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Abstract
In large-scale online service systems, numerous Key Performance
Indicators (KPIs), such as service response time and error rate, are
gathered in a time-series format. KPI Anomaly Detection (KAD)
is a critical data mining problem due to its widespread applica-
tions in real-world scenarios. However, KAD faces the challenges
of dealing with KPI heterogeneity and noisy data. We propose
KAD-Disformer , a KPI Anomaly Detection approach through
Disentangled Transformer. KAD-Disformer pre-trains a model
on existing accessible KPIs, and the pre-trained model can be effec-
tively “fine-tuned” to unseen KPI using only a handful of samples
from the unseen KPI. We propose a series of innovative designs,
including disentangled projection for transformer, unsupervised
few-shot fine-tuning (uTune), and denoisingmodules, each of which
significantly contributes to the overall performance. Our extensive
experiments demonstrate that KAD-Disformer surpasses the state-
of-the-art universal anomaly detection model by 13% in F1-score
and achieves comparable performance using only 1/8 of the fine-
tuning samples saving about 25 hours. KAD-Disformer has been
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successfully deployed in the real-world cloud system serving mil-
lions of users, attesting to its feasibility and robustness. Our code
is available at https://github.com/NetManAIOps/KAD-Disformer.
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1 Introduction
Online service systems are playing essential and growing roles in
our daily life. Some example systems are social networks, online
shopping, mobile payment, and search engine. To guarantee the
high quality and non-interrupted services, businesses are gradu-
ally relying on Key Performance Indicator (KPI) of time series data
to pinpoint and tackle anomalies and other concerns [5, 36, 42].
Anomaly detection (AD) based on time series focuses on rapidly
identifying and addressing irregularities, making it a hot topic
within data mining communities [18, 28, 33–35, 43]. Traditional
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KPI anomaly detection methods are mostly rule-based and consist
of massive handicraft thresholds. Although this type of anomaly
detection is computationally efficient, the detection performance is
far from satisfactory [19]. Besides, huge human efforts for decid-
ing the considerable parameters of the rules make these methods
unfeasible for large-scale online systems.

In recent years, many efforts have been devoted to model-based
time series anomaly detection algorithms, including supervised ap-
proaches (e.g., Opprentice [19]), semi-supervised approaches (e.g.,
ACVAE [17]) and unsupervised approaches (e.g., Donut [33], DAE-
MON [4], MAD-SGCN [25], TranAD [29], AnomalyTrans [34]).
The powerful machine learning techniques help them achieve su-
perior performance compared with the classic methods such as
Holt-Winters [2] and ARIMA [22].

However, real-world time series data are complex and exhibit
significant variations across different domains. Consequently, ex-
isting anomaly detection algorithms employ specialized models
tailored for each individual KPI. However, for large online systems
with hundreds of thousands of KPIs, training individual models
leads to prohibitive overhead. Furthermore, the long initialization
time [20]1 of existing algorithms, determined chiefly by the amount
of data used for fine-tuning the model to achieve satisfactory ac-
curacy, render them impractical for rapidly changing services. We
identify two criteria for practical anomaly detection algorithms to
monitor large-scale online systems:

• Generalizable Pre-Training: The ability to detect anomalies
across diverse KPI datasets using a universal model, which is pre-
trained on the accessible datasets and can adapt to previously
unseen datasets.
• Unsupervised Few-Shot Fine-Tuning: The ability to achieve
a strong performance even with limited data after fine-tuning,
minimizing the initialization time. This allows models to rapidly
adapt to unseen KPIs or services.

However a naive pre-trained KPI anomaly detection model may
suffer from obvious performance degradation with the large drift
between the “KPIs for pre-training” and the “KPIs for fine-tuning”.
The KPIs for pre-training represent the accessible KPIs utilized
to pre-train the model. The KPIs for fine-tuning refer to the KPIs
that we want the model to detect anomalies for, but they are not
known or accessed during the pre-training process. To solve the
performance degradation problem, some existing anomaly detec-
tion models [21, 40, 41] adopt a two-stage approach: classifying
KPIs into different groups, then fine-tuning models for each group.
However, the grouping stage introduces computation overhead and
the performance can be compromised if a KPI is inappropriately
clustered. Here we need a universal pre-trained model with the
power to effectively and quickly adapt to incoming KPIs without
explicitly clustering. Yet facing real-world complex KPI data, we
encounter three challenges:

• High KPI diversity: KPIs from thousands of applications and
systems have diverse, non-stationary patterns. Pre-training a
single model for such heterogeneous data is pretty challenging.

1The initialization time indicates the time lag between when operators collect fine-
tuning data for the anomaly detectionmodel and when it achieves satisfactory accuracy
for online detection, mainly decided by the number of data points used.

• Tailored model adaptation: There is a challenge to ensure
the model to quickly adapt to incoming KPIs while maintaining
the good performance for historical KPIs. A general model with
limited capacity may be able to quickly adapt to incoming KPIs
but at the cost of performance degradation on historical KPIs.
On the other hand, a complex model may be more capable on
historical KPIs but is not flexible to incoming KPIs.
• Robustness to noisy data: Rapidly adapting to incoming KPIs
during fine-tuning demands high-quality data, yet KPI time series
often contain noises. Efficiently achieving satisfactory perfor-
mance on limited and noisy data of the KPI for fine-tuning poses
a considerable challenge.
In this paper, we propose KAD-Disformer , a KPI Anomaly

Detection approach through Disentangled Transformer. Differ-
ent from the previous transformer-based KAD models [29, 34],
we disentangle the projection matrices (𝑊 ) of query, key, value
in Transformer into 𝑊𝑐𝑜𝑚𝑚𝑜𝑛 and 𝑊𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 . 𝑊𝑐𝑜𝑚𝑚𝑜𝑛 focuses
on the common projection patterns across different types of KPIs.
𝑊𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 tries to learn the personalized projection patterns for in-
dividual KPIs through a very limited number of samples. To achieve
this, we design the uTune mechanism for unsupervised few-shot
fine-tuning. Assisted by the tailored two-stage gradient update
mechanism of uTune, the personalized projection matrices are ca-
pable of rapidly adapting to the KPIs, while effectively preventing
over-fitting during the fine-tuning process. Our model improves
the F1-score of anomaly detection by considerable margins. The de-
tailed evaluation also confirms that our model can quickly achieve
a high F1-score with only 1/8 fine-tuning samples compared with
the other existing methods.

Our contributions are summarized as follows:
• To the best of our knowledge, KAD-Disformer we proposed is
the first pre-trained time series-based KPI anomaly detection
model. Through careful selection of the model structure and op-
timization techniques, we significantly enhance the effectiveness
and efficiency (i.e., initialization time) of the anomaly detection
algorithm.
• In KAD-Disformer , we disentangle the projection matrices in
Transformer into common projection and personalized projec-
tion, respectively, to effectively trade-off between maintaining
the model capacity and quick adaption to an incoming KPI simul-
taneously. The personalized projection is updated in our uTune
mechanism to quickly fit to fine-tuning samples with little risk
of over-fitting.
• In KAD-Disformer , we design the adapter layers and denoising
reconstruction mechanism to improve the detection accuracy.
• We conduct comprehensive evaluation not only to show the
overall performance but also to measure the contributions of
each part of KAD-Disformer for overall performance (Section 5).
• We have deployed KAD-Disformer to a large-scale real-world
online service system, helping them maintain high-quality ser-
vice for months. The codes of this paper is released at https:
//github.com/NetManAIOps/KAD-Disformer.

2 Related Work
Recent advancements in KPI anomaly detection have led to the
development of numerous methodologies, broadly classified into
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supervised, unsupervised, and semi-supervised approaches [6, 11,
17, 18, 28, 33, 34, 40, 41].

Supervised methods, like Opprentice [19], leverage KPI patterns
and labels akin to binary classifiers, incorporating techniques such
as random forests [1]. Despite their effectiveness in various fields,
the scarcity of high-quality labels limits their applicability in real-
world KPI anomaly detection [12].

Unsupervised methods, evolving from statistical models like
ARIMA [22] and Holt-Winters [2], to more sophisticated deep-
learning-based approaches [3, 7, 11, 18, 28, 29, 33, 34, 38], have
shown significant improvements. These methods, especially those
utilizing Transformer architectures [29, 34], excel by learning from
normal patterns to identify anomalies.

Though deep-learning-based unsupervisedmethods’ performance
is superior to the traditional methods, the overhead brought by re-
training on large-scale different KPIs makes them infeasible in
large-scale online service systems [27]. Therefore, several transfer-
able methods have been proposed these days. These methods can
learn from existing large-scale KPI data and efficiently transfer the
model to fit an incoming KPI [40, 41]. For example, ATAD [41], a
cluster-based semi-supervised method, extracts the features from
KPIs with the hand-crafted rules and groups the historical KPIs.
When a new KPI comes, ATAD will assign this KPI to a group and
then ask for partial labels to fine-tune the classifier. However, the
performance of ATAD is unstable and highly related to the clus-
tering algorithm and the quality of labels. All these transferable
methods rely on extra information such as clustering to guarantee
the detection performance.

3 Preliminaries
3.1 KPI Anomaly Detection
Since time series data in online service systems are largely affected
by service schedules or user behaviors, most of them have shown
the property of seasonality [15]. Time series collected from real-
world production environments inevitably have noises. Therefore,
the normal patterns of seasonal time series have two parts: 1) normal
seasonal patterns with local variations, and 2) noises with some
kind of distribution [40]. For univariate time series, people usually
regard the data points that do not follow the normal patterns as
anomaly points [40] (e.g., spikes or dips).

(a) seasonal (b) stable (c) unstable

Figure 1: Examples of time series from a global Internet com-
pany. The red points mark the anomalies.

For the sake of brevity, we use the notation similar to [14]. Given
a time series data 𝑋 = [𝑥0, 𝑥1, 𝑥2, · · · , 𝑥𝑡 ] and label series 𝑌 =

[𝑦0, 𝑦1, 𝑦2, · · · , 𝑦𝑡 ], where 𝑥𝑖 ∈ R, 𝑦𝑖 ∈ {0, 1}, 𝑡 ∈ N. 𝑋 denotes the
whole time series data array, and 𝑥𝑖 denotes the metric value at
time 𝑖 . 𝑌 denotes the labels of time series 𝑋 . 𝑦𝑖 = 0 indicates that

data point at 𝑖 is normal and 𝑦𝑖 = 1 indicates the data point at 𝑖
is an anomaly. Besides, 𝑋𝑖, 𝑗 = [𝑥𝑖 , 𝑥𝑖+1, · · · , 𝑥 𝑗−1, 𝑥 𝑗 ] indicates a
window of 𝑋 from time 𝑖 to 𝑗 .

With the above notations, we define the time series anomaly
detection as follows:

Given a time series 𝑋 = [𝑥0, 𝑥1, 𝑥2, · · · , 𝑥𝑡 ], the goal of the KPI
anomaly detection is to predict the corresponding label series 𝑌 =

[𝑦0, 𝑦1, 𝑦2, · · · , 𝑦𝑡 ]. When predicting𝑦𝑖 , only𝑋0,𝑖 = [𝑥0, · · · , 𝑥𝑖−1, 𝑥𝑖 ]
can be used, since the sub-sequence after time 𝑖 is unknown at time 𝑖 .

3.2 Few-Shot in KAD
In the KAD domain, there is currently no clear definition of “few-
shot”. In real-world environments, KPI data is continuously gen-
erated in chronological order. Therefore, when integrating new
KPIs and deploying KADmodels, there is an initialization time. The
time waiting for new KPI data to be generated (i.e., collecting data
for fine-tuning) occupies the majority of this initialization time.
This period usually spans several dozen or even hundreds of hours,
because this time is directly aligned with real-world time, and the
newly integrated KPIs do not have historical data [37].

Based on the above observation, we propose that the few-shot
capability of KAD can be measured from two perspectives. First,
whether KAD can achieve better anomaly detection performance
with an equal amount of fine-tuning data. Second, whether less fine-
tuning data is needed to achieve competitive anomaly detection
performance. Both perspectives imply that less fine-tuning data can
be collected to achieve satisfactory KAD performance, allowing for
faster model deployment and improved efficiency.

4 Methodology
In this section, we first give a brief overview of KAD-Disformer
from the aspects of architecture and workflow. Then we give de-
tailed introductions to the modules of Disentangled Projection
Matrices (denoted as DPM), uTune, and Denoising Reconstruction
respectively. The design of Transformer is introduced together with
DPM and the design of various adapters such as Series Adapter and
Encoder Adapter is introduced together with uTune.

4.1 KAD-Disformer Model Overview
KAD-Disformer follows an encoder-decoder architecture and the
overall architecture is shown in Figure 2. Transformer [31] can ef-
fectively capture the time dependency like RNN-based models but is
more parallelizable. Transformer-based models have excellent gen-
eralizability, and a well-trained model can be effectively transferred
to many other datasets and tasks through fine-tuning [24]. Inspired
by these advantages, we exploit the Transformer framework as a
base to tackle universal anomaly detection tasks.

The encoder-decoder architecture is widely used in KPI anomaly
detection area [2, 3, 18, 28, 33, 34, 40]. A popular hypothesis of
unsupervised encoder-decoder models for anomaly detection was
proposed in [33], i.e., given training data, the model can learn nor-
mal patterns through dimensionality reduction. No label is needed
in this process, and all the knowledge is learned from the raw data
automatically.
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Figure 2: The overall architecture of KAD-Disformer.

4.2 Workflow of KAD-Disformer
Initially, we need to perform a data preprocessing on the raw
KPI data for our model, KAD-Disformer . In contrast to existing
methods [3, 11, 18, 33], our approach involves two sliding win-
dows for the raw KPI data embedding. For each KPI input vector
𝑋𝑟𝑎𝑤 = [𝑥0, 𝑥1, 𝑥2, · · · , 𝑥𝑁 ], we apply two sliding windows to con-
vert the input vector to a matrix.𝑊𝑥 acts as a context window with
a stride of 1, with its purpose being the aggregation of local data
information. On the other hand,𝑊ℎ serves as a historical window,
and its stride often bears some form of intrinsic significance, such as
the KPI’s period (denoted as 𝑝). The stride’s value for this historical
window can be decided by the users, based on their domain-specific
knowledge, with the default stride being the KPI period as calcu-
lated by the Fast Fourier Transform (FFT) [23]. The primary goal
of this historical window is to effectively recognize and retain the
long-term dependencies inherent in the time series data.

The followingworkflow ofKAD-Disformer consists of pre-training,
fine-tuning, and inference. During the pre-training phase, we ran-
domly initialize the whole parameters of KAD-Disformer , and each
iteration updates all the parameters in the model. The detailed
procedure is indicated in Appendix B.

As for fine-tuning, we design a uTune mechanism. The detail of
uTune is in Section 4.4. uTunemechanism follows the adapter-based
fine-tuning paradigm [10] and only updates the partial parameters
of KAD-Disformer .

4.3 Disentangled Projection Matrices
The core component of the Transformer architecture is the At-
tention mechanism. Specifically, the original multi-head attention
approach, as described in [31], employs three learnable linear pro-
jections𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 to map the raw data 𝑋 to𝑄 (query), 𝐾 (key),
and𝑉 (value) matrices into distinct higher-dimensional spaces. This
transformation is outlined in Equation (1).

𝑄 = 𝑋𝑊𝑄 , 𝐾 = 𝑋𝑊𝐾 ,𝑉 = 𝑋𝑊𝑉 (1)

In the context of KAD-Disformer , we propose a novel approach
aimed at decoupling the training of the base model from that of
the task-specific model. To achieve this, we disentangle the linear
projection𝑊 into two separate components: a generalization pro-
jection, denoted𝑊𝑐𝑜𝑚𝑚𝑜𝑛 , and a personalized projection,𝑊𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 .

𝑊𝑐𝑜𝑚𝑚𝑜𝑛 is only updated in the pre-training phase, delivering the
acquired knowledge from the pre-training stage to the fine-tuning
stage. Conversely, 𝑊𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 is iteratively updated during both
the pre-training and fine-tuning phases. The primary function of
𝑊𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 is to assimilate knowledge specific to a particular KPI,
thereby enhancing the “learning to learn” performance on the fine-
tuning data. We delve into further detail regarding the updating of
𝑊𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 in Section 5.5. Our method, referred to as disentangled
dot-product attention, is formalized in Equation (2).

Attention(𝑄,𝐾,𝑉 ) = softmax(𝑄𝐾
𝑇

√
𝑤
)𝑉

Where 𝑄 = 𝑋 (𝑊𝑄
𝑐𝑜𝑚𝑚𝑜𝑛 +𝑊

𝑄

𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙
)

𝐾 = 𝑋 (𝑊𝐾
𝑐𝑜𝑚𝑚𝑜𝑛 +𝑊𝐾

𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙
)

𝑉 = 𝑋 (𝑊𝑉
𝑐𝑜𝑚𝑚𝑜𝑛 +𝑊𝑉

𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙
)

(2)

where𝑤 is the size of our sliding window.
Why disentangle? The main advantage of disentangling projec-

tion matrices in universal AD is alleviating the overfitting problem
in the fine-tuning procedure and keeping the knowledge learned
from the pre-trained data for fine-tuning. If all the projection ma-
trices are updated with fine-tuning data without disentangling, the
projection matrices are easily overfitted. However, the small-scale
data usually can not reflect all the patterns of the incoming KPIs. In
disentangled projection matrices,𝑊𝑐𝑜𝑚𝑚𝑜𝑛 still stores the knowl-
edge from the pre-training data after fine-tuning, so the attention
is not easily overturned from the original projection matrices. Be-
sides, our uTune can also alleviate the overfitting problem, which
is discussed in Section 4.4.

Why projection matrices? The primary rationale behind our de-
sign choice to disentangle projection matrices lies in the fact that
projection matrices constitute the core structure within a Trans-
former. Hence, these matrices are highly information-dense and
important within a Transformer.𝑊𝑐𝑜𝑚𝑚𝑜𝑛 primarily takes respon-
sibility for employing the knowledge obtained from pre-training to
compute attention, whereas𝑊𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 ’s role is to make fine adjust-
ments based on the characteristics of the current KPI. This approach
thus achieves a balance between retaining pre-trained knowledge
and utilizing the intrinsic feature of the KPI.
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4.4 uTune
The model adaptation for unseen incoming KPI data is a great chal-
lenge in the universal AD area. To solve this problem, we propose
a two-stage adapter-based fine-tuning mechanism called uTune.
To better illustrate the functioning of uTune, we center our discus-
sion around two key questions: “What to update?" and “How to
update?".

4.4.1 What to update? 𝑊𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 and adapters are the compo-
nents updated during the uTune. The function of𝑊𝑝𝑒𝑟𝑠𝑜𝑛 has been
thoroughly elucidated in Section 4.3. Our focus now shifts to the
adapters within KAD-Disformer . The main purpose of the Adapter
module is to maximize the utilization of the model’s parameters
from pre-training phase when handling unseen KPI data. As illus-
trated in Figure 2, there are two adapters: Series Adapter and
Encoder Adapter.

Series Adapter layers take the raw fine-tuning data as input to
learn a time series data adapter, making the model fit the incoming
new time series data. To better adapt to the data and improve
the anomaly detection performance, we incorporate a time series
decomposition module [32] into the Series Adapter to eliminate the
noises and produce more clean time series data. We decompose the
time series into two parts: the seasonal part and the trend part. We
apply the average polling window to compute the seasonal part of
the time series and keep the residual as the trend part shown in
Equation (3).

𝑋seasonal = AvgPool(𝑋 ), 𝑋trend = 𝑋 − 𝑋seasonal (3)

Average pooling can efficiently be executed in the neural network
with little overhead. And then, the downstream modules of the
time series decomposition are two feed-forward networks fed by
the seasonal part and trend part, respectively. The feed-forward
networks provide the learnable parameters for fine-tuning the time
series. After being transferred by the feed-forward networks, we
add the seasonal and trend part together and send the output to
downstream.

Encoder Adapters are located in the encoder module (Figure 2).
These layers are simple and efficient fully connected layers designed
to better perform deep-level adaptation when the Encoder has
multiple layers. In practice, the Encoder is often a stack of multiple
layers, and the Series Adapter only acts on the input stage. As
the number of Encoder layers increases, the effectiveness of the
Series Adapter diminishes, so we introduce the Encoder Adapter to
facilitate the effective utilization of the common knowledge in the
deeper layers.

4.4.2 How to update? Our design is inspired by the concept of
First-Order Model-Agnostic Meta-Learning (FOMAML) [8], we do
not directly apply it but rather optimized it according to the charac-
teristics of our task. In each iteration, we sample two mini-batches
of data of the same size. Batch 𝑥1 is from the unseen KPI 𝑋 pre-
pared for fine-tuning, and batch 𝑥2 is from the existing pre-training
datasets 𝐷𝑆 . Given a loss function 𝐿, KAD-Disformer makes a feed-
forward with 𝑥1 and evaluates the loss 𝐿1 in the first stage. And
then KAD-Disformer makes the backpropagation to update the pa-
rameters of𝑊𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 and the aforementioned adapter layers (Line
5 to Line 6 in Algorithm 2). The first stage focuses on the unseen
KPI and pushes the pre-trained base model to learn the personal

information from the unseen KPI. We call the first stage the per-
sonalization stage.

In the second stage, we use 𝑥2 to make feed-forward and evaluate
the loss 𝐿2. At this time, we don’t use 𝐿2 to make the backpropaga-
tion but compute a final loss as Equation (4).

𝐿 = 𝛼𝐿1 + (1 − 𝛼)𝐿2 (4)

where 𝛼 ∈ [0, 1] is a hyper-parameter balancing the weights of
performance on new data (𝐿1) and existing data (𝐿2). According to
our experience, we set 𝛼 to 0.5, and the sensitivity analysis of 𝛼
is in Appendix C. Then, we use 𝐿 to make backpropagation. The
second stage focuses on the overall data’s performance and pre-
vents𝑊𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 and adapter layers from overfitting the unseen KPI,
making the model learn from new and existing data simultaneously.
We call the second stage generalization stage. The pseudo code of
the uTune can be found in Appendix B. The two-stage update can
effectively reduce the converging time and simultaneously achieve
high performance.

The personalization stage makes KAD-Disformer fit the unseen
KPI data fastly while guaranteeing performance. Recall that the
fine-tuning procedure is easily overfitted due to the small scale
of fine-tuning data, which can lead to performance degradation
after deployment. The generalization stage utilizes the knowledge
from both new data and existing data to make the backpropagation
in order to alleviate the overfitting problem. Moreover, different
KPI data may share some common knowledge, i.e.,𝑊𝑐𝑜𝑚𝑚𝑜𝑛 . Thus,
even if the small scale of unseen KPI data can not reflect the full
features, this shared common knowledge can help the model better
understand the features of unseen KPIs.

The main difference between our method and FOMAML is that
we do not update the initial parameters 𝜃 uniformly after calculating
the gradients of all tasks. Instead, we directly update the parameters
to obtain 𝜃∗ after computing 𝐿1, and then update again based on
𝜃∗. Our design aims to better and faster adapt to unseen KPIs.
The original FOMAML typically deals with multiple tasks, and
its concept is to obtain more common knowledge from multiple
few-shot tasks to achieve few-shot learning. In our scenario, each
fine-tuning is actually for a specific unseen KPI, i.e., the number
of tasks is 1. Therefore, our focus is on quickly adapting to the
current KPI. We directly update 𝜃 using the gradient of 𝐿1 to obtain
𝜃∗, and then continue updating based on 𝜃∗ at the end to prevent
overfitting to the small amount of unseen KPI data and incorporate
historical data.

fθ

Personal Projection Matrix Adaptor Layer

New KPI data x1

L1
L2+

f*θ Existing KPI data x2

Evaluate

EvaluateUpdate

Update Update

 Pre-trained KAD-Disformer

L

Figure 3: Demonstration of how the uTune works.
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4.5 Denoising Reconstruction
The core idea of denoising reconstruction is to reconstruct a de-
noised time series rather than the original one. In the KAD task, a de-
noised reconstruction is more effective in detecting anomalies. The
reason is that unsupervisedmethods use the error between the origi-
nal data and themodel’s output to detect the anomaly [18, 28, 33, 34].
The main goal of the model is to learn the normal time series pat-
terns from the original data. However, large-scale training data
inevitably have some anomalies and noises in the real-world en-
vironment. Therefore, it is impossible for the model to learn from
the absolute normal data. To tackle this problem, we design the
denoising reconstruction mechanism to reconstruct a denoised time
series to better distinguish the normal data and anomalies.

In the denoising reconstruction mechanism, there are two data
flows. The first one is the context data flow, which captures the
context information of the data point. The stride of the context
sliding window is 1. The second one is the history data flow. The
history data flow can capture the long-term dependency of the time
series. The stride of the historical window can be the period of the
time series or a value with physical meaning determined by the
user. The goal of the historical window is to provide the denoising
decoder with the historical information of the time series.

The input of the context decoder comes totally from the context
encoder without historical information. We hope the output of the
context decoder is as close as possible to the original time series.
The input of the denoising decoder consists of two parts: one part
is from the history encoder, and the other part is from the context
encoder. The matrices 𝐾 and𝑉 come from the history encoder, and
the matrix 𝑄 comes from the context encoder. The goal is to use
the same context query matrix 𝑄 to query the history information
and make history knowledge help reconstruct a denoised KPI.

The loss of denoising reconstruction has two parts from the
denoising decoder and context decoder, respectively. 𝑋1 denotes
the output of the context decoder, and 𝑋2 denotes the output of the
denoising decoder. The metric used to evaluate the reconstruction
performance is Mean Squared Error (MSE), which is widely used in
time series anomaly detection [11, 29, 34].

𝐿 = |𝐿context | + |𝐿denoised | (5)

𝐿context = MSE(𝑋,𝑋1), 𝐿denoised = MSE(𝑋,𝑋2) (6)

The final output for calculating anomaly scores is the average of
𝑋1 and 𝑋2.

5 Experiments
In this section, we evaluateKAD-Disformer using various KPI anom-
aly detection datasets collected from the real-world environment
to answer the following questions.
• RQ1: What is the effectiveness of KAD-Disformer?
• RQ2: Can KAD-Disformer quickly achieve a desirable perfor-
mance after being tuned with a small number of samples?
• RQ3: Is the design of disentangled projection helpful to improve
the effectiveness of KAD-Disformer?
• RQ4: Is the uTune mechanism helpful to improve the effective-
ness of KAD-Disformer?
As for the baseline models, we select one classic statistic method

and five deep learning-based models, two of which employ their

own tailored fine-tuning techniques. Firstly, the ARIMA model
[22] is a conventional statistical anomaly detection approach that
enjoys widespread industrial use. Within the deep learning spec-
trum, we choose LSTM-NDT (RNN-based) [11] and Donut (VAE-
based) [33], both of which have achieved significant popularity and
extensive application in various industrial scenarios. AnomalyTrans
(Transformer-based) [34] represents the state-of-the-art unsuper-
vised methods in the KAD field. Lastly, we select ATAD [41] and
AnoTransfer [40], two exemplary models of transfer learning-based
anomaly detection, which exhibit capability in addressing universal
AD challenges. AnoTransfer is also the state-of-the-art universal
AD model.

5.1 Dataset and Evaluation Metric
We conduct experiments on four datasets collected from different
real-world online service systems. The overall dataset statistics can
be found in Appendix D. Dataset A is a public dataset from the
2018 International Artificial Intelligence for IT Operations (AIOps)
algorithm competition [16]. Dataset B is Yahoo Webscope collected
from Yahoo online service systems [12]. Dataset C is NAB, a bench-
mark for evaluating time-series anomaly detection algorithms in
real-time applications [13]. DatasetD is collected from a real-world
cloud service systems serving millions of users. Due to the space
limitation, more information about the datasets can be found in
Appendix D.

Precision, recall, and F1-score (denoted as 𝑃 , 𝑅, and 𝐹1) are com-
mon KPI anomaly detection metrics, but their traditional forms
are not ideal for interval anomalies in KAD. Improved metrics
have emerged to address this gap and been widely used in KAD
area [14, 18, 28, 33, 40] (notated as 𝑃∗, 𝑅∗ and 𝐹1∗). In this evalua-
tion approach, a labeled anomalous segment is deemed correctly
detected if any part is identified, marking it as a true positive or, if
overlooked, a false negative. To assess methods holistically, we use
both traditional and enhanced metrics, alongside the Area Under
the Curve (AUC). Efficiency is gauged by measuring each model’s
total processing time, from pre-training to inference.

5.2 Overall Performance (RQ1)
To evaluate the overall performance of KAD-Disformer , we consec-
utively choose one out of the four datasets as the target dataset for
fine-tuning and testing and the rest three datasets as the source
dataset for pre-training. For the selected target dataset, we split it
into two parts: the training part (50%) and the test part (50%). As the
sufficient data, shown in Table 2, 50% is enough for convergence
of each model. For the transferable methods (ATAD, AnoTransfer,
and KAD-Disformer), we train the model from the source datasets
and tune the model on the training part of target dataset and eval-
uate the model on the test part of target dataset. To test whether
KAD-Disformer can keep high performance with fewer fine-tuning
samples, we use the first 10%, 50% of training part of target dataset
to tune KAD-Disformer and test KAD-Disformer on the test part
of target dataset. For the non-transferable methods, we train the
models on source dataset and training part of target dataset and
test the models on test part of target dataset. It is noteworthy that
we also train the non-transferable methods from scratch using the
training part of dataset, the results are the same and are omitted for
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Table 1: Overall performance of comparativemethods.B, C,D → A indicates that datasetA is selected as the fine-tuning dataset
andB, C,D are selected as the pre-training datasets, and so forth.KAD-Disformer-10%,KAD-Disformer-50% andKAD-Disformer-
100% indicate that we use the first 10%, 50% and 100% of training part of the fine-tuning dataset to tuneKAD-Disformer. w/o DPM
indicates KAD-Disformer without Disentangled Projection Matrices. w/o Adap indicates without Adapter Layers. w/o Denoise
indicates without Denoising Reconstruction module. A method with * means it has own tailored fine-tuning mechanism.

Methods B, C,D → A A, C,D → B
𝑃∗ 𝑅∗ 𝐹1∗ 𝐹1 𝐴𝑈𝐶 Time(s) 𝑃∗ 𝑅∗ 𝐹1∗ 𝐹1 𝐴𝑈𝐶 Time(s)

ARIMA 0.623 0.482 0.543 0.214 0.502 952 0.301 0.175 0.237 0.199 0.527 812
LSTM-NDT 0.798 0.598 0.683 0.507 0.698 29263 0.643 0.507 0.516 0.498 0.679 27034
Donut 0.779 0.706 0.740 0.602 0.751 15241 0.486 0.737 0.618 0.545 0.715 14024
AnomalyTrans 0.813 0.774 0.792 0.649 0.769 20173 0.704 0.685 0.695 0.600 0.746 18115
ATAD∗ 0.711 0.770 0.735 0.605 0.736 18743 0.792 0.362 0.479 0.301 0.583 28812
AnoTransfer∗ 0.820 0.733 0.773 0.619 0.760 3921 0.738 0.517 0.623 0.595 0.729 6121

KAD-Disformer∗-10%(w/o DPM) 0.617 0.560 0.587 0.521 0.696 3199 0.412 0.546 0.470 0.324 0.573 5468
KAD-Disformer∗ (w/o DPM) 0.801 0.705 0.748 0.640 0.763 3586 0.597 0.757 0.656 0.585 0.723 5632
KAD-Disformer∗ (w/o Adap) 0.691 0.634 0.661 0.612 0.697 3386 0.566 0.641 0.601 0.580 0.721 5401
KAD-Disformer∗ (w/o Denoise) 0.781 0.662 0.692 0.607 0.737 3582 0.688 0.626 0.656 0.582 0.719 5592
KAD-Disformer∗-10% 0.774 0.814 0.793 0.684 0.790 3351 0.593 0.501 0.542 0.517 0.690 5786
KAD-Disformer∗-50% 0.845 0.935 0.840 0.704 0.794 3660 0.727 0.658 0.691 0.566 0.724 5897
KAD-Disformer∗-100% 0.859 0.890 0.874 0.717 0.819 3893 0.770 0.668 0.716 0.623 0.758 5988

Methods A,B,D → C A,B, C → D
𝑃∗ 𝑅∗ 𝐹1∗ 𝐹1 𝐴𝑈𝐶 Time(s) 𝑃∗ 𝑅∗ 𝐹1∗ 𝐹1 𝐴𝑈𝐶 Time(s)

ARIMA 0.630 0.613 0.607 0.236 0.519 736 0.605 0.552 0.579 0.244 0.561 980
LSTM-NDT 0.656 0.727 0.662 0.583 0.717 26566 0.674 0.697 0.684 0.601 0.741 30998
Donut 0.763 0.716 0.762 0.624 0.752 14669 0.718 0.736 0.726 0.640 0.774 15428
AnomalyTrans 0.794 0.927 0.853 0.674 0.798 17769 0.909 0.813 0.857 0.685 0.827 21540
ATAD∗ 0.862 0.767 0.807 0.572 0.715 27903 0.875 0.744 0.82 0.646 0.764 15044
AnoTransfer∗ 0.852 0.827 0.833 0.592 0.737 6405 0.839 0.798 0.817 0.663 0.774 3175

KAD-Disformer∗-10%(w/o DPM) 0.595 0.639 0.616 0.422 0.639 5612 0.636 0.561 0.596 0.490 0.670 2843
KAD-Disformer∗ (w/o DPM) 0.916 0.641 0.754 0.669 0.777 6208 0.785 0.755 0.769 0.664 0.719 3074
KAD-Disformer∗ (w/o Adap) 0.699 0.678 0.688 0.591 0.736 5672 0.532 0.707 0.607 0.573 0.720 3002
KAD-Disformer∗ (w/o Denoise) 0.782 0.710 0.745 0.609 0.742 5983 0.848 0.821 0.834 0.684 0.802 2977
KAD-Disformer∗-10% 0.809 0.861 0.834 0.601 0.737 5716 0.821 0.858 0.839 0.667 0.766 2914
KAD-Disformer∗-50% 0.814 0.929 0.868 0.646 0.762 6021 0.854 0.904 0.878 0.681 0.793 3074
KAD-Disformer∗-100% 0.944 0.855 0.897 0.719 0.813 6316 0.856 0.916 0.884 0.724 0.831 3114

space limitation. Since ATAD is a semi-supervised method, we give
partial labels of each time series as its requirements to reproduce
the performance in its paper. The results of the experiments are
shown in Table 1.

From Table 1, we observe that in all the four target datasets,
KAD-Disformer achieves the best F1-score and AUC over all com-
parative methods, including the classic statistic methods and deep
learning-based methods. KAD-Disformer also achieves the least
total time consumption (including pre-training, fine-tuning, and
inference) among deep learning-based methods. The improvements
in detection accuracy mainly come from two folds. The first is
the architecture of the Transformer. This is confirmed by the fact
that the Transformer-based methods such as AnomalyTrans and
KAD-Disformer achieve an improved detection accuracy compared
with RNN-based (LSTM-NDT) and VAE-based (Donut) models. Sec-
ond, denoising reconstruction alleviates the negative influence of
noises and anomalies in the training data. The contribution of the
denoising reconstruction is analyzed in Appendix F.2. Remarkably,
with only 10% fine-tuning data, KAD-Disformer achieves a com-
parable, even better performance than other methods. This is the

contribution of our uTune mechanism. The further analysis of
uTune is in Section 5.5.

There is no doubt that the classic statistic method ARIMA is the
most efficient method. However, the accuracy is the lowest. LSTM-
NDT is almost the worst method with respect to time efficiency
due to its sequential module LSTM. Besides, due to the existence of
early-stop mechanism, the convergence speed of LSTM also limits
its efficiency. The higher the convergence speed is, the less time
it spends. It is surprising that Donut is quite efficient and spends
comparative, even less time compared with the transferable ATAD.
This is because of the simple architecture of the model and the
noteworthy converging speed of VAE. Another important obser-
vation is that AnomalyTrans and ATAD, consume a lot of time on
each dataset. For AnomalyTrans, the high-level time consumption
is caused by the computation-intensive Transformer-based archi-
tecture. For ATAD, the high-level time consumption is caused by
the random forest architecture.
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Figure 4: The performance of KAD-Disformer, AnoTransfer
and ATAD tuned with different percentages of data.

5.3 Few-Shot Learning Ability (RQ2)
Due to our novel disentangled projection matrices and uTune mech-
anism, KAD-Disformer can be well-tuned with a handful of samples,
which indicates KAD-Disformer can save a lot of time for collecting
fine-tuning data. To evaluate the abovementioned properties of
KAD-Disformer , we evaluate the accuracy of our model varies with
different numbers of fine-tuning samples. The results are shown
in Figure 4. We gradually give more fine-tuning samples (add 2h
data every time) to the model and record the performance metrics.
Here we use B, C,D → A scenario in this experiment and take
ATAD and AnoTransfer as the baseline models. There are two rea-
sons why we select dataset A as the fine-tuning dataset in this
experiment. The first reason is that dataset A is a public dataset,
which is beneficial for reproducing our results. The second reason
is that dataset A has the largest number of data points and longest
mean length of the curves among three public datasets A, B and
C, which can cover a wide range of fine-tuning data’s size.

From the results, we find that KAD-Disformer consistently out-
performs the other two comparative methods given the same quan-
tity of data, indicating the high effectiveness of KAD-Disformer in
quickly adapting from source to target. Another observation we can
get from Figure 4 is that AnoTransfer achieves better performance
than ATAD, which is consistent with the result of [40]. More im-
portantly, we find that the performance of KAD-Disformer grows
much faster with the growth of fine-tuning data. With only 1/8

of fine-tuning samples , KAD-Disformer achieves competitive per-
formance with AnoTransfer saving about 25 hours. This confirms
the fact that our KAD-Disformer has the ability of few-shot
learning. KAD-Disformer quickly adapts to an extremely small
number of new incoming fine-tuning samples and keeps high-level
generalization due to the “learn to learn” mechanism. As a result,
KAD-Disformer can significantly reduce the time of collecting suf-
ficient fine-tuning data and enables a fast deployment in the real-
world environment.

5.4 Ablation Study of Disentangled Projection
Matrices (RQ3)

We conduct an ablation study to test the effectiveness of disen-
tangled projection matrices (denoted as DPM). We compare the
performance with and without DPM (replace with the original self-
attention) under similar experiment settings to Section 5.2. Without
DPM, all the projection matrices are updated during fine-tuning.

From Table 1, we observe that the model with DPM outperforms
the one without DPM. Remarkably, given 10% fine-tuning data,
the model without DPM suffers severe performance degradation.
We conclude that the improvement brought by DPM comes from
three parts. The first is that DPM can save knowledge learned from
pre-training in𝑊𝑐𝑜𝑚𝑚𝑜𝑛 and keep them in the fine-tuning stage.
Without DPM, all the parameters of projection matrices are updated
during fine-tuning, which may lose some common knowledge and
lead to performance degradation. The second part is more learn-
able parameters during fine-tuning for KAD-Disformer . Projecting
matrices are the most important parameters of Transformer. By
disentangling the projection matrices, we get double learnable pa-
rameters. Generally speaking, more learnable parameters give the
model more potential to achieve better performance. The third part
is that DPM alleviates the overfitting problem during fine-tuning
thanks to the uTune mechanism illustrated in Section 4.4.

5.5 Contribution of uTune (RQ4)
To evaluate the contribution of our uTune mechanism, we conduct
an ablation study under a similar setting to Section 5.3. We apply
the traditional fine-tuning technique and our uTune to the same
pre-trained KAD-Disformer model, respectively, and compare the
performance tuned with different quantities of fine-tuning data.
The result is shown in Figure 5.

From Figure 5, we find that without uTune, the performance
suffers apparent degradation when we use small-scale (10%) fine-
tuning data. Given 5h of fine-tuning data, the F1-score decreases
nearly 30% compared with the model with uTune. Besides, even
given full fine-tuning data, the performance of uTune is still 14%
higher than the traditional fine-tuning technique.

Visualization. To further understand what uTune does, we col-
lect the outputs of KAD-Disformer’s encoder and compare the dif-
ferences between the outputs after pre-training and fine-tuning.
We aggregate dataset A, B, C as the pre-train dataset and regard
datasetD as the fine-tuning dataset. We randomly sample 300 data
points from the pre-train data and 80 from the fine-tuning data.
Then we feed them to the models before and after the uTune. We
collect the outputs of the encoder and apply t-SNE [30] to reduce
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Figure 5: The performance comparison of KAD-Disformer
with and without uTune mechanism given different percent-
ages of fine-tuning data.
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Figure 6: The distribution of the encoder outputs before and
after uTune visualized by t-SNE.

the dimension of the concatenated outputs and visualize them in a
2D-scatter figure shown as Figure 6.

The first observation we got from Figure 6 is that the distribution
of points of fine-tuning data (red) in Figure 6a is distinct from the
distribution of the pre-train data (green). It is reasonable that the
pre-trained model, i.e., before uTune, has never seen the unseen
KPIs from the fine-tuning data, the encoder could not properly
encode these data to the proper position. However, after uTune,
the distributions of the data points from fine-tuning KPIs become

very similar to the distribution of pre-train data, which is shown in
Figure 6b. The result demonstrates that our uTune can effectively
adapt the distribution of the fine-tuning data to the pre-train data.
After the uTune, the decoders are familiar with the inputs, leading
to a satisfying performance.

6 Lessons Learned From Deployment
Deploying KAD-Disformer in a real-world cloud service system
serving millions of users and integrating Microsoft’s online KPI
data has offered significant insights [9, 35, 39]. We highlight key
takeaways:
Pre-trained KPI. Our experience has led us to conclude that a pre-
trained dataset should encompass a broad spectrum of KPI types.
This diversity ensures that the dataset’s coverage extends across
various KPIs, maintaining a balanced ratio in terms of the volume
of data per KPI type. Additionally, it is paramount that the dataset
spans an extensive period ranging from several days to multiple
months. Such a temporal breadth is crucial for fostering a robust
generalization capability during the pre-training phase.
Fine-tuning Phase. Our findings underscore the importance of
the data length provided for fine-tuning. Ideally, this data should
comprehensively cover an entire cycle to ensure that the fine-tuning
process is as effective as possible. We observed that when the fine-
tuning data exceeded the span of one cycle, there was a notable
enhancement in the system’s performance after fine-tuning.

7 Conclusion
Universal KPI anomaly detection is a crucial but challenging task
for large-scale online service systems with hundreds of millions of
KPIs. In this paper, we propose a disentangled transformer model
named KAD-Disformer to efficiently and effectively detect anom-
alies for an enormous number of KPIs. We novelly design the dis-
entangled projection matrices and uTune mechanism to help the
model quickly fit the incoming KPI with limited fine-tuning sam-
ples without the risk of over-fitting. Besides, the Denoising Re-
construction technique can alleviate the influence of noises and
make our KAD-Disformer more robust. We conduct experiments
on four different real-world datasets, and the results show that
KAD-Disformer outperforms the current state-of-the-art universal
anomaly detection model by 13% in F1-score and achieves com-
parable performance with only 1/8 of fine-tuning samples saving
about 25 hours. KAD-Disformer has been deployed in a real-world
online service system serving millions of people for months. Be-
sides, we are glad to share the source code of KAD-Disformer for
researchers and engineers in this area. Our code is available at
https://github.com/NetManAIOps/KAD-Disformer.
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A Experiment Environment
For comparing the models’ efficiency, all the experiments are con-
ducted on a single node server. The CPU is an Intel(R) Xeon(R) Gold
5218R with 128G memory, the GPUs are four NVIDIA GeForce RTX
3090, which is a common setup for Internet companies.

B Pseudo code for workflows
The workflow of the fine-tuning (uTune) is shown in Algorithm 2
The workflow of the pre-training is shown in Algorithm 1

C Sensitivity analysis of Hyper-Parameters
We use the setting of B, C,D → A to analyze the influence of
two hyper-parameters: 𝛼 in uTune and the number of the stacked
encoder and encoder layers 𝑁 in KAD-Disformer .

From the result, we find that when 𝛼 ∈ [0.2, 0.7], 𝑁 ≥ 3, the
performance of KAD-Disformer is stable and satisfying. Thus, in
our experiment, we choose 𝛼 = 0.5, 𝑁 = 3.

D Dataset Description
Dataset A comprises 29 time series from various Internet compa-
nies, labeled by domain experts. These series, representing metrics

Algorithm 1: Pre-train workflow
Input :𝐷𝑆 = {𝑋𝑠0 , 𝑋

𝑠
1 , 𝑋

𝑠
2 , · · · , 𝑋

𝑠
𝑁
}: KPI datasets for

pre-training
Input :𝜃 : all parameters of the model (including

disentangled projection matrices and adapter
layers)

Input : 𝑓𝜃 : initial model
Input :𝑙𝑟 : learning rate

1 Randomly initialize 𝜃
2 Preprocess each KPI in 𝐷𝑆
3 while not done do
4 Randomly sample a mini-batch 𝑥 from 𝐷𝑆

5 Evaluate loss 𝐿(𝑥 ; 𝑓𝜃 ) on 𝑥
6 Update 𝜃 ← 𝜃 − 𝑙𝑟 · 𝜕𝐿

𝜕𝜃

7 end
Output : 𝑓𝜃 : the pre-trained model

Algorithm 2: uTune
Input : 𝑓𝜃 : the pre-trained based model
Input :𝑋 : KPI data for fine-tuning
Input :𝐷𝑆 : KPI dataset for pre-training
Input :𝑤𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 : the parameters of personal projection

matrices
Input :𝑤𝑎𝑑𝑎𝑝 : the parameters of adapter layers
Input :𝛼 ∈ [0, 1]: hyper-parameter for meta loss
Input :𝑙𝑟 : learning rate

1 Preprocess KPI 𝑋
2 while not done do
3 Randomly sample a mini-batch 𝑥1 from 𝑋

4 Randomly sample a mini-batch 𝑥2 from 𝐷𝑆

5 Evaluate loss 𝐿1 = 𝐿(𝑥1, 𝑓𝜃 ) on 𝑥1
6 Update𝑤𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 ← 𝑤𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 − 𝑙𝑟 · 𝜕𝐿1

𝜕𝑤𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙
and

𝑤𝑎𝑑𝑎𝑝 ← 𝑤𝑎𝑑𝑎𝑝 − 𝑙𝑟 · 𝜕𝐿1
𝜕𝑤𝑎𝑑𝑎𝑝

to get an updated model
𝑓 ∗
𝜃

7 Evaluate loss 𝐿2 = 𝐿(𝑥2, 𝑓 ∗𝜃 ) on 𝑥2
8 Compute meta loss 𝐿 = 𝛼𝐿1 + (1 − 𝛼)𝐿2
9 Update𝑤𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 ← 𝑤𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 − 𝑙𝑟 · 𝜕𝐿

𝜕𝑤𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙
and

𝑤𝑎𝑑𝑎𝑝 ← 𝑤𝑎𝑑𝑎𝑝 − 𝑙𝑟 · 𝜕𝐿
𝜕𝑤𝑎𝑑𝑎𝑝

10 end
Output : 𝑓 ∗

𝜃
: the fine-tuned model

like response time and network latency, demonstrate the method’s
real-world performance.

Dataset B includes real-world and synthetic time series from
Yahoo’s online services, each tagged with various anomaly types.

Dataset C consists of sub-datasets from companies like Twitter
and AWS, containing time series of different lengths and metrics
such as CPU utilization and cost-per-click.

Dataset D features 67 time series from a cloud service system
in Microsoft, spanning three months with minute-level granularity,
labeled by experienced operators to reflect system health.
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Figure 7: The performance of KAD-Disformer with different
alpha.
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Figure 8: The performance of KAD-Disformer with different
numbers of encoder and decoder layers (N).

Table 2: The statistics of each dataset. A,B, C are all public
dataset and D is collected from a real-world web service
provider.

Dataset #Curves Mean length #Points %Anomaly
A (IOPS [16]) 29 204238 5922913 2.264%
B (Yahoo[12]) 367 1561 572966 0.683%
C (NAB [13]) 52 6565 341366 9.812%
D (Industry) 67 111094 7443327 0.922%

E Evaluation Metric
Improved anomaly detection metrics have recently been introduced
and applied to contemporary research [14, 26, 33]. Consider a la-
beled, continuous anomaly segment: we categorize the segment as
accurately detected if the algorithm identifies any anomaly within
that segment. Thus, every point within this anomalous segment is
designated as a true positive (TP). Conversely, if the model fails to
identify an anomaly, every point within the segment is designated a
false negative (FN). Points that lie outside these abnormal segments
are not adjusted.

F More Ablation Study
F.1 Ablation Study of Disentangled Projection

Matrices
The full version of the performance comparison between our ap-
proach with and without disentangled projection matrices (DPM)
is shown in Table 3.

F.2 Ablation Study of Adapter Layers and
Denoising Reconstruction Module

To verify the contributions of the adapter layers and denoising re-
construction module, we conduct an ablation study by removing the
adapter layers and denoising decoder respectively. The comparison
results are shown in Table 3.

The results show that the performance decreases after remov-
ing either adapter layers or denoising the reconstruction module.
Without adapter layers, the F1 decreases up to 32%, and without
denoising reconstruction, the F1 decreases up to 20%. However, the
reduction of time is marginal. Similar to DPM, the adapter layers
are tunable parameters of KAD-Disformer , which directly decides
the capacity of fine-tuning. The denoising reconstruction can al-
leviate the influence of noise and anomalies in the training data,
avoiding KAD-Disformer from learning abnormal patterns, which
is also confirmed by the previous work Donut [33].

Table 3: Performance Comparison with Different Configura-
tions

Methods B, C,D → A
𝑃∗ 𝑅∗ 𝐹1∗ 𝐹1 𝐴𝑈𝐶 Time(s)

w/o Adap 0.691 0.634 0.661 0.612 0.697 3386
w/o Denoise 0.781 0.662 0.692 0.607 0.737 3582
w/o DPM-10% 0.617 0.560 0.587 0.521 0.696 3199
w/o DPM 0.801 0.705 0.748 0.640 0.763 3586
KAD-Disformer-10% 0.774 0.814 0.793 0.684 0.790 3351
KAD-Disformer 0.859 0.890 0.874 0.717 0.819 3893

Methods A, C,D → B
𝑃∗ 𝑅∗ 𝐹1∗ 𝐹1 𝐴𝑈𝐶 Time(s)

w/o Adap 0.566 0.641 0.601 0.580 0.721 5401
w/o Denoise 0.688 0.626 0.656 0.582 0.719 5592
w/o DPM-10% 0.412 0.546 0.470 0.324 0.573 5468
w/o DPM 0.597 0.757 0.656 0.585 0.723 5632
KAD-Disformer-10% 0.593 0.501 0.542 0.517 0.690 5786
KAD-Disformer 0.770 0.668 0.716 0.623 0.758 5988

Methods A,B,D → C
𝑃∗ 𝑅∗ 𝐹1∗ 𝐹1 𝐴𝑈𝐶 Time(s)

w/o Adap 0.699 0.678 0.688 0.591 0.736 5672
w/o Denoise 0.782 0.710 0.745 0.609 0.742 5983
w/o DPM-10% 0.595 0.639 0.616 0.422 0.639 5612
w/o DPM 0.916 0.641 0.754 0.669 0.777 6208
KAD-Disformer-10% 0.809 0.861 0.834 0.601 0.737 5716
KAD-Disformer 0.944 0.855 0.897 0.719 0.813 6316

Methods A,B, C → D
𝑃∗ 𝑅∗ 𝐹1∗ 𝐹1 𝐴𝑈𝐶 Time(s)

w/o Adap 0.532 0.707 0.607 0.573 0.720 3002
w/o Denoise 0.848 0.821 0.834 0.684 0.802 2977
w/o DPM-10% 0.636 0.561 0.596 0.490 0.670 2843
w/o DPM 0.785 0.755 0.769 0.664 0.719 3074
KAD-Disformer-10% 0.821 0.858 0.839 0.667 0.766 2914
KAD-Disformer 0.856 0.916 0.884 0.724 0.831 3114
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