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ABSTRACT

In large-scale cloud service systems, monitoring metric data and
conducting anomaly detection is an important way to maintain
reliability and stability. However, great disparity exists between
academic approaches and industrial practice to anomaly detec-
tion. Industry predominantly uses simple, efficient methods due
to better interpretability and ease of implementation. In contrast,
academically favor deep-learning methods, despite their advanced
capabilities, face practical challenges in real-world applications.
To address these challenges, this paper introduces MonitorAssis-
tant, an end-to-end practical anomaly detection system via Large
Language Models.MonitorAssistant automates model configura-
tion recommendation achieving knowledge inheritance and alarm
interpretation with guidance-oriented anomaly reports, facilitat-
ing a more intuitive engineer-system interaction through natural
language. By deployingMonitorAssistant in Microsoft’s cloud
service system, we validate its efficacy and practicality, marking a
significant advancement in the field of practical anomaly detection
for large-scale cloud services.
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1 INTRODUCTION

In recent years, the large-scale cloud systems have diverse hardware
and software components, including containers, virtual machines,
switches, routers, etc. Ensuring the reliability of these systems,
particularly in a vast cloud environment, is crucial as it directly
affects user experience and overall service stability and reliability.

Monitoring metric data and conducting anomaly detection is
an essential way to maintain service stability and reliability [7, 18,
20, 31, 32, 34, 39, 43]. In the real-world environment, monitoring
systems often relies on relatively straightforward methods, most
notably threshold rules [11, 36] to detect anomalies. These methods
have proven to be efficient for monitoring systems, providing timely
alerts to operators without requiring complex computations [26].
However, the academic sphere has seen the exploration of more
advanced, deep-learning-based anomaly detection methods [46].
These methods have showcased impressive capabilities in theory
and in laboratory settings though they usually consume more com-
putation resources [18, 31, 39], but they do not become mainstream
anomaly detection methods in industry.

Why does the real-world industry frequently resort to the tradi-
tional method, such as threshold rules and statistical method? The
first reason is the practicality of implementing and maintaining
these algorithms in a dynamic, ever-changing industrial environ-
ment. Consider the retraining requirements of machine learning
models, which often need to be updated frequently to adapt to
evolving system dynamics. This process can be time-consuming and
requires a constant feed of labeled data, a resource that might not
be readily available in many real-world settings [11, 16, 17, 36, 41].

Furthermore, the complexity of these models can present ob-
stacles in comprehending and diagnosing their outputs. In many
industrial situations, interpretability is crucial: operators need to
understand why a particular anomaly was detected to decide on
the best course of action. The “black box” nature of many machine
learningmethods can therefore present a barrier to their adoption in
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these practical contexts. In addition, the complexity of implement-
ing and managing these advanced models and algorithms often
demands a higher level of expertise than is required for simpler
methods. This can lead to higher costs, encompassing not only
financial outlay but also time and human resources.

The interaction between engineers and anomaly detection mod-
els also influences the practicality. After deploying the model, en-
gineers collect extensive feedback based on the model’s detection
outcomes. For traditional methods, such as fixed thresholds, en-
gineers can easily adjust thresholds dynamically based on online
feedback to further optimize the anomaly detection model. How-
ever, when dealing with deep-learning-based models, it becomes
challenging for engineers to interact efficiently and specifically
with the anomaly detection models.

To address the aforementioned challenges, we propose Moni-
torAssistant, an end-to-end practical anomaly detection system
via Large Language Model (LLM), in particular GPT-4.MonitorAs-
sistant is designed to streamline the deployment and effectiveness
of both traditional and deep-learning-based models. Addressing
the complexities in model configuration recommendation,Moni-
torAssistant automates this process, significantly reducing the
burden on engineers. MonitorAssistant tackles the critical issue
of alarms interpretation by summarizing the historical knowledge
and supporting troubleshooting guide. Furthermore,MonitorAs-
sistant introduces a LLM-engineer-in-the-loop workflow, enabling
engineers to interact with anomaly detection models through nat-
ural language. This innovation simplifies feedback processes and
model optimization, ensuring quick adaptation to service changes
and reducing the need for frequent retraining. By automating key
aspects of anomaly detection model deployment and enhancing
engineer-model interaction, MonitorAssistant offers a practical,
efficient, and user-friendly solution for anomaly detection in cloud
service systems.

In summary, this paper makes the following contributions:
• We systematically reveal the distinct nature of practical anomaly
detection in industry settings and provide a guidance to conduct
practical anomaly detection in monitoring system.
• We proposeMonitorAssistant, an end-to-end practical anom-
aly detection system based on LLM. MonitorAssistant auto-
mates the whole pipeline of practical anomaly detection, pro-
vide more guidance-oriented anomaly reports and a more user-
friendly engineer-system interaction mechanism.
• We pilotMonitorAssistant into several Microsoft’s cloud ser-
vice systems, making service monitoring easier, and demonstrate
that MonitorAssistant is a powerful practical monitoring sys-
tem through the empirical study based on real-world cases.

2 BACKGROUND

2.1 Service Monitoring

2.1.1 Metric Data. Monitoring cloud services is a crucial way to
understand the health status of services and ensure their stability
and reliability. InMicrosoft, metrics are the core data for monitoring.
Metrics are time series data that measure the status of a system in
three main areas: resource utilization (such as CPU and memory
usage), workload performance (such as error rate and throughput),
and service level agreement (such as down time and response time).

These metrics are uniformly sampled and consist of real-valued
data. They are sensitive to changes in performance and can offer
valuable insights into the reliability of cloud services.

Figure 1: Examples of metric data in online service systems.

The collection and storage of metric data is already a mature
technology; however, the analysis and decision-making regard-
ing metrics are very challenging. On the one hand, understanding
the physical meaning of metrics usually requires nontrivial expert
knowledge. On the other hand, in a large cloud service system,
the number of metrics is enormous (e.g., millions of metrics exist
in a practical service system). Therefore, efficient, accurate, and
automated analysis and decision-making for metrics is the primary
future direction of service monitoring in the industrial field.

2.1.2 Incident. In large-scale cloud systems, an incident refers to
any unexpected disruption or decline in the quality of a service
or system [8] [9, 19, 27]. This can result in service availability
issues across various levels, including Infrastructure as a Service
(IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS).
Generally, each incident is assigned a severity level based on its
potential impact on systems, while classification standards vary
among organizations (e.g., Low, Medium, High, and Critical). In
large-scale cloud systems, incidents typically originate from three
ways. First, engineers use metric anomaly detection methods such
as threshold rules or statistical method to detect anomalies in metric
data, based on expert experience. These anomalies are interpretable
and effectively reflect the system’s state. Second, incidents are
manually reported by engineers based on user feedback. Third,
incidents are automatically generatedwhen the alarm logic inherent
in the service code is triggered. Figure 2 shows an incident report
at Microsoft. Due to the company policy, we have to hide some
details of these incidents and report relatively rough data instead.

MitigatedStatus:
[Reigon] System Issuer returns NullReferenceException Severity: Level 2

Duration: 1h27mService: Azure CommunicationID#461153xxx

Summary & Disscussion
Date Start: 2023-12-21 14:32:33 GMT+8
What we know: Impact: Resource creation,
EventGridFilter retrieval, and any scenario which involves
calling ARM in EastUS and West Europe are failing The
outage affected multiple clouds, regions, services, and
subscriptionsFull outage calling ARM in two regions.

Impact Assessment
Metric: 42d6616d-c9c5-370a-a8ba-17ead74f3114

Troubleshooting Guide

ARM applied mitigation to EastUS and other regions at
about 9:45 PST. West Europe continued to have
issues, so RP redirected traffic from West Europe to
North Europe. This mitigated the issue for events.

Incident is mitigated by the monitor [PROD] RP
Cluster Reliability Monitor. Jarvis Health Page
BRAIN Health Checks Dashboard: Reliability
Dashboard DGrep

Acknowledged, proceeding with the detailed analysis of
the failures. Initiating diagnostics on EventGridFilter
retrieval issues and ARM call failures in EastUS and
West Europe.

Dashboard Link

Figure 2: Example of incident data in online service systems.
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2.1.3 Relationship between Metric and Incident. In the context of
incident generation processes, a notable interrelation emerges be-
tween metric data and incident data. Both types of data serve as
indicators of specific events within system and service operations.
Metric data, characterized by its rapid response capability, often
necessitates extensive expert knowledge for accurate interpretation.
In contrast, incident data, while potentially subject to delays, offers
greater clarity and accessibility for engineers. Incident identified
through metric data are generally indicative of effective anomaly
detection, whereas incidents reported manually may signal missed
alarms in the anomaly detection system.

2.2 Metric Anomaly Detection

Anomaly detection for metrics is currently a fundamental and im-
portant aspect of monitoring data analysis [11, 18, 20, 31, 34, 39].
Through anomaly detection, potential anomalies in services can be
discovered, and engineers can be alerted to resolve these anomalies
promptly to ensure the reliability of services and prevent large-
scale failures. Since metrics can be measured as time-series data,
anomaly detection for metrics is usually formulated as time-series
anomaly detection (TSAD) [22, 34, 39].

2.3 Motivation

Metric anomaly detection online for cloud systems is of significant
importance for the stable operation of services. Although many
advanced time series detection algorithms have been proposed in
academia, these algorithms still struggle to find widespread appli-
cation in industry. Based on our long-term practice in Microsoft’s
cloud service systems, we identify three main reasons why deep-
learning-based detection models are not practical enough.
Model and hyperparameter selection. Choosing the model and
corresponding hyperparameters is usually the first step in anomaly
detection. The same model and hyperparameters cannot achieve
satisfactory performance across all metrics [39], so selecting the
appropriate model and parameters for different metrics is crucial
to fully unleashing the performance of anomaly detection models.
However, in a vast cloud system, the scale of monitor metrics is mas-
sive. Therefore, it is impractical for engineers to manually choose
the appropriate model and hyperparameters for each metric.
Anomaly interpretation. In academia, accurately detecting anom-
alies is often the ultimate goal of anomaly detection. However, in
the industrial sector, merely identifying the occurrence of anom-
alies is insufficient. Once an anomaly occurs, there is a substantial
amount of work to be done. Therefore, helping engineers to in-
terpret anomalies and provide insights for troubleshooting is also
crucial for a practical anomaly detection detection system in the
industrial context.
Engineer-system interaction. After deploying the model, engi-
neers will collect a lot of feedback. However, with deep-learning-
based models, it is difficult for engineers to interact efficiently and
specifically with the anomaly detection models. Especially when
service changes occur, if engineers cannot effectively feed back the
information of service adjustments to the anomaly detection model,
the current model may suffer significant performance degradation

in the changed system, leading to the need to retrain and redeploy
the anomaly detection model.

These three difficulties hinder the widespread application of
the advanced time series anomaly detection models in industry. To
address these challenges, we proposeMonitorAssistant, automat-
ing model configuration recommendation, providing guidance-
oriented anomaly reports and facilitating a more intuitive engineer-
system interaction mechanism.

3 PRACTICAL ANOMALY DETECTION

Practical anomaly detection for metric data has always been a
goal pursued in the industry. However, there has never been a
precise answer to what constitutes practical anomaly detection
or how to conduct practical anomaly detection. We are primarily
interested in gaining a thorough understanding of practical anomaly
detection for performance metrics in Microsoft’s cloud systems
that serve more than ten million users worldwide. Through our
experience of conducting anomaly detection on these services, we
have gained valuable insights into practical anomaly detection. In
our exploration, we focus on answering the following questions:

Q1. What are practical anomalies in cloud systems?

Q2. How engineers comprehend practical anomalies?

Q3. What capabilities should a practical anomaly detection

system have?

In the rest of this section, we analyze the practical anomaly
detection in an empirical way, trying to answer the three questions
mentioned above.

3.1 Practical Anomaly Definition

In our analysis of anomaly detection within large-scale cloud sys-
tems, we draw upon extensive experience with these complex envi-
ronments. In such systems, anomalies are inevitable. The primary
goal of anomaly detection models is to assist engineers in detecting
potential risks that may adversely affect the system or highlight
areas where enhancements can be made.

We have observed that anomalies identified by advanced models
do not always align with what engineers deem significant. Occa-
sionally, these models highlight anomalies that are not practically
relevant. Thus, we propose a refined definition of a “practical anom-
aly” from an industrial standpoint: Practical anomalies are those
data points deviations that not only statistically diverge from the
normal patterns but are also corroborated by related incidents. These
anomalies merit immediate attention and action from engineers,
distinguishing them from the anomalies that might simply be sta-
tistical outliers without real-world implications.

Another noteworthy aspect concerning practical anomalies is
that determining whether a metric has experienced an anomaly
requires understanding the actual physical meaning of the metric.
That is, anomalies that appear similar in form might be considered
anomalous in some metrics but may not be in others. Therefore,
the identification of such anomalies must rely on additional infor-
mation. For this reason, even though deep-learning-based anomaly
detection methods exhibit impressive performance, they typically
cannot address all monitored metrics in a complex cloud service.
Information beyond the metric values, such as descriptions of the
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Table 1: Cases of practical anomalies with different shapes.

Shapes Example Scenarios

Spike Significant anomalies occur when service call latency unexpectedly increases, such as during a DDoS attack.

Dip E-commerce platforms detect anomalies indicating a decline in user activity, possibly due to a service disruption.

Level Up Sudden increase in disk usage, indicating potential log file flooding or unexpected data accumulation.

Level Down Sudden decrease in network traffic, possibly indicating a loss of client connections.

Ramp Up Gradual increase in CPU usage, potentially indicating a memory leak or an inefficient algorithm.

Ramp Down Gradual decrease in response times, possibly due to improved system performance or reduced load.

40 50 60 70 80
Time

3

4

5

V
al

ue

Spike, But Short

CloudA kpi 11

140 150 160 170 180
Time

0

5

V
al

ue

Dip, Not Of Concern

CloudA kpi 11

(a) Impractical Spike
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(b) Impractical Dip

Figure 3: Examples of “impractical” anomaly in Microsoft’s

cloud system. The anomalies are marked by orange points.

physical meaning of metrics, is extremely important and necessary
in practical anomaly detection.

Figure 3 shows two anomalies detected by a deep-learning-based
model within Microsoft. However, in our context, both anomalies
are impractical and do not necessitate triggering an incident for
further engineering intervention. The anomaly in Figure 3a is a
very small and short spike, yet the anomaly detection algorithm is
highly sensitive to it, identifying this spike as statistically significant
compared to the same historical period, and thus deeming it an
anomaly. However, engineers are not concerned with such small
and short spikes in this metric, as they almost have no impact on
the whole system. The anomaly in Figure 3b, on the other hand, is
a dip. Though intuitively it appears to significantly deviate from
the normal pattern, any decline in this metric is not of concern to
engineers. Therefore, even if a statistically significant dip occurs,
engineers do not consider it a practical anomaly.

3.2 Practical Anomaly Interpretation

In academia, the primary goal of anomaly detection is usually to
accurately identify anomalies [12, 18, 31, 34, 35, 40]. However, in
industry, simply identifying whether an anomaly has occurred is
far from enough. After detecting an anomaly, there is still a lot
of work that needs to be done, such as prioritizing [4], triage [3],
mitigation [15], and root cause analysis [5, 38]. Engineers need to
interpret the anomaly to understand what happened in the system,
derive knowledge from it, and then enrich subsequent incidents for
the relevant engineers to troubleshoot. Therefore, precise detection
of anomalies is not just crucial for a functional anomaly detection
system; aiding engineers in comprehending anomalies and offering

insights for troubleshooting holds significant importance, especially
in the industrial setting.

The engineers who directly deal with anomalies are those respon-
sible for the service. Typically, they are not experts in algorithms
related to anomaly detection. Therefore, for service engineers, un-
derstanding and interpreting anomalies usually come from two
aspects: firstly, the analysis of the anomaly shapes, and secondly,
similar incidents related to this kind of anomaly. The analysis of
anomaly shapes and similar incidents are often complementary,
possessing hidden logical relationships. Combining both provides
service engineers with a more comprehensive understanding of the
specific anomaly.

3.2.1 Anomaly Characteristic. For anomaly classification within
the academic sphere, prior researches have established a founda-
tional taxonomy [13, 33]. Drawing from our empirical insights, we
posit that the most salient attributes of anomalies pertain to their
duration and shape. This perspective is informed by our hands-on
experience, underscoring the importance of these characteristics in
the practical assessment and management of anomalies.
Duration. The duration of the anomaly is a critical attribute in our
anomaly classification. It’s the length of the continuous segment
marked as anomalous. Anomalies that manifest over a brief time
span might be noisy false positives or insignificant aberrations that
revert to normal levels quickly. Despite their fleeting nature, such
short-lived anomalies can be crucial to some engineers who focus
on immediate system response and correction. On the other hand,
anomalies with longer time ranges might indicate persistent or
systematic issues and are often of interest to engineers seeking to
understand and address deeper, underlying problems.
Shape. The term ‘Shape’ describes the distinctive pattern that an
anomalous sequence takes when contextualizedwithin its surround-
ing normal sequences. This categorization provides critical insights
for engineers, enabling the identification of the type and root cause
of anomalies, as those stemming from the same origin often exhibit
similar shapes. This understanding allows engineers to focus specif-
ically on certain shapes, according to their diagnostic needs. For the
purpose of our study, we categorized anomalies into six primary
shape types: spike, dip, level shift up, level shift down, ramp up
and ramp down as shown in Figure 4. We provide typical cases for
these six shapes in Table 1.

3.2.2 Metric-Incident Pair. Incidents, as a form of high-level data,
also directly assist engineers in understanding and interpreting
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Figure 4: Illustration of the six types of anomaly shapes our

engineers care most.

anomalies. When an anomaly detector reports a metric anomaly,
there is no incident associated with this specific anomaly. This is
because many incidents are generated in response to metric anom-
alies. Typically, incidents and metric anomalies are paired together
to form metric-incident pairs. That means for each incident, the re-
lated metric details and the specific anomaly segment that triggered
the incident are recorded. However, the absence of an incident for
a current anomaly does not mean engineers cannot gain insights
from historical incidents. When a metric anomaly occurs, engineers
will, based on their experience, review historical incidents of similar
anomalies or trends, attempting to understand the current anomaly
and derive its root causes and troubleshooting recommendations
from these insights. Moreover, incidents usually encompass a vast
amount of expert knowledge and historical experience, which is
significantly valuable for understanding practical anomalies. Aca-
demic research on anomaly detection often focuses more on the
metric data itself, thus may not appear as practical in industries.

3.3 Capabilities of Practical Anomaly Detection

Based on our in-depth practice on practical anomaly detection, we
conclude that a practical anomaly detection system in the industrial
sector must achieve three capabilities.

First, a practical anomaly detection system should not only incor-
porate advanced deep-learning-based anomaly detection models,
but also inherit the long-term accumulated practical experience of
the industry. The core reasons are twofold. Firstly, many rule-based
or classical statistical methods have been proven effective over
years of practice on certain metrics. Moreover, the results obtained
from these simple methods are not only highly interpretable but
also usually have significant efficiency advantages compared to
advanced deep-learning-based methods, which can greatly save
computational resources. Therefore, completely abandoning these
types ofmethods has no practical value for the industry. Secondly, as

Section 3.2 mentioned, the historical metric-incident pairs contain
a large amount of expert experience, which is crucial for engineers
to explain and understand anomalies. Engineers responsible for
services are not willing to see this kind of knowledge fail to be
effectively inherited and utilized in anomaly detection systems.

Second, it is necessary to provide engineers with a comprehen-
sive anomaly reports rather than detection results. The final results
provided by a practical anomaly detection system should not merely
indicate the presence of anomalies, but also offer further explana-
tions and corresponding troubleshooting recommendations. As
Section 3.2 mentioned, accurately detecting anomalies is only the
starting point, not the end. If an anomaly detection system can only
determine whether an anomaly has occurred, then its value to engi-
neers is greatly diminished. A practical anomaly detection system
needs to provide engineers with more insights, helping them better
understand the anomaly and perform subsequent troubleshooting
work. Therefore, a practical anomaly detection system needs to
report anomalies in the form of a report. The report should cover
the understanding and explanation of the anomaly, and provide
engineers with as much troubleshooting insight as possible.

Third, a practical anomaly detection system should offer engi-
neers an friendly interaction process with a low algorithmic thresh-
old. Inevitably, anomaly detection methods will have false negatives
or false positives. The traditional way is to patch the anomaly de-
tection model, or collect a certain amount of data to fine-tune or
retrain the model, thereby improving the model. In this process, a
large amount of expert knowledge about anomaly detection models
and algorithms is usually needed. However, in industry, engineers
responsible for services are not usually directly in charge of the
anomaly detection model. They need to communicate with algo-
rithm engineers to pass feedback to the algorithm. This is a very
inefficient process, as the threshold for service engineers to transfer
their domain knowledge is too high, making it difficult to utilize
feedback information. If the anomaly detection system itself could
provide a very simple and direct way of interaction with a low
algorithmic threshold, it would make the utilization of feedback
information more convenient, making the system more practical.

4 MONITORASSISTANT

Through the analysis of Section 3, inheriting and transferring do-
main knowledge in the field of anomaly detection to achieve a
practical process is indispensable for natural language capabilities,
because a large amount of domain knowledge in anomaly detection
within the industrial sector is inherited and transferred in the form
of natural language.

To achieve practical anomaly detection, strong capabilities in
processing semi-structured and unstructured data, especially in un-
derstanding natural language, are essential. With the development
of Large Language Models (LLMs) in recent years, LLMs like GPT-
4 [1] have demonstrated impressive natural language processing
capabilities across different domains [1, 10, 14, 23, 42]. This ability
to compress and distill knowledge from natural language aligns
precisely with the requirements for practical anomaly detection.

Hence, we propose MonitorAssistant, an LLM-based end-to-
end practical anomaly detection system. It refines and summarizes
a large amount of domain knowledge in anomaly detection from
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Figure 5: The overall workflow of MonitorAssistant facing an incoming metric

historical incident-metric pairs, achieving knowledge inheritance.
Simultaneously,MonitorAssistant can automate the pipeline of
anomaly detection and provide an informative anomaly report with
actionable guidance for troubleshooting, rather than a simple deter-
mination of anomaly occurrence. Moreover,MonitorAssistant
offers an interaction process with a low algorithmic threshold for
engineers, making their feedback more effectively influence the
anomaly detection system.MonitorAssistant has already been
deployed in Microsoft’s cloud service system.

In the remaining part of this section, we will detail the workflow
of MonitorAssistant and the key novel technologies that enable
practical anomaly detection.

4.1 Workflow

As illustrated in Figure 5, when an incoming metric is integrated,
MonitorAssistant undergoes three phases: Configuration Recom-
mendation, Anomaly Alert and Feedback Loop. In all three phases,
LLM is the core component. We choose the GPT-4 Turbo model for
MonitorAssistant because a variety of complex natural language
tasks are designed in MonitorAssistant, and GPT-4 Turbo model
achieves state-of-the-art overall performance in many natural lan-
guage tasks.

The first phase is the Configuration Recommendation phase,
whereMonitorAssistant, based on the characteristics of the data,
recommends promising configurations for the metric. In Figure 5,
the main focus of configuration recommendation phase is on the
online process, while the monitor metric configuration database
in Figure 5 is constructed in the offline process. To implement the
aforementioned process and achieve the goals of knowledge in-
heritance and utilization, we introduce the Monitor Configuration
Infusion technique. It is the core of the entire configuration rec-
ommendation phase, and we provide a detailed description of this
technique in Section 4.2.

The second phase is the Anomaly Alert phase. When the model
detects an anomaly in the metric, it will generate an alert with
type information and provides corresponding troubleshooting sug-
gestions. The types of anomalies mainly include seven categories,
among which six are mentioned in Section 3.2: Spike, Dip, Level Up,

Level Down, Ramp Up, and Ramp Down. The rest are uniformly
considered as the Other type. The classification results are provided
by a trained fully connected network. As for the anomaly report,
we design a practical alert generation technique, we introduce this
technique in Section 4.3 in detail.

The final stage is the Feedback Loop, where engineers provide
feedback based on the performance of the anomaly detection model.
MonitorAssistant then adjusts the anomaly detection configura-
tion according to the engineers’ feedback, enhancing the model’s
performance. The detail of the way to achieve LLM-Engineer-In-
The-Loop interaction are shown in Section 4.4.

4.2 Monitor Configuration Infusion

In the Configuration Recommendation phase, two core issues need
to be addressed. The first is how to extract the knowledge contained
in historical anomaly detection experiences to provide references
for subsequent configuration recommendations. The second issue is
how to utilize this knowledge to make reasonable recommendations
during the recommendation process. To tackle these two issues, we
propose Monitor Configuration Infusion technique.

To address the extraction of historical experiences, we built a
Monitor Metric Configuration Database. This is a database for JSON
files. For each metric, we extract the key-value pairs by LLM and
create a JSON file, which contains key information about the metric.
Two fields worth noting are shapelets and incidents.

Shapelets refer to representative time series segments within a
metric [28, 37]. Since the length of a metric is constantly increasing
and the total volume is enormous, directly storing the metric is
impractical. Therefore, we extract shapelets from the metric using
the Fast Shapelet Discovery (FSD) [28], serving as the primary
representation of the metric. The incidents field records all incident
IDs related to the metric. These incidents can be considered as
records of historical anomalies that have occurred with the metric.
This field plays an important role in subsequent anomaly report
generation.

For making recommendations based on historical anomaly de-
tection experiences, an intuitive idea is to recommend based on
similarity. However, calculating similarity solely based on time
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Algorithm 1: Calculation of Unified Similarity
Input: Incoming metric 𝑋 and a history metric 𝑋ℎ
Input: The description data of incoming metric 𝐷 and

history metric 𝐷ℎ

Output: 𝑢𝑠𝑖𝑚 Unified Similarity between the incoming
metric and history metric

Function UnifiedSimilarity(𝑋,𝑋ℎ, 𝐷, 𝐷ℎ):
// Extract 𝑛 shapelets from 𝑋

𝑆 = {𝑠1, 𝑠2, ...𝑆𝑛} ← 𝑆ℎ𝑎𝑝𝑒𝑙𝑒𝑡𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑋 );
// Query from Monitor Metric Configuration Database
𝑆ℎ = {𝑠ℎ1 , 𝑠

ℎ
2 , ...𝑆

ℎ
𝑚} ← 𝑆ℎ𝑎𝑝𝑒𝑙𝑒𝑡𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑋ℎ);

// Initialize the average metric similarity
𝑚𝑠𝑖𝑚_𝑎𝑣𝑔← 0;
foreach 𝑠 in 𝑆 = {𝑠1, 𝑠2, ...𝑆𝑛} do

// Record the maximum similarity between 𝑠 and 𝑠ℎ
𝑚𝑎𝑥_𝑠𝑖𝑚 ← 0;
// Normalization
𝑠 ← 𝑠−𝑚𝑖𝑛 (𝑠 )

𝑚𝑎𝑥 (𝑠 )−𝑚𝑖𝑛 (𝑠 ) ;
foreach 𝑠ℎ in 𝑆ℎ = {𝑠ℎ1 , 𝑠

ℎ
2 , ...𝑆

ℎ
𝑚} do

𝑠ℎ ←
𝑠ℎ−𝑚𝑖𝑛 (𝑠ℎ )

𝑚𝑎𝑥 (𝑠ℎ )−𝑚𝑖𝑛 (𝑠ℎ ) ;
// Calculate the shapelet distance by Shape
Based Distance (SBD) [25]

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← 𝑆𝐵𝐷 (𝑠, 𝑠ℎ);
// Get the shapelet similarity𝑚𝑠𝑖𝑚 ∈ [0, 1]
𝑚𝑠𝑖𝑚 ← 𝑚𝑎𝑥 (𝑙𝑒𝑛𝑔𝑡ℎ (𝑠 ),𝑙𝑒𝑛𝑔𝑡ℎ (𝑠ℎ ) )−𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑚𝑎𝑥 (𝑙𝑒𝑛𝑔𝑡ℎ (𝑠 ),𝑙𝑒𝑛𝑔𝑡ℎ (𝑠ℎ ) ) ;
if 𝑚𝑠𝑖𝑚 > 𝑚𝑎𝑥_𝑠𝑖𝑚 then

𝑚𝑎𝑥_𝑠𝑖𝑚 ←𝑚𝑠𝑖𝑚;
end

end

𝑚𝑠𝑖𝑚_𝑎𝑣𝑔←𝑚𝑠𝑖𝑚_𝑎𝑣𝑔 +𝑚𝑎𝑥_𝑠𝑖𝑚;
end

𝑚𝑠𝑖𝑚_𝑎𝑣𝑔← 𝑚𝑠𝑖𝑚_𝑎𝑣𝑔
𝑛 ;

// Extract key-value pairs converting to JSON
𝐷 ← 𝐿𝐿𝑀 (𝐷, 𝑡𝑎𝑠𝑘 = 𝐾𝑉𝐸𝑥𝑡𝑟𝑎𝑐𝑡);
𝐷ℎ ← 𝐿𝐿𝑀 (𝐷ℎ, 𝑡𝑎𝑠𝑘 = 𝐾𝑉𝐸𝑥𝑡𝑟𝑎𝑐𝑡);
// Get description similarity 𝑑𝑠𝑖𝑚 ∈ [0, 1] from LLM
𝑑𝑠𝑖𝑚 ← 𝐿𝐿𝑀 (𝐷, 𝐷ℎ, 𝑡𝑎𝑠𝑘 = 𝑆𝑖𝑚𝑖𝐶𝑎𝑙);
𝑢𝑠𝑖𝑚 =

𝑚𝑠𝑖𝑚_𝑎𝑣𝑔 + 𝑑𝑠𝑖𝑚
2 ;

return 𝑢𝑠𝑖𝑚;

series would lose a significant amount of natural language infor-
mation describing the metric. Therefore, we proposed unified simi-
larity. Unified similarity combines the similarity of the time series
itself with the similarity of related descriptive information, fully
utilizing the metric’s physical significance and a vast amount of
descriptive information. The specific calculation process is shown
in Algorithm 1. For time series similarity, we calculate based on
shapelets rather than the series itself, because calculating based on
the original series would take a significant amount of time, failing
to meet the requirements of industrial applications. The similarity
of descriptive information is calculated by LLM. The main approach

is to provide LLM with manually constructed similarity cases as
prompts, allowing it to output a similarity value between 0 and 1.
However, since calling LLM is also very time-consuming, in Moni-
torAssistant, we first use time series similarity for preliminary
screening, selecting the Top N metrics with the highest similar-
ity. Afterwards, we calculate the unified similarity among these N
metrics and finally recommend the configuration of the anomaly
detection model for the incoming metric with the highest similarity.

4.3 Practical Alert Generation

Understanding anomalies often requires integrating a large amount
of external information and engineers’ long-term accumulated
expert knowledge. Therefore, for a practical anomaly detection
system, merely determining whether a metric is abnormal lacks
practical significance for engineers. To tackle this issue, we pro-
pose the Practical Alert Generation mechanism. It not only can
determine whether a metric is abnormal but also can combine a
vast amount of historical experience to summarize an anomaly
report, helping engineers better understand anomalies, reduce the
cost of understanding anomalies, and assist engineers in effectively
troubleshooting.

Same Physical Meaning

Same Anomaly Type

Top N Ranked by Metric Similarity

Top K Ranked by Unified Similarity

LLM

Figure 6: Filtering process of historical metric data

In the context of Practical Alert Generation, the most critical
issue is how to filter valuable data from historical records for sum-
marization. In our approach, as mentioned in Section 3.2, for engi-
neers, duration and shape serve as the most direct entry points for
understanding anomalies. However, when an anomaly is detected,
it has just occurred, making the duration uncertain at that moment,
but the shape is generally ascertainable. Thus, we emulate the way
engineers handle anomalies by summarizing knowledge and ex-
perience from history. Engineers primarily focus on six types of
anomaly shapes: Spike, Dip, Level Up, Level Down, Ramp Up, Ramp
Down (see Section 3.2 for more details), simplifying the need for a
complex classifier. MonitorAssistant employs a pre-trained fully
connected network classifier to categorize anomalies. Any anomaly
that does not fit into the aforementioned six categories is classified
as "Other". Then, the anomaly category information is added as an
entry in the JSON generated for that metric by the Model Configu-
ration Infusion mechanism. Subsequently, we filter relevant data
from historical metric-incident pairs using the following steps:
(1) Filter metrics with the same physical meaning based on their

physical meanings.
(2) Filter metric-incident pairs that have experienced the same

type of anomaly based on category.
(3) Calculate metric similarity using the current anomaly seg-

ment and the recorded anomaly segments in existing metric-
incident pairs.
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(4) Sort by similarity and select the Top N, then compute the
unified similarity (see Algorithm 1) with the LLM to determine
the final Top K.

After identifying the Top K related metric-incident pairs, we con-
catenate various fields and have the LLM summarize them by field.
Finally, we use the LLM to organize the field-wise summaries into
an anomaly report. The report includes: the physical meaning of the
metric, the type of anomaly, similar past incidents’ IDs, possible root
causes of the anomaly, and recommendations for troubleshooting.

4.4 LLM-Engineer-In-The-Loop Interaction

To improve the process of engineer-model interaction by LLM, we
firstly analyze the weakness of the traditional interaction way. In
the industrial sector, engineers responsible for monitoring met-
ric and handling anomaly detection results are typically service
engineers. These individuals are not usually experts in anomaly de-
tection algorithms; their domain knowledge is often specific to the
metrics themselves. The development and maintenance of anomaly
detection algorithms are usually carried out by algorithm engineers.
When service engineers identify issues such as miss or false alarms
in the anomaly detection system, they directly communicate with
algorithm engineers, who are then responsible for addressing the
issues related to the anomaly detection model. Due to algorithm
engineers’ lack of in-depth understanding of the metrics, it is often
challenging for them to accurately grasp the service engineers’ con-
cerns. Consequently, this mode of interaction is highly inefficient,
making it difficult for service engineers to effectively transfer their
domain knowledge to the anomaly detection model itself.

Figure 7: Traditional engineer-model interaction.

To address the aforementioned issue, we designed the LLM-
Engineer-In-The-Loop interaction mechanism, allowing service en-
gineers to interact directly with an LLM, providing a low-threshold
way for transferring domain knowledge. This enables service engi-
neers to effectively aid in improving the anomaly detection system,
thereby allowing the system to continuously incorporate the service
engineers’ domain knowledge.

The core of the LLM-Engineer-In-The-Loop interaction mech-
anism is the understanding of the engineers’ intentions. Only by
clearly understanding the service engineers’ intentions can the
anomaly detection model be accurately improved according to their
ideas. However, for engineers who are unfamiliar with LLM, their
untrained, unstructured natural language inputs present an addi-
tional understanding barrier for the LLM. Therefore, we designed

a step-by-step guidance mechanism illustrated by Figure 8, allow-
ing the LLM to ask engineers questions gradually, constructing
a semi-structured context environment step by step. Finally, the
LLM organizes each of the engineer’s responses according to our
designed template into feedback with a clear logical structure.

Figure 8: The workflow of the step-by-step guidance in LLM-

Engineer-In-The-Loop Interaction.

After guiding engineers to complete the feedback process, Mon-
itorAssistant first generates rule-based patches targeting the
feedback. This rule-based patching approach is highly computa-
tionally efficient. Furthermore, by patching based on the raw results
of anomaly detection models, this method minimizes the likelihood
of affecting the original performance of the models.

When the patches to this model exceed a certain threshold,Mon-
itorAssistant will, based on existing information, initiate a con-
figuration recommendation process to prevent excessive patching
from affecting anomaly detection performance. It will recommend
a more suitable anomaly detection model for the metric based on
the available information. This behavior essentially mimics the ap-
proach human engineers take to address such issues. In real-world
environments, when individual cases of false alarms or miss alarms
are encountered, the intuitive response is not to directly fine-tune
the model with this data, but rather to first use rule-based patches
to address similar issues.

5 CASE STUDY

To evaluate the effectiveness of MonitorAssistant in the real-
world environment, we deployedMonitorAssistant inMicrosoft’s
cloud service system and integrated real performance metric data
intoMonitorAssistant. During this process, we collected feed-
back from several engineers regarding MonitorAssistant and
gathered real-case studies to analyze the effectiveness of Moni-
torAssistant in practical anomaly detection.

5.1 Configuration Recommendation

To validate the effectiveness of model recommendation, we col-
lected workload metric from a service in Microsoft’s production
environment and provided a brief description of this metric as in-
put toMonitorAssistant. Figure 9 shows the process by which
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MonitorAssistant selects models for this metric and the effect of
anomaly detection.

Engineer

MonitorAssistant

Scenario: service workload, where Anomalies in a service workload time series typically appear as  
unusual activity patterns, or significant trend deviations.

✓ Analyze time series data and service workload context.
✓ Compare with historical data, select LSTM as outlier detection algorithm based on data characteristics.
✓ Execute the LSTM on the current data, adjusting parameters for optimal outlier detection.
✓ Interpret results to identify true outliers, presenting results with relevant visualizations and insights.

Figure 9: Case for configuration recommendation. Ramp up

anomalies are marked by purple, level shift down anomalies

are marked by yellow and spike anomalies are marked by

red points.

In this scenario, MonitorAssistant selected an LSTM-based
anomaly detection model for the given metric because LSTM-based
models are sensitive to trend-like anomalies [46], which aligns
with the engineers’ highlighted concern for the metric’s trend in
the description. Moreover, MonitorAssistant detected anomalies
such as level downs. The initial recommendation for the anomaly
detection model by MonitorAssistant did not have any miss
alarms, detecting all practical anomalies of concern to the engineers.

Figure 10: All alarms in the case of Figure 9.

However, the initial recommended model still had some flaws.
Due to the LSTM’s heightened sensitivity to local information [12],
the model produced some false alarms, as shown in Figure 10, a
frequent issue with deep-learning-based models like LSTM [39, 46].
In Section 5.3, we will explain howMonitorAssistant resolves
these flaws through a feedback loop.

5.2 Anomaly Report

In the Section 5.1, it is demonstrated how to ascertain whether a
metric anomaly has occurred. However, MonitorAssistant does
not stop there. To facilitate engineers’ comprehension,MonitorAs-
sistant provides a more practically meaningful anomaly report
by summarizing historical experiences. Table 2 shows an anomaly
report about the ramp up anomaly in Figure 10.

From Table 2, we can see thatMonitorAssistant presents mul-
tiple possible scenarios to assist engineers in conducting a deeper

investigation into the anomaly by integrating the physical mean-
ing of the metric and historical anomaly detection knowledge .
Moreover, in the troubleshooting guide, MonitorAssistant of-
fers engineers preliminary troubleshooting suggestions, which can
significantly expedite the resolution of the anomaly.

5.3 Feedback Loop

Due to the complexity of anomaly detection, deployed anomaly
detection models are prone to issues such as false alarms or miss
alarms during operation. False alarms, in particular, pose a sig-
nificant challenge [12, 18, 31, 33, 46]. In the case in Section 5.1,
MonitorAssistant experienced false alarms, due to the deep-
learning-based model’s sensitivity to local information [12]. When
engineers encounter instances of false alarms, they can directly sub-
mit feedback toMonitorAssistant, bypassing the need to involve
algorithm engineers. Figure 11 illustrates this process.

Figure 11: Case for feedback loop. Ramp up anomalies are

marked by purple, level shift down anomalies are marked

by yellow.

Once engineers submit all feedback, MonitorAssistant selec-
tively adjusts the anomaly detection model’s strategies. It then tests
the improved model on previous data and provides the results for
engineer confirmation.

It is noteworthy that the original anomaly detection model pro-
duced three false alarm dips, but the engineers provided only one
example. Nonetheless,MonitorAssistant successfully resolved
all false alarm dips indicating that MonitorAssistant can deeply
understand the engineers’ intentions, rather thanmerely addressing
the cases precisely described by the engineers.

However, if engineers have additional feedback, the process
continues iteratively. Our real-world case study shows thatMon-
itorAssistant solve the false alarm issues for the service engi-
neer after one iteration of the feedback loop, demonstrating that



FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Z.Yu, M.Ma, C.Zhang, S.Qin, Y.Kang, C.Bansal, S.Rajmohan, Y.Dang, C.Pei, D.Pei, Q.Lin, D.Zhang

Table 2: Anomaly Report of a Ramp Up Anomaly in Service A Workload.

Field Description

Metric ID ffb82d38-5f00-37db-abc0-5d2e4e4cb6aa
Physical Meaning The workload of Service A
Anomaly Type Ramp Up
Anomaly Range 2023-11-19 14:43:20 to 2023-11-19 20:43:20
Similar Incident IDs 414072, 421105, 443790
Root Cause Analysis

• Sudden Increase in User Traffic: A rapid increase in user traffic, possibly due to marketing campaigns,
new feature releases, or viral content.
• Service Dependencies: Issues in dependent services or APIs, such as increased latency or errors, can
cause retries or back-off mechanisms to kick in.
• Resource Limitations: Hitting the limits of allocated resources (CPU, memory, database connections,
etc.) can create bottlenecks, making the system less efficient.
• Configuration Changes: Configuration updates, including those in the infrastructure or in the application
(like feature flags), can alter the system’s behavior and impact its workload.
• Cache Evictions or Failures: If a caching layer fails or experiences a high rate of cache misses, the
increased load will fall back to the primary data stores or computation resources.

Troubleshooting Guide Steps include: reviewing recent changes, understanding user behavior changes, use APM tools to drill down
into specific transactions., implementing scalability best practices, conducting load testing, and apply rate
limiting to control the traffic volume from individual users or IPs.

MonitorAssistant effectively interfaces with service engineers,
streamlining the process for them to directly apply their expertise
to the anomaly detection models.

6 RELATEDWORK

Cloud service monitoring, particularly in the context of metric data,
has garnered significant attention in both academia and industry
due to its critical applications in various domains. Monitoring strate-
gies commonly encompass anomaly detection, alertingmechanisms,
and incident management to ensure the reliability and performance
of cloud services.
Anomaly detection: Early approaches to time series anomaly
detection often relied on statistical techniques such as moving
averages, standard deviation analysis, and z-score normalization
[24, 36, 41]. Recent advancements in deep learning have led to the
development of neural network-based models tailored for time se-
ries anomaly detection [12, 18, 20–22, 29, 31, 34, 35, 39, 40, 45]. How-
ever, effectively applying anomaly detection algorithms to large-
scale cloud service systems remains a significant challenge, par-
ticularly in achieving high accuracy, interpretability, and friendly
engineer-system interaction [39] .
Alerting mechanisms: In industry settings, the alerting mecha-
nisms typically relies on hand-crafted rules based on domain knowl-
edge, incorporating approaches like alert aggregation [44], alert
correlation [6], and alert ranking [4]. However, these alert strate-
gies not only have a high algorithmic threshold but also struggle to
provide engineers with additional context or guiding suggestions
beyond metric data, which fails to effectively assist engineers in
improving their efficiency in resolving anomalies.
LLM-based service monitoring: In recent years, the emergence
of Large Language Models (LLMs) has opened new avenues in
the realm of cloud service monitoring. For instance, GPT models

have been leveraged to suggest root causes and mitigation strate-
gies to streamline cloud incident handling [2, 5, 42], conduct auto-
remediation [30], as well as to generate outage summaries [15]. Our
work diverges from these efforts, aiming to bridge the gap between
the capabilities of LLMs and the practical monitoring requirements.

7 CONCLUSION

This paper proposesMonitorAssistant, an end-to-end practical
anomaly detection system that leverages LLM to bridge the gap
between academic research and industrial needs in the realm of
cloud service monitoring. By integrating model configuration rec-
ommendation, providing guidance-oriented anomaly reports and
LLM-engineer-in-the-loop interaction mechanism, MonitorAssis-
tant simplifies the anomaly detection process, making it more ac-
cessible, interpretable and friendly for engineers. Our deployment
of MonitorAssistant within Microsoft’s cloud service system
has not only demonstrated its practical effectiveness but also its
potential to significantly enhance the reliability and stability of
large-scale cloud services. The success of MonitorAssistant un-
derscores the importance of developing technology that is both
advanced and user-friendly, paving the way for future innovations
in the monitoring and maintenance of large-scale cloud systems.
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