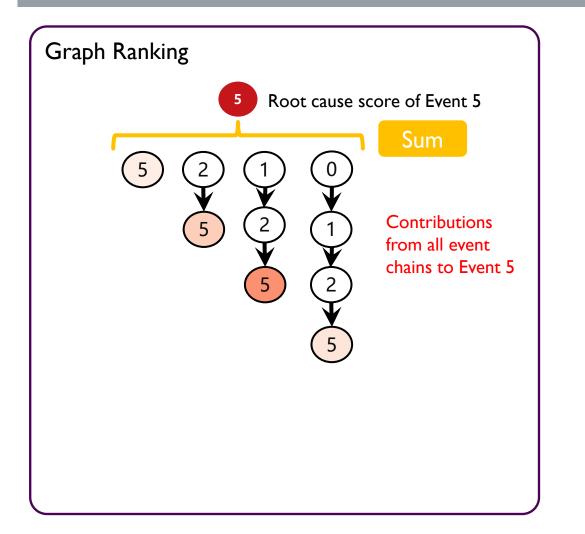


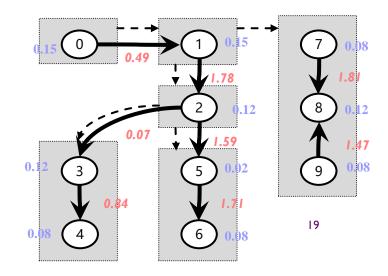


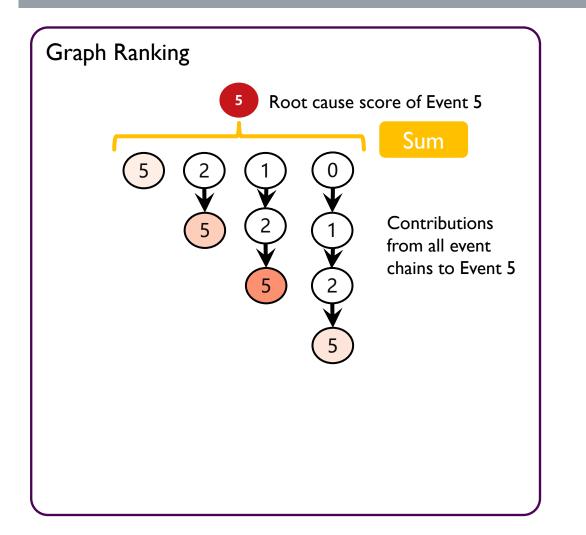


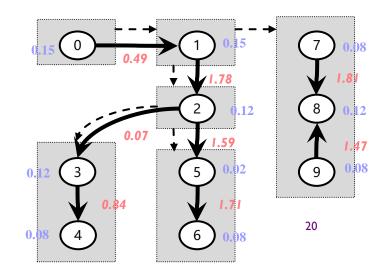


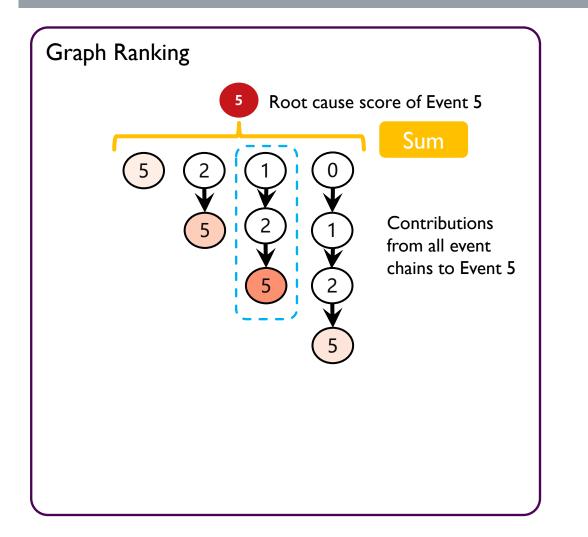


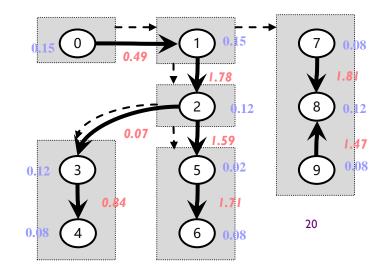


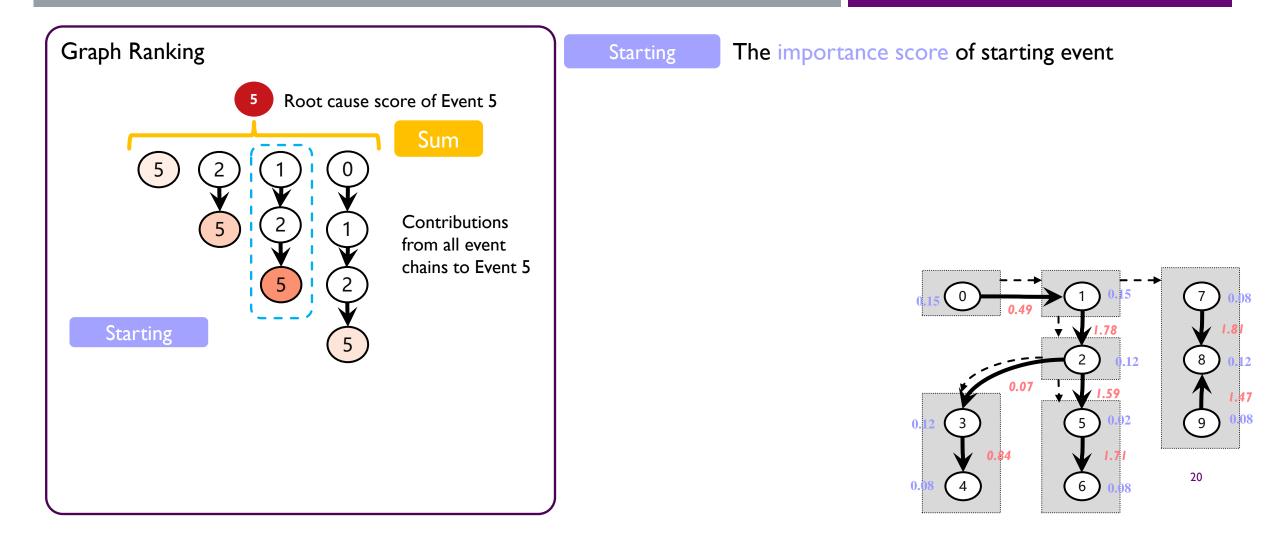


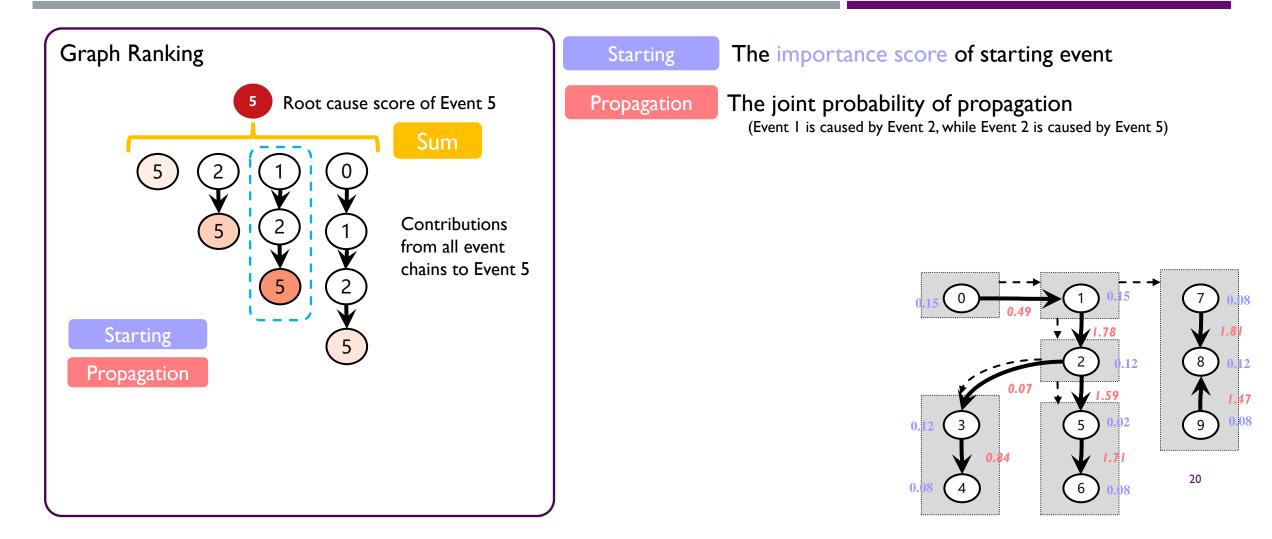


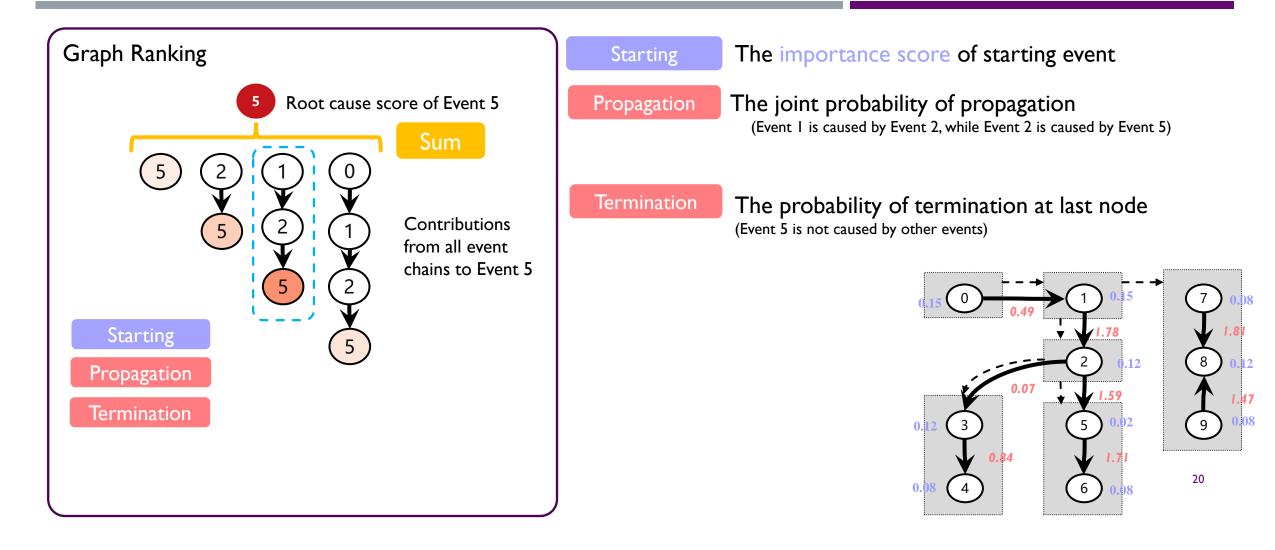


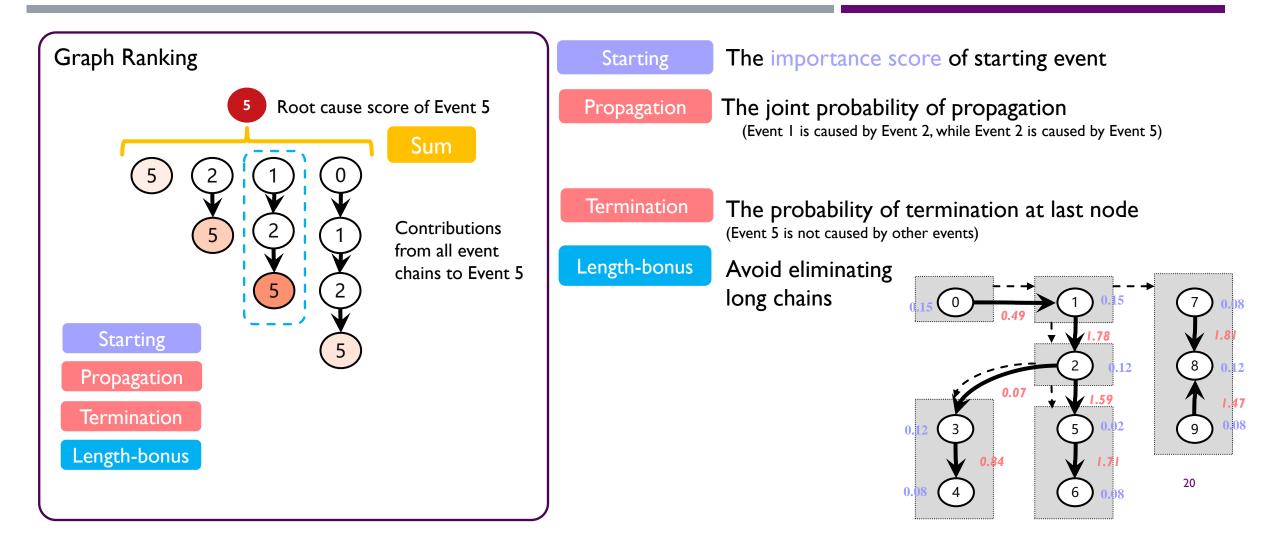


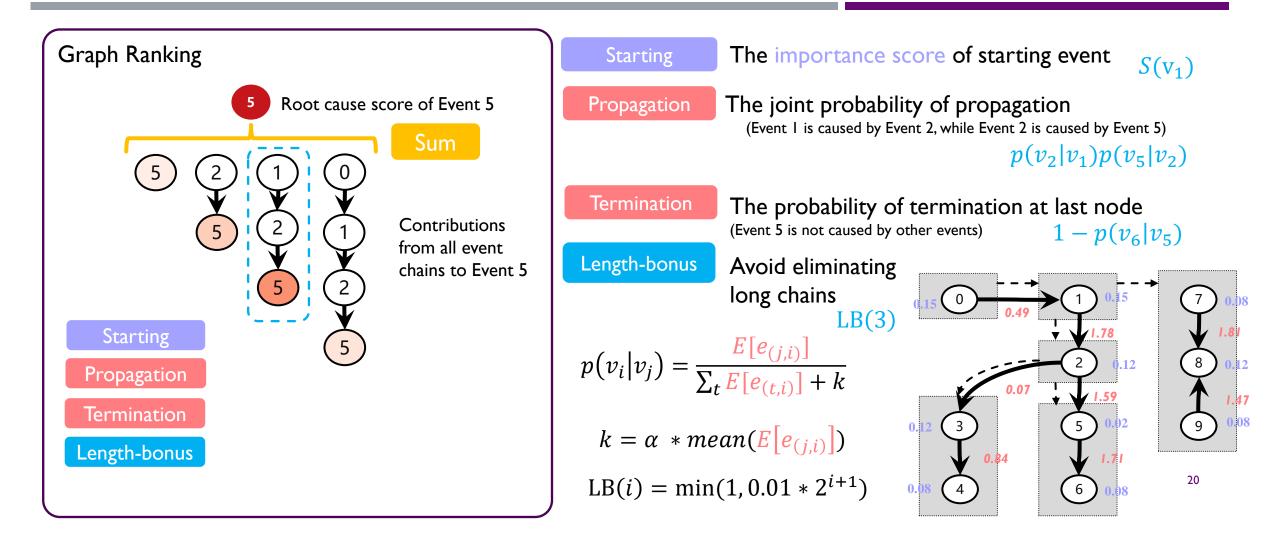


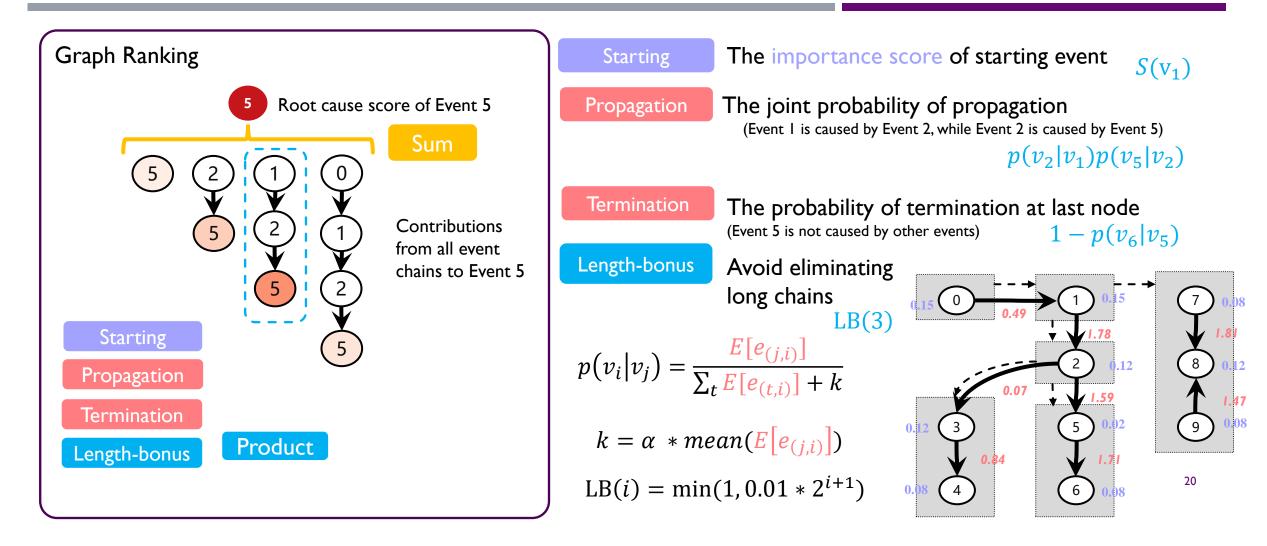


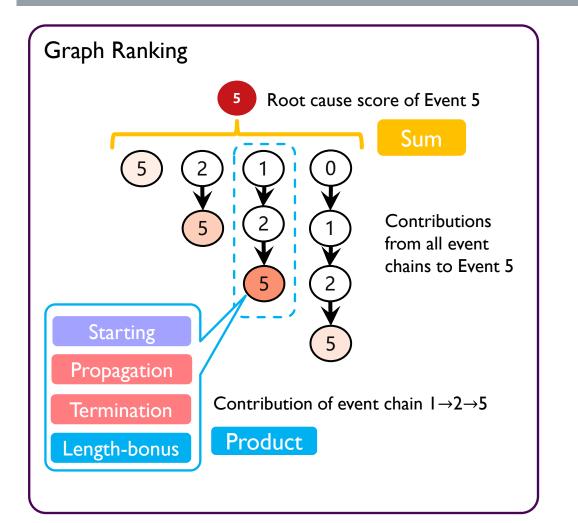


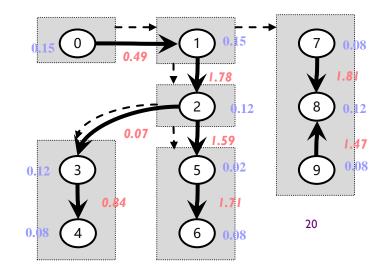


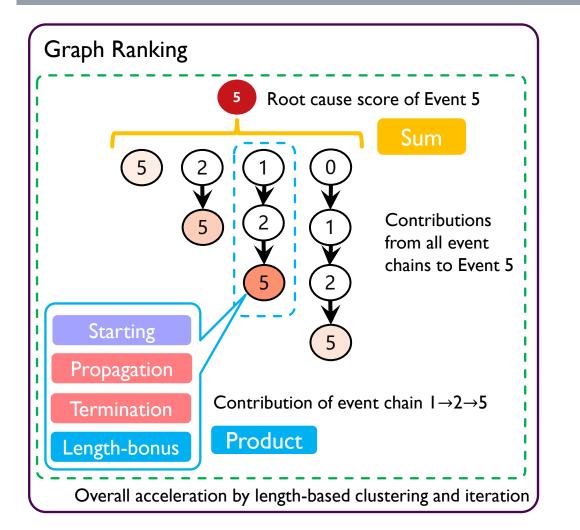


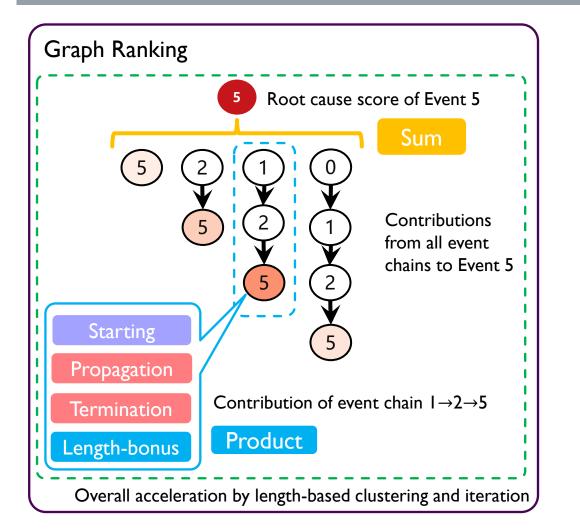


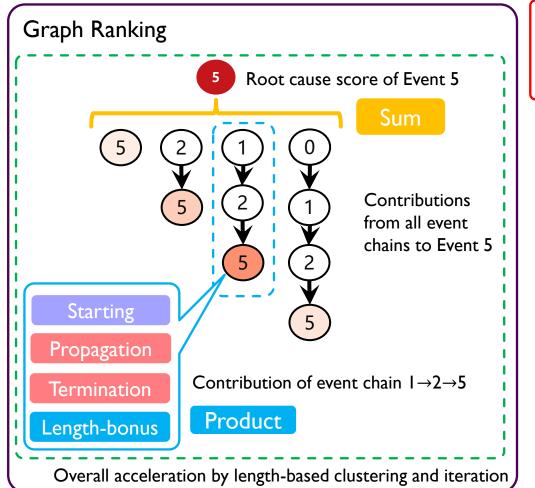




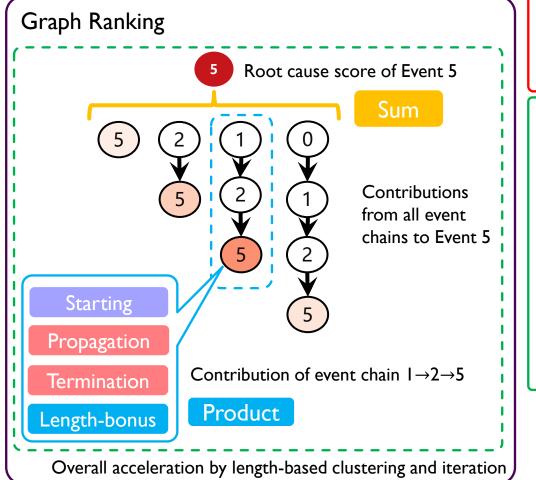








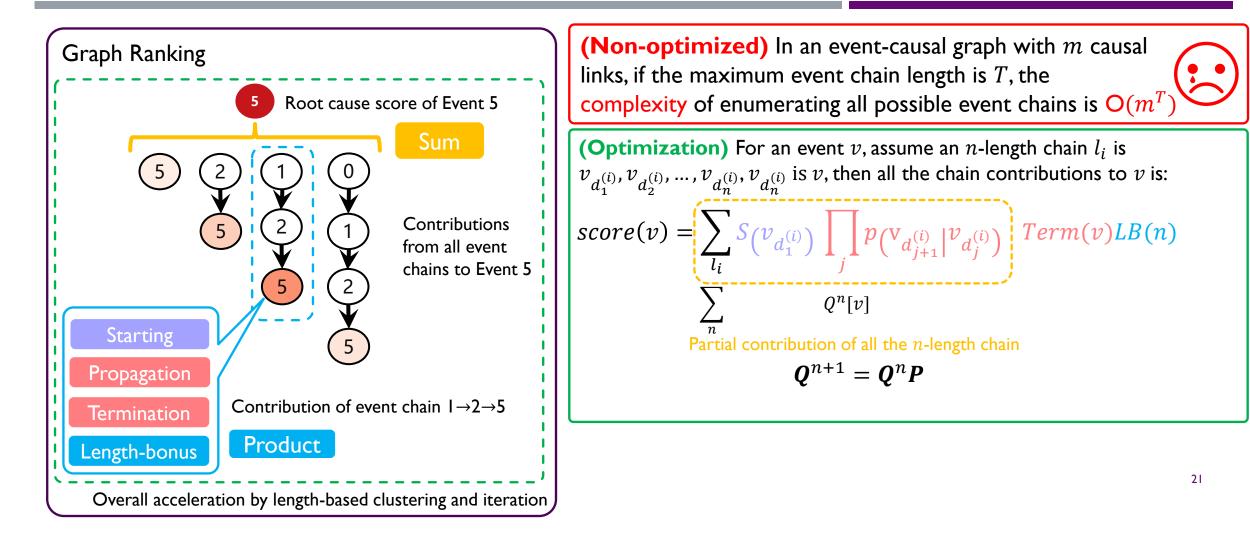
(Non-optimized) In an event-causal graph with m causal links, if the maximum event chain length is T, the complexity of enumerating all possible event chains is $O(m^T)$

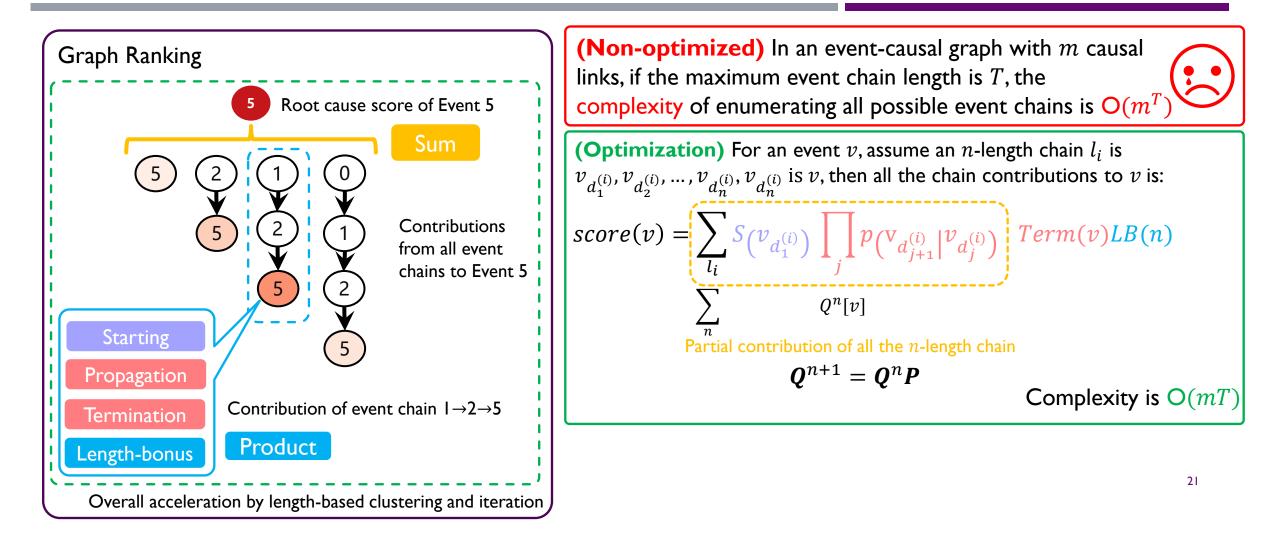


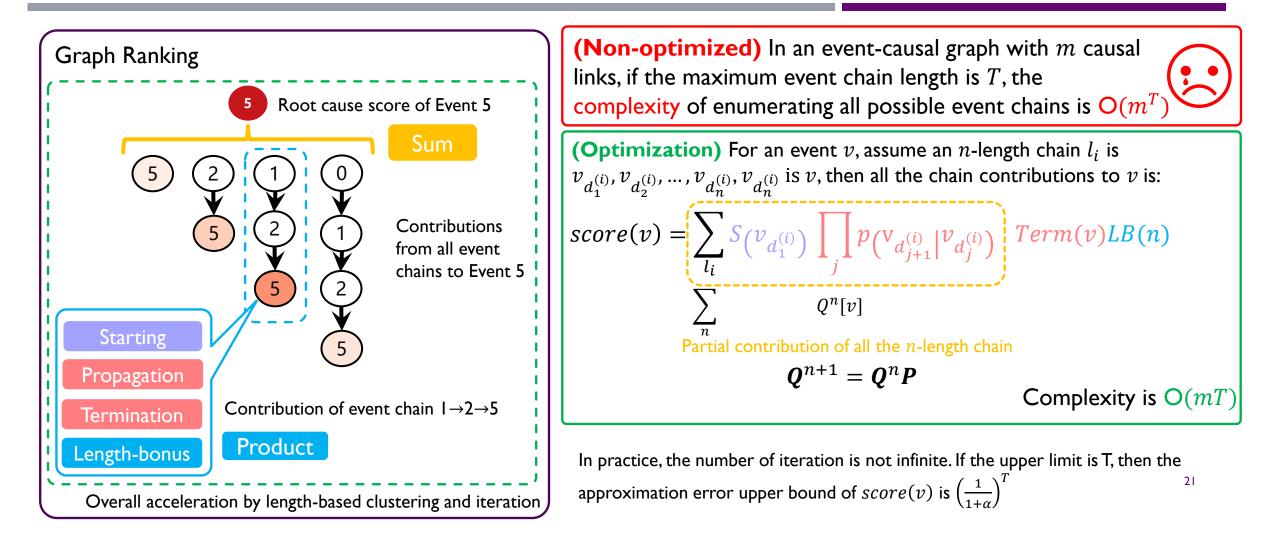
(Non-optimized) In an event-causal graph with m causal links, if the maximum event chain length is T, the complexity of enumerating all possible event chains is $O(m^T)$

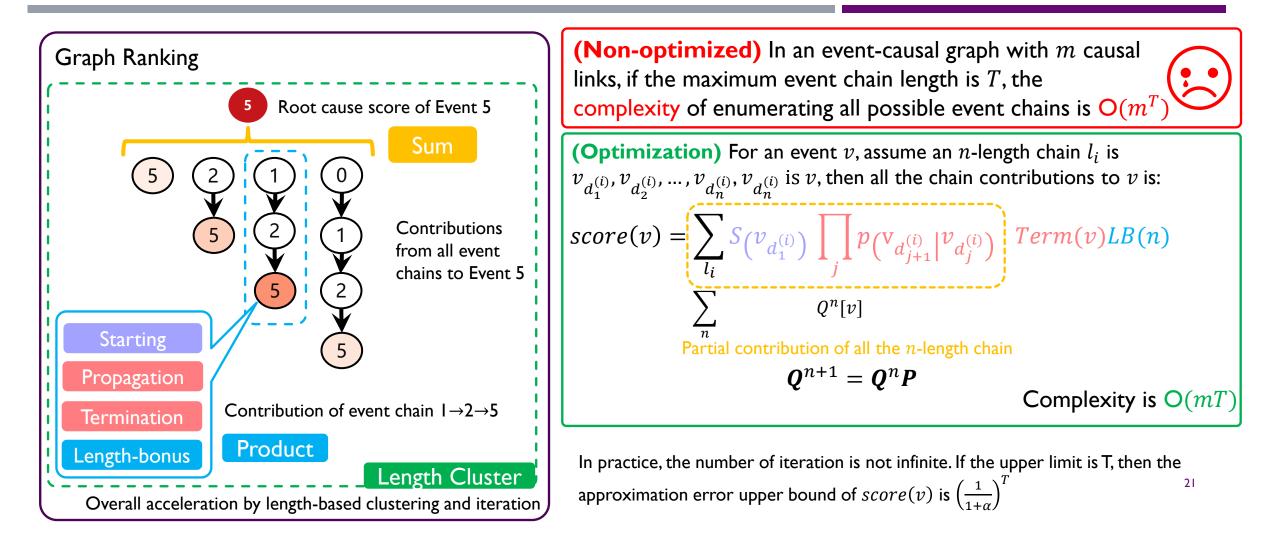
(Optimization) For an event v, assume an n-length chain l_i is $v_{d_1^{(i)}}, v_{d_2^{(i)}}, \dots, v_{d_n^{(i)}}, v_{d_n^{(i)}}$ is v, then all the chain contributions to v is:

$$score(v) = \sum_{l_i} S(v_{d_1^{(i)}}) \prod_{j} p(v_{d_{j+1}^{(i)}} | v_{d_j^{(i)}}) \quad Term(v) LB(n)$$









Outline

- Background
- Design
- Evaluation
- Conclusion

Experiment Setup

Dataset Construction

- Collected from three eBay datacenters with over 5k services in three data centers
- 800k monitoring signals transformed into events (46 signals per service)
- Extracted events from 16 basic sources, collected during 16 months
- Two datasets: Business Dataset (170 incidents) & Service Dataset (782 incidents)
 - Split half by half as train/test set.
 - Labels from historical remediation logs.

#Service	#Users	#Signals	#Signal/svc	#Incident		#Month	
				Business	Service		
5k	185m	800k	46	170	782	16	

Type	Event	Detection Method
	High GC (Overhead)	Rule-based
	High CPU Usage	Rule-based
	Out of Memory	Rule-based
87.03 (C. 147)	LB Connection Stacking	Statistical Model
	Latency Spike	Statistical Model
	TPS Spike	Statistical Model
Monitoring Data	Database Anomaly	ML Model
	Business Metric Anomaly	ML Model
	WebAPI Error	Statistical Model
	Internal Error	Statistical Model
	ServiceClient Error	Statistical Model
	Bad Host	ML Model
	Hystrix Circuit Break	De Facto
	Code Deployment	De Facto
Human Activity	Configuration Change	De Facto
	External URL	De Facto

Experiment Setup

Metric

• Top-I and Top-3 accuracy

Experiment Environment and Implementation Efficiency

- Intel(R) Core(TM) i9-9980HK CPU, an IIGB GTX1080Ti GPU, and 32GB memory.
- About 45 minutes to train the CoE with all the incidents in each dataset.
- Minimal storage cost at just 52.06KB
- Performance similar to Groot

Model	Service (per incident)		Business (per incident)		
	ExecTime	#event	ExecTime	#event	
CoE(Ours)	2.16s	14.70	4.06s	18.73	
Groot	3.16s	14.70	2.98s	18.73	

	Model	MEG	Ser	vice	Busi	ness
	Woder	MLG	Top-1	Top-3	Top-1	Top-3
	PageRank		16.1%	25.3%	1.2%	1.8%
10	GraphSAGE		62.2%	78.1%	81.1%	93.7%
Baselines	GAT		12.2%	47.6%	60.5%	79.2%
seli	GCN		29.3%	57.3%	69.2%	85.3%
Ba	Groot w/o MEG		17.1%	48.8%	23.2%	45.5%
	Groot	\checkmark	74%	92%	81%	96%
<mark>Surs</mark>	CoE with <i>MEG</i>	\checkmark	78.1%	93.9%	78.7%	95%
Ō	CoE		79.3%	98.8%	85.3%	96.6%

MEG: manual event-causal graph

	Model	MEG	Ser	vice	Busi	ness
	Model	MLG	Top-1	Top-3	Top-1	Top-3
	PageRank		16.1%	25.3%	1.2%	1.8%
10	GraphSAGE		62.2%	78.1%	81.1%	93.7%
Baselines	GAT		12.2%	47.6%	60.5%	79.2%
seli	GCN		29.3%	57.3%	69.2%	85.3%
Ba	Groot w/o MEG		17.1%	48.8%	23.2%	45.5%
	Groot	\checkmark	74%	92%	81%	96%
Ours	CoE with <i>MEG</i>	\checkmark	78.1%	93.9%	78.7%	95%
0	CoE		79.3%	98.8%	85.3%	96.6%

MEG: manual event-causal graph

	Model	MEG	Ser	vice	Busi	ness
	Model	MEG	Top-1	Top-3	Top-1	Top-3
22	PageRank		16.1%	25.3%	1.2%	1.8%
	GraphSAGE		62.2%	78.1%	81.1%	93.7%
nes	GAT		12.2%	47.6%	60.5%	79.2%
<u>Baselines</u>	GCN		29.3%	57.3%	69.2%	85.3%
Bat	Groot w/o MEG		17.1%	48.8%	23.2%	45.5 %
	Groot	\checkmark	74%	92%	81%	96%
Ours	CoE with MEG	\checkmark	78.1%	93.9%	78.7%	95%
O	CoE		79.3%	98.8%	85.3%	96.6%
				MEG	G: manual ever	nt-causal graph

MEG: manual event-causal graph

Compared with baseline methods, CoE is indeed effective in detecting the root cause events

	Model	MEG	Ser	vice	Busi	ness
	Woder	MEG	Top-1	Top-3	Top-1	Top-3
	PageRank		16.1%	25.3%	1.2%	1.8%
	GraphSAGE		62.2%	78.1%	81.1%	93.7%
nes	GAT		12.2%	47.6%	60.5%	79.2%
Baselines	GCN		29.3%	57.3%	69.2%	85.3%
Ba	Groot w/o MEG		17.1%	48.8%	23.2%	45.5%
	Groot	\checkmark	74%	92%	81%	96%
urs	CoE with MEG	\checkmark	78.1%	93.9%	78.7%	95%
õ	CoE		79.3%	98.8%	85.3%	96.6%

MEG: manual event-causal graph

Compared with baseline methods, CoE is indeed effective in detecting the root cause events

	Model	MEG	Ser	vice	Busi	ness	
	Widder	MEO	Top-1	Top-3	Top-1	Top-3	Groot seriously
	PageRank		16.1%	25.3%	1.2%	1.8%	depends on the
	GraphSAGE		62.2%	78.1%	81.1%	93.7%	manual rulebook
Baselines	GAT		12.2%	47.6%	60.5%	79.2%	
seli	GCN		29.3%	57.3%	69.2%	85.3%	
Bas	Groot w/o MEG		17.1%	48.8%	23.2%	45.5%	
	Groot	\checkmark	74%	92%	81%	96%	The learned weighted
Ours	CoE with <i>MEG</i>	\checkmark	78.1%	93.9%	78.7%	95%	rulebook in CoE is
Õ	CoE		79.3%	98.8%	85.3%	96.6%	more precise than the manual rulebook
		18				<u></u> :	manual rulebook

MEG: manual event-causal graph

Compared with baseline methods, CoE is indeed effective in detecting the root cause events

Ablation Study

- Length bonus, LB(n)
- Out-edge bonus (termination term), Term(v)
- Event Importance S

٠

- Inter-service causal link weights R_d
- Intra-service causal link weights R_s

	Service		Business	
	Top 1	Top 3	Top 1	Top 3
CoE	79.3%	98.8%	85.3%	96.6%
CoE w/o length bonus	79.3%	96.3%	83.2%	96.1%
CoE w/o out-edge bonus	75.6%	96.3%	83.4%	95.3%
CoE w/o both bonus terms	75.6%	93.9%	83.4%	95.3%

Evaluating the two bonus term

	Service		Busi	ness
	Top 1	Top 3	Top 1	Top 3
CoE	79.3%	98.8%	85.3%	96.6%
CoE w/o learning S	75.6%	96.3%	84.5%	96.1%
CoE w/o learning R_d	78.1%	97.6%	84.5%	95.8%
CoE w/o learning R_s	51.2%	86.6%	84.5%	95.5%
CoE w/o bonus terms	75.6%	93.9%	83.4s%	95.3%

Removing/freezing a certain component

	Service		Busi	ness
	Top 1	Top 3	Top 1	Top 3
Naive CoE	31.7%	64.6%	71.7%	90.3%
+bonus terms	33.0%	67.1%	72.1%	90.5%
+learn S	51.2%	81.7%	82.1%	95%
+learn R_d	51.2%	86.6%	84.5%	95.5%
+learn R_s	79.3%	98.8%	85.3%	96.6%

Adding components one by one

Ablation Study

- Length bonus, LB(n)
- Out-edge bonus (termination term), Term(v)
- Event Importance *S*
- Inter-service causal link weights R_d
- Intra-service causal link weights R_s

	Service		Busi	ness
	Top 1	Top 3	Top 1	Top 3
CoE	79.3%	98.8%	85.3%	96.6%
CoE w/o length bonus	79.3%	96.3%	83.2%	96.1%
CoE w/o out-edge bonus	75.6%	96.3%	83.4%	95.3%
CoE w/o both bonus terms	75.6%	93.9%	83.4%	95.3%

Evaluating the two bonus term

All the components has its impact, while S is the most significant

	Service		Business	
	Top 1	Top 3	Top 1	Top 3
CoE	79.3%	98.8%	85.3%	96.6%
CoE w/o learning S	75.6%	96.3%	84.5%	96.1%
CoE w/o learning R_d	78.1%	97.6%	84.5%	95.8%
CoE w/o learning R_s	51.2%	86.6%	84.5%	95.5%
CoE w/o bonus terms	75.6%	93.9%	83.4s%	95.3%

Removing/freezing a certain component

	Service		Business	
	Top 1	Top 3	Top 1	Top 3
Naive CoE	31.7%	64.6%	71.7%	90.3%
+bonus terms	33.0%	67.1%	72.1%	90.5%
+learn S	51.2%	81.7%	82.1%	95%
+learn R_d	51.2%	86.6%	84.5%	95.5%
+learn R_s	79.3%	98.8%	85.3%	96.6%

Adding components one by one

Ablation Study

- Length bonus, LB(n)
- Out-edge bonus (termination term), Term(v)
- Event Importance *S*
- Inter-service causal link weights R_d
- Intra-service causal link weights R_s

	Service		Business	
	Top 1	Top 3	Top 1	Top 3
CoE	79.3%	98.8%	85.3%	96.6%
CoE w/o length bonus	79.3%	96.3%	83.2%	96.1%
CoE w/o out-edge bonus	75.6%	96.3%	83.4%	95.3%
CoE w/o both bonus terms	75.6%	93.9%	83.4%	95.3%

Evaluating the two bonus term

All the components has its impact, while S is the most significant

The terms has biased impact on different dataset (e.g., R_s in the Service Dataset)

Incident typically associated	Service		Business	
with a single service	Top 1	Top 3	Top 1	Top 3
CoE	79.3%	98.8%	85.3%	96.6%
CoE w/o learning S	75.6%	96.3%	84.5%	96.1%
CoE w/o learning R_d	78.1%	97.6%	84.5%	95.8%
CoE w/o learning R_s	51.2%	86.6%	84.5%	95.5%
CoE w/o bonus terms	75.6%	93.9%	83.4s%	95.3%

Removing/freezing a certain component

·_____

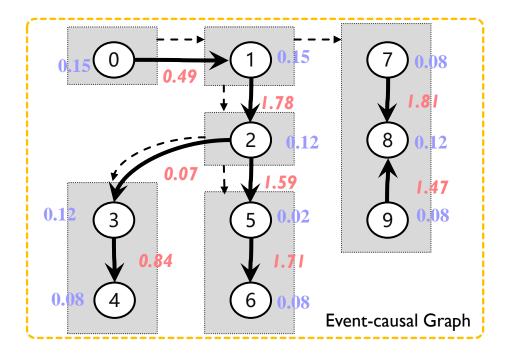
	Service		Business	
	Top 1	Top 3	Top 1	Top 3
Naive CoE	31.7%	64.6%	71.7%	90.3%
+bonus terms	33.0%	67.1%	72.1%	90.5%
+learn S	51.2%	81.7%	82.1%	95%
+learn R_d	51.2%	86.6%	84.5%	95.5%
+learn R_s	79.3%	98.8%	85.3%	96.6%

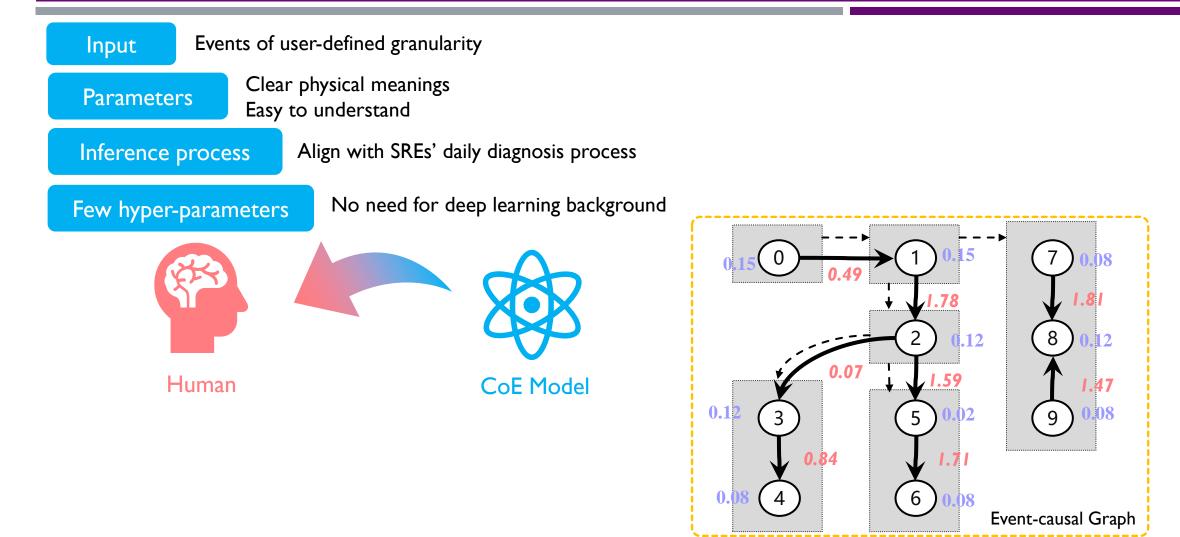
Adding components one by one

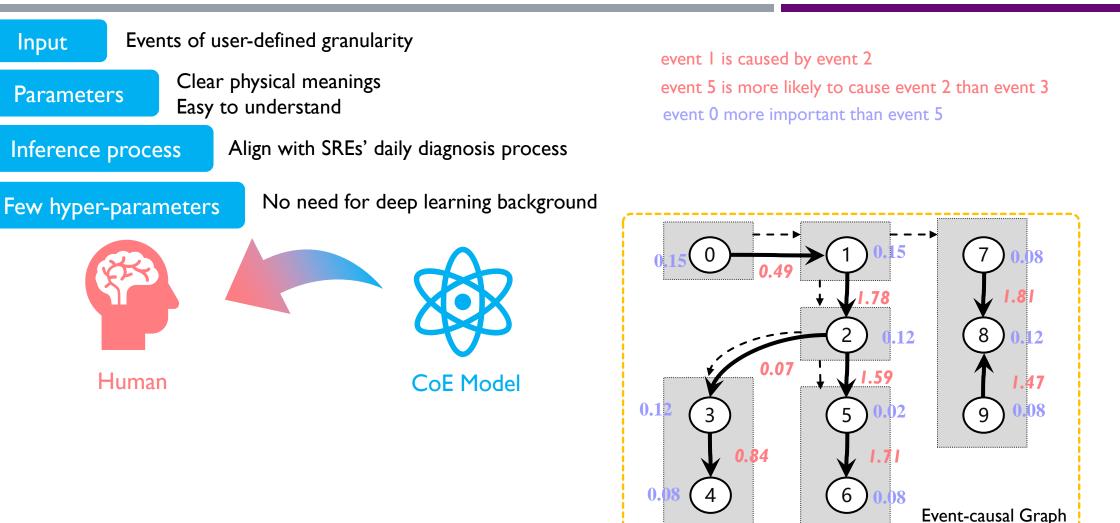
Human

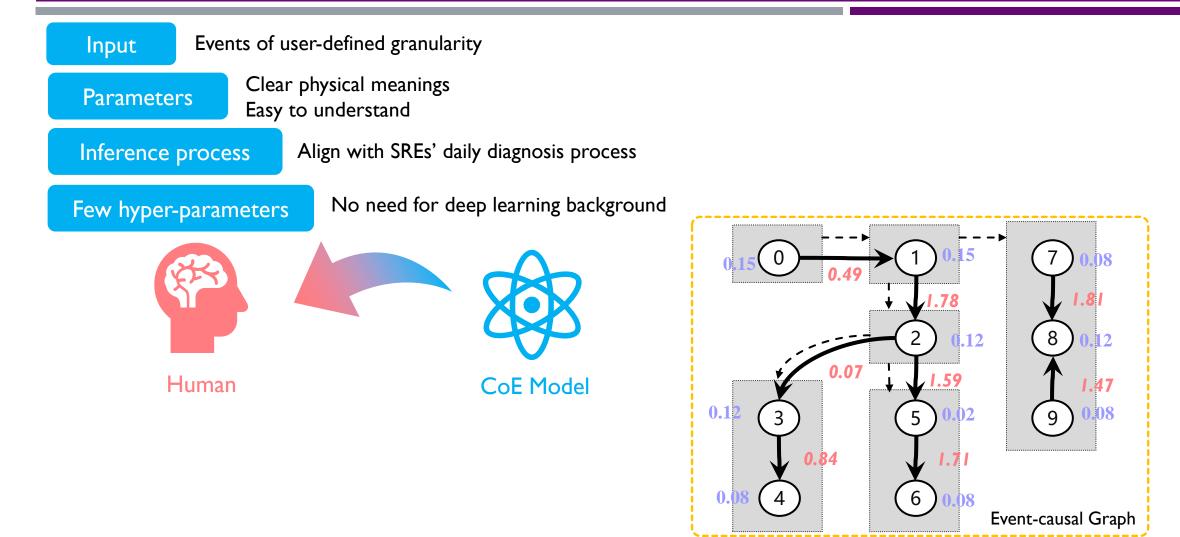
Human

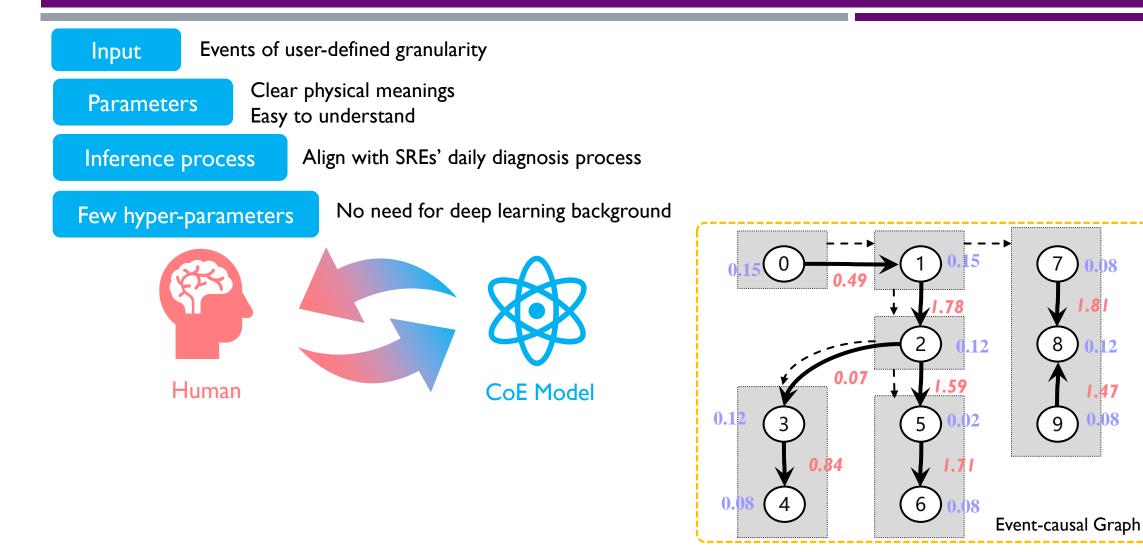
CoE Model











27

.8

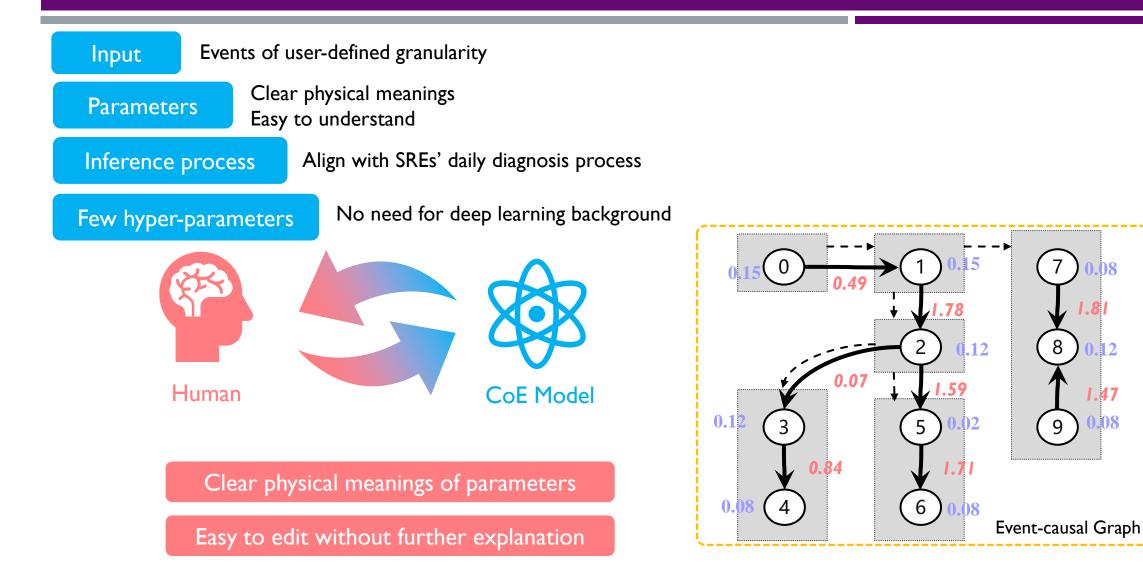
 $\mathbf{).12}$

1.47

0.08

27

8)



Outline

- Background
- Design
- Evaluation
- Conclusion

Conclusion

Chain-of-Event (CoE)

- Event-based RCA algorithm utilizing multi-modal monitoring data
- Interpretable parameter design aligning with human knowledge
- Automatic learning event-causal graph
- High accuracy of root cause analysis evaluated with real-world dataset

Key Designs of CoE

- Incident-specific and overall event-causal graph
- Graph ranking with event chains
- Chain-length-based acceleration
- Proved effectiveness of the key components in ablation study

Open source code

https://github.com/NetManAlOps/Chain-of-Event

中国科学院 计算机网络信息中心

Computer Network Information Center, Chinese Academy of Sciences

Thank You !

Chain-of-Event: Interpretable Root Cause Analysis for Microservices through Automatically Learning Weighted Event Causal Graph

Paper: https://doi.org/10.1145/3663529.3663827

Code: https://github.com/NetManAlOps/Chain-of-Event