
Guardian of the Resiliency: Detecting Erroneous
Software Changes Before They Make Your
Microservice System Less Fault-Resilient

Guanglei He†§, Xiaohui Nie‡, Ruming Tang¶, Kun Wang†§, Zhaoyang Yu†§, Xidao Wen¶, Kanglin Yin¶,Dan Pei†§
†Tsinghua University ‡Computer Network Information Center, Chinese Academy of Sciences ¶BizSeer

§Beijing National Research Center for Information Science and Technology (BNRist)

Abstract— The microservice system’s resilience is crucial for
ensuring the quality of service. Nowadays, software changes are
frequent and error-prone, and erroneous software changes could
reduce microservice systems’ resilience to handle faults, leading
to service failures and negatively impacting user experience. To
better understand erroneous software changes, we conducted an
empirical study on 256 real-world incidents from four famous mi-
croservice systems. Our quantitative results indicate that 37.87%
of erroneous software changes make the microservice systems less
fault-resilient; that is, when a fault (e.g. , network fluctuation,
high CPU usage, etc.) happens in the system after the software
change, the services are more likely to experience failures. We
refer to these software changes as Erroneous Software Changes
that Reduce fault Resilience(ESCR). Traditional methods struggle
to detect ESCRs effectively because the occurrence of faults is
unpredictable and can hardly be in their post-change monitoring
windows. In this paper, we propose a novel framework named
ResilienceGuardian, aiming to detect ESCRs before they make
microservice systems less fault-resilient. The key idea is utilizing
fault injection techniques to evaluate systems’ fault resilience in
the staging environment and then training lightweight classifiers
of KPI segment pairs to detect ESCRs. The performance of
ResilienceGuardian is systematically evaluated on three datasets
with various faults and erroneous software changes. The results
show that ResilienceGuardian significantly outperforms all the
baselines with a 0.9 F1-score in identifying ESCRs and reduces
the training time by 56.23% to 97.53%. Besides, Resilience-
Guardian can achieve minute-level ESCR detection in large-scale
microservice systems.

I. INTRODUCTION

Microservice architecture has become a staple in develop-
ing large-scale online service systems due to its scalability
and flexibility. This architecture supports frequent software
changes, including bug fixes, configuration adjustments, and
the introduction of new features. However, the fault resilience
of these systems can be compromised by erroneous software
changes such as misconfigurations or coding errors. As a
result, the quality of service provided by microservice systems
is at risk, with services becoming more susceptible to failures
in the face of unexpected faults like network fluctuations,
high CPU usage, etc.. The study [1] reveals that major online
service providers, including Google, implement over 10,000
software changes daily. Furthermore, another study [2] reports

‡ Xiaohui Nie is the corresponding author.

that approximately 70% of service incidents are attributable to
erroneous software changes. Given the frequency of software
updates and their potential to introduce latent defects, it is
crucial to detect erroneous software changes to maintain the
quality of service. Current research predominantly focuses on
identifying erroneous software changes by monitoring system
performance post-deployment [3, 4, 5]. These methods have
proven effective in detecting Erroneous Software Changes
that incur immediate Failures following deployment, referred
to as ESCFs. However, these monitoring approaches are
less effective at detecting Erroneous Software Changes that
Reduce fault Resilience (ESCR), undermining a service’s
ability to withstand faults. Compared to ESCFs, ESCRs are
unique because they do not impact service quality after the
deployment unless the systems experience faults. For one
instance in Google [6], the system functioned correctly after
deploying an improper reduction of redundant resources for
hours until an unexpected workload spike triggered a failure.
This incident exemplifies the distinction between ESCFs,
which cause immediate post-deployment failures, and ESCRs,
which does not manifest until a specific fault disrupts the
system. The difficulty in determining an adequate monitoring
duration to cover the occurrence of faults with the balance of
overhead makes identifying ESCRs particularly challenging.

To develop our idea, we conducted an empirical study of
256 real-world incidents gathered from four widely used mi-
croservice systems over six years [7]. Our empirical study re-
veals the following key observations: (1) ESCRs are prevalent
in microservice systems. They constitute a significant portion
of erroneous software changes, which reduce the systems’
fault resilience and compromise service quality when faults
disrupt the system. (2) Faults are frequent and unpredictable
in microservice environments, emphasizing the importance of
avoiding ESCRs to maintain fault resilience. (3) Analyzing
Key Performance Indicators (KPIs) proves to be an effective
strategy for identifying software errors. However, the large
volume of KPIs renders manual analysis impractical. Be-
sides, the uncertainty of fault occurrences in the production
environment hinders the detection of ESCRs through KPI
monitoring. Based on the observations above, our core idea
is to deliberately inject faults into the microservice system

in a staging environment and use machine learning models
to assess fault resilience by comparing pre-change and post-
change fault-affected KPIs, thereby detecting ESCRs. With
fault injection in the staging environment set up to closely
replicate the production environment, we can thoroughly test
a system’s fault resilience and allow for the early detection of
ESCRs before production deployment. Below, we summarize
the key challenges and our solutions.

(1) Lack of training data: Insufficient abnormal data
hinders the collection of training data reflecting the impacts
of ESCRs under various faults. In the empirical study, only
256 incidents were meticulously recorded over six years. Even
when utilizing fault injection to build datasets, the absence of
domain knowledge (labels) regarding ESCRs at the KPI level
impedes the training process. To address this challenge, we
employ data augmentation to create enriched training datasets
with KPI-level labels.

(2) Complex KPI patterns: Typically, dozens of faults are
injected to assess microservice systems’ fault resilience [8].
As faults can affect the pattern of KPIs, injected faults can
significantly amplify the complexity of KPI patterns by tenfold
or even a hundredfold, requiring a robust model to manage this
increased complexity. To tackle this challenge, we intuitively
train a separate model for each fault to decrease the KPI com-
plexity faced by each model, achieving advanced performance
in detecting ESCRs (Section IV-B). Besides, our model focuses
on a simpler feature of KPI variations instead of KPI pattern
features adopted by previous methods [3, 5]. Specifically, we
reframe the comparison of pre-change and post-change KPIs
to classify whether the KPI exhibits significant variations post-
deployment. In this way, a suite of fault-specific lightweight
classifiers is trained to accommodate the extensive size of KPI
patterns, albeit exacerbating the third challenge.

(3) Significant overhead : One software change typically
demands millions of KPIs to be checked in real-world mi-
croservice systems [9]. The overhead of training dozens of
fault-specific models with such massive KPIs is substantial,
requiring one GPU to run continuously for several months.
Besides, in the detection phase, each fault injection requires
analysis of massive KPIs, constituting a huge detection space
of #fault × #KPI (tens of millions). To address this challenge,
in the training phase, we utilize transfer learning to reduce the
training overhead, allowing one fault-specific classifier to be
transferred to support other faults at a lower cost. In contrast,
the detection overhead is unavoidable. In the detection phase,
we propose a highly parallelized strategy to accelerate the
detection process. In this way, we effectively handle training
and detection overhead, streamlining the overall process.

In summary, we propose a novel framework named Re-
silienceGuardian to identify ESCRs in a staging environment
through fault injection and KPI analysis. ResilienceGuardian
uses data augmentation to generate training datasets and build
a suite of fault-specific classifiers to handle complex KPI
patterns. Furthermore, we propose the use of transfer learning
and parallelism strategies to deal with the significant overhead.
This work makes three major contributions:

• We conducted a comprehensive empirical study of real-
world incidents, uncovering that ESCRs significantly af-
fect a microservice system’s fault resilience. Our obser-
vations motivate the design of ResilienceGuardian, which
is the first attempt to address ESCR identification to the
best of our knowledge.

• Our framework, ResilienceGuardian, enables the early
detection of ESCRs before they impact the fault re-
silience of microservice systems in production. To iden-
tify ESCRs, ResilienceGuardian employs fault-specific
classifiers to analyze injected faults in a staging envi-
ronment. We introduce a data augmentation technique to
aid classifier training, along with transfer learning and
parallelism strategies to manage the overhead in large-
scale microservice systems.

• ResilienceGuardian is systematically evaluated on two
well-known microservice systems [10, 11]. Extended by
several key techniques, ResilienceGuardian significantly
surpasses baselines, achieving an average F1-score of
0.90 in identifying ESCRs. ResilienceGuardian reduces
the training time by 56.23% to 97.53% compared to
baselines and supports minute-level detection in large-
scale microservice systems that contain millions of KPIs.

II. EMPIRICAL STUDY AND PROBLEM STATEMENT

A. Empirical Study

To gain insights into the nature of ESCRs, we conducted
an empirical analysis of 256 real-world incidents spanning six
years. This data was sourced from microservice systems used
by leading organizations such as Google, AWS, GitHub, and
GitLab [7].

1) Study Method: To facilitate our investigation of ESCRs,
we categorized incidents by underlying causes. This task was
carried out by two experts in microservices. Throughout the
labeling process, 98 incidents were excluded from our original
set of 354 due to the lack of clear root cause information.
Compared to the previous study [7], our empirical study
mainly focuses on the following research questions:

• RQ1: Are ESCRs popular in erroneous software changes?
• RQ2: Are faults common in microservice systems?
• RQ3: What data can be used to identify ESCRs?
2) The Observations for Research Questions: We present

three key observations corresponding to the research questions.
Observation 1: ESCRs are prevalent in microservice sys-

tems. Erroneous software changes emerge as the primary cause
of service failures in production. Among the 256 analyzed in-
cidents, 66.02% of incidents are caused by erroneous software
changes. Our analysis revealed that 37.87% of the erroneous
software changes qualified as ESCRs, which decreased the
fault resilience of microservice systems, leading to failures
under the occurrence of faults. For instance, an ESCR that
impairs the functionality of a backup node does not instantly
lead to a service failure, as the primary node continues to
operate normally. However, when a fault happens in the
primary node, causing it to fail, service failure will happen

2

TABLE I: Typical ESCRs and their distribution in 256 incidents

Category Description Percentage

I - Insufficient redundancy Improper reduction of redundant resources requested under faults 29.69%

II - Backup node misconfiguration Configuring invalid backup nodes under faults 23.44%

III - Problematic request configuration Permitting problematic requests to perform bad operations 32.81%

IV - Erroneous forwarding strategy Misconfiguring forwarding strategies for requests under faults 14.06%

because the compromised backup node is incapable of taking
over the services. We summarized the typical ESCRs in 256
incidents into four categories, as presented in Table I.

Observation 2: Faults are frequent and unpredictable in
microservice environments. Microservice systems operate in
environments prone to frequent and unpredictable faults. Our
study of 256 incidents revealed that 57.42% were related
to faults occurring in production. These incidents were not
only related to ESCRs but also directly resulted from faults
due to either increased fault severity or flaws in the original
system design. We list typical faults in Table II. Introducing
ESCRs into this volatile environment poses significant risks,
potentially compromising the service quality [8].

TABLE II: Typical faults in the collected incidents

Category Fault

Problematic workload F1 - Workload spike
F2 - Expired requests

Network fluctuation
F3 - Network delay
F4 - Network packet loss
F5 - Network packet duplication

Host failure
F6 - Abnormal CPU usage
F7 - Abnormal memory usage
F8 - Disk I/O failure

Observation 3: Analyzing KPIs proves to be an effective
strategy for identifying software errors. In these incidents, we
observed widespread use of Key Performance Indicator (KPI)
monitoring to detect service failures. Typically, two categories
of KPIs are employed: business KPIs (e.g. request success rate,
request duration, etc.) and machine KPIs (e.g. CPU usage,
memory usage, I/O time, etc.) [5]. Previous studies [5, 9]
utilize these KPIs to identify erroneous software changes.
Machine learning techniques have been investigated in these
methods to analyze millions of KPIs in real-world microser-
vice systems. Yet, current research struggles to determine an
adequate monitoring duration to cover the occurrence of faults
with the balance of overhead to detect ESCRs.

In summary, these three observations motivate the identifi-
cation of ESCRs with the utilization of fault injection to assess
fault resilience. Considering the considerable risk of deploying
ESCRs in production, it is necessary to propose an automated
approach to identify ESCRs accurately and efficiently before
they make the microservice system less fault-resilient.

B. Problem Statement

We utilize fault injections in a staging environment with
KPI monitoring to identify ESCRs before their production
deployment. The problem statement is as follows: For a given

software change sc, we evaluate it in a staging environment
by injecting a set of faults F = {f1, f2, ..., fn}, which is
automated by KPI analysis using a suite of fault-specific
classifiers C = {cf1 , cf2 , ..., cfn}. The basic task of cf is to
classify a KPI segment pair (s′f , s

sc
f), where s′f denotes

the pre-change KPI segment in the duration of fault
f , while sscf denotes the post-change KPI segment after
deploying sc. The output of cf indicates the probability
that abnormal KPI variations occur. The classification
results of C are subsequently aggregated to assess the
impacts of sc on fault resilience, aiming to determine
whether sc is an ESCR. Therefore, operators can make
decisions to prevent the deployment of ESCRs in production.

TABLE III: Three KPI segment pairs for one KPI

Name Segment 1 Segment 2

p1 pre-change s′f in d′f post-change sscf in dscf
p2 pre-change s′n in d′n pre-change s′f in d′f
p3 post-change sscn in dscn post-change sscf in dscf

III. FRAMEWORK DESIGN

A. Framework Overview

Fig. 1 presents the overview of ResilienceGuardian, which
is composed of two phases: offline training and online de-
tection. In the offline training phase, we train a suite of
classifiers C for a given microservice system in the staging
environment. First, we collect data in the microservice system
as pre-change KPI segments and utilize data augmentation to
generate pseudo-labeled datasets for each fault. Then, we build
a suite of fault-specific classifiers C for the detection phases.
Each software change, denoted as sc, initiates a single online
detection phase. First, we deploy sc and collect data to obtain
post-change KPI segments. The segments are combined with
pre-change ones to form KPI segment pairs for classification.
Subsequently, classification results are aggregated to identify
ESCRs, which are further organized as a report to assist
operators in making final decisions. Changes determined as
normal during the detection phase of ResilienceGuardian are
eligible for deployment in production environments. In the
next, we present the key components of ResilienceGuardian
in detail.

B. Data Collection

We use an open-source monitoring toolkit, Prometheus [12],
to collect KPI data. As faults lead to new KPI patterns, we col-
lect one KPI dataset df for each injected fault f . In the training
phase, ResilienceGuardian collects a normal KPI dataset d′n

3

Fig. 1: Overview of ResilienceGuardian

and fault-injected KPI datasets D′ =
{
d′f1 , d

′
f2
, ..., d′fn

}
. In

the detection phase, dscn and Dsc =
{
dscf1 , d

sc
f2
, ..., dscfn

}
are

collected after deploying sc. Then, for each fault, we combine
pre-change and post-change data to build a dataset consisting
of KPI segment pairs, where one KPI corresponds to a set of
three pairs P = {p1, p2, p3}, as shown in Table III. In addition
to the basic task of classifying p1 (Section II-B), we incor-
porate the classification of p2 and p3 as two supplementary
tasks for cf to support the identification of ESCRs described
in Section III-E.

1) Fault Injection: In ResilienceGuardian, fault injections
must encompass typical faults to reveal fault resilience. Re-
silienceGuardian applies a popular fault injection tool, Chaos-
Blade [13], due to its capability of injecting all the typical
faults listed in Table II, as well as its rapid deployment
capabilities. Recent research provides strategies to generate
fault sets automatically [8]. ResilienceGuardian can integrate
these strategies to facilitate injections. For a fault set F =
{f1, f2, ..., fn}, a fault f is configured as a 3-tuple (i, ts, d),
where i denotes a fault in Table II, ts indicates the start time
point of the injection, and d represents the injection duration.
The shape of the workload, which determines KPI patterns,
can potentially impede the analysis of an ESCR’s impacts on
KPI patterns. Thus, we employ an open-source load testing
tool, Locust [14], to manage the workload in the staging
environment. In detail, we replay the same workload on a
fixed period T . Specifying ts and d sets the time period of the
injection corresponding to a particular segment of workload.
The injection duration d is configured according to specific
requirements, varying from minutes to hours. A certain interval
must elapse between injections to ensure that the system
attains a stable, normal state before each subsequent injection.

2) KPI Segment Extraction: In a d, we record the
KPI segment s corresponding to the fault duration instead
of an entire time series to avoid additional noise and
computational overhead. Specifically, for a KPI time se-
ries X = {x1, x2, ..., xw}, we extract the segment s ={
xts , xts+1, ..., xts+d, xts+d+1, ..., xts+d+⌈0.5d⌉

}
. The ratio-

nale for appending
{
xts+d+1, xts+d+2, ..., xts+d+⌈0.5d⌉

}
lies

in the phenomenon where certain faults exert a sustained
influence even after the injection ends.

C. Data Augmentation

Training a classifier requires a labeled KPI dataset; nonethe-
less, manually labeling massive KPIs is excessively time-
consuming, constraining the broad application of Resilience-
Guardian. We utilize data augmentation to generate KPI
segment pairs with pseudo-labels. For each classifier cf , we
generate a labeled dataset from d′f . A labeled KPI pair is
composed of a s′f in d′f and a new segment generated from
s′f . We aim at classifiers capable of recognizing variations in
KPI segment pairs; thus, the generation of new KPI segments
is supposed to represent the potential variations.

TABLE IV: Descriptions of ESCRs designed in this paper

Category Description

I E1 - Reducing CPU resources improperly
E2 - Reducing memory resources improperly

II E3 - Configuring insufficient CPU resources
E4 - Configuring insufficient memory resources

III

E5 - Permitting expired requests to access invalid
databases
E6 - Permitting expired requests to invoke death
loops

IV E7 - Interrupting the forwarding of requests
E8 - Forwarding requests to invalid backup nodes

1) A study of KPI variations: To investigate variations
in KPI segment pairs, we used two widely used benchmark
microservice systems, HipsterShop [10] and Train-Ticket [11],
to generate 200 instances of ESCRs derived from real-world
incidents, as outlined in Table I. Table IV gives detailed
descriptions of the ESCRs designed by us. For each ESCR,
we generated 10 instances in HipsterShop and 15 instances
in Train-Ticket. The study comprised two steps. First, we
collected d′n and D′ in the microservice system. Then, we
deployed ESCR instances (sc) respectively. After each de-
ployment of sc, we collected dscn and Dsc. For each ESCR,
we constructed P (Table III) for each KPI. We formed a
dataset with all the KPI pairs and applied OmniCluster [15]
to cluster the dataset. The output clusters contained KPI pairs
with similar variations, where we observed 6 categories [16]
of variations illustrated in Fig. 2.

4

Fig. 2: Six categories of variations in KPI segment pairs and some examples. Red areas denote ESCRs’ impacts on KPIs.

2) KPI Segment Pair Generation: Fig. 3 shows the gener-
ation process of one KPI segment pair, containing two steps.
First, we randomly select a KPI segment and inject noise into it
to generate a new one with varied patterns, constituting a KPI
segment pair. Then, noise intensity scaling is performed on
generated pairs to build the training dataset. Below, we present
the process of noise injection and noise intensity scaling.

Noise injection. A KPI time series’ specific characteris-
tics, noise intensity [9], is utilized to measure the amount
of injected noise. In the staging environment, KPIs exhibit
periodicity because we replay the workload on a fixed period
T (Section III-B1). Noise intensity NI denotes the mean of
the standard deviations over all periods at each time point. For
a time series X = {x0, x1, x2, ..., xT−1, x0+T , ..., xK×T−1}
containing K periods, NIX is calculated as Eq. (1) shows.

NIX =
1

T

T−1∑
i=0

√√√√√ 1

K

K−1∑
j=0

xi+j×T − 1

K

K−1∑
j=0

xi+j×T

2

(1)
We configure weak noise as (0×NI, 3×NI], and strong
noise as (3×NI, 10×NI] referring to k-σ rule [17] widely
used in industry. Strong noise is injected in positive instances
to induce variations in the modified segment. On the contrary,
negative instances are generated by injecting weak noise. We
designed two injectors, Ip and In, to inject noise of specific
patterns. Ip generates positive instances by injecting strong
noise whose patterns match with the 6 categories of variations
in Fig. 2. To enhance the variety of generated segments, we
select a random subset of variations when injecting noises
into a specific segment instead of considering 6 categories
mutually exclusive. The generated segments comprehensively
reflect the potential variations, assuring the validity and quality
of training datasets. In injects Gaussian noise configured by
a distribution N ∼ (0, NI2) to generate negative instances,
aiming to simulate random noise in a time series [9, 16].

Noise intensity scaling. Because KPIs in a microservice
system might have NIs that vary tens of times, the different
amount of injected noise leads to the low performance of
one classifier to classify all KPI pairs with distinct NIs [9].
To solve this problem, we propose noise intensity scaling to
mitigate the impact of NI variations. Specifically, we set
the default noise intensity, NIdefault. For a KPI segment
{x0, x1, ..., xi, ..., xm}, the scaling process is expressed as

Eq. (2), where NIX denotes NI of a KPI time series X from
which the segment derives.

xi-scaled = xi ×
NIdefault

NIX
(2)

The scaled segments replace the original ones to constitute
the training set. This technique enables a classifier to classify
KPI segment pairs with diverse NIs. The configuration of
NIdefault is to standardize the NI across different KPIs;
thus, the specific value of NIdefault does not affect the
effectiveness of noise intensity scaling. In ResilienceGuardian,
we set NIdefault to 1.5.

Fig. 3: Generate labeled pairs for one KPI segment

D. Classifier Design

The classifier design within ResilienceGuardian is tailored
to address the heightened complexity of KPI patterns resulting
from fault injections, with particular emphasis on managing
the substantial training and detection overhead.

1) Classification Model: We employ a fault-specific strat-
egy to train individual classifiers for each fault, resulting in
a suite of classifiers capable of effectively handling complex
KPI patterns induced by injected faults. Besides, the strategy
makes it convenient to incorporate or remove classifiers to
align with F , exhibiting flexibility in maintaining the fault set
F to adapt to the evolution of microservice systems. We design
a compact deep-learning model for classifiers to mitigate the
training overhead. A lightweight network, long short-term
memory (LSTM), is adopted owing to its advanced capability
to process complex sequential data [5, 18]. This choice yields
satisfying performance in identifying ESCRs as detailed in
Section IV-B; thus, more complex transformer-based networks
are not explored. The component of classifier design in Fig. 1
illustrates the classification model. In the model, a two-layer
LSTM is adopted to extract fixed-length features from a KPI
segment pair. The features are then fed into fully connected
(FC) layers to output the probability of the positive label.

5

Fig. 4: A parallelism strategy, where n classifiers work in
parallel and each classifier classifies k KPI pairs in parallel.

The value of probability quantifies variations in a pair’s two
segments, facilitating the subsequent identification of ESCRs
(Section III-E). In the training process, binary cross-entropy
losses are adopted.

2) Transfer Learning: A comprehensive assessment of fault
resilience in a microservice system typically necessitates a
fault set F comprising dozens of faults [8]. Implementing the
fault-specific strategy by directly training classifiers separately
amplifies the training overhead by tens of times, which is
unacceptable as the overhead of training one classifier is sub-
stantial in real-world microservice systems housing millions
of KPIs. We propose a transfer learning technique to mitigate
the training overhead. Section IV-D2 evaluates the utilization
of one fault-specific classifier for other faults, where although
the performance is degraded, the classifier still outperforms
most baselines. This result indicates that the classifier acquires
the ability to extract features of KPI pair variations across
faults, as the generated training dataset encompasses a diverse
range of variations. Thus, the key to avoiding performance
degradation is to exclude interfering information regarding
specific KPI patterns in the features output from LSTM,
which can be accomplished by fine-tuning the parameters of
subsequent FC layers. This inspires us to utilize a smaller
fine-tuning dataset to transfer a fault-specific classifier for
application to other faults. Initially, one classifier cf is trained
for a fault f . Then, cf is transferred to classifiers for other
faults. Specifically, we freeze cf ’s parameters in LSTM layers
and fine-tune the FC layers.

3) Parallelism Strategy: To manage the significant detec-
tion overhead, the classification model is designed to clas-
sify each KPI segment pair independently, which enables
a highly parallelized strategy for accelerating the detection.
Furthermore, the detailed outputs of abnormal KPIs can assist
engineers in conducting a deeper analysis of defects in ESCRs
and guiding subsequent development efforts. The strategy is
configured as a 2-tuple (k, n), where k denotes a classifier
processes k KPI pairs in parallel, and n denotes n classifiers
work in parallel. The value of k depends on the size of GPU
memory resources and the length of KPI segments. Engineers
can configure n to equal the number of available GPUs. Fig. 4
illustrates the application of a strategy (k, n).

E. ESCR Identification

KPI variations cannot be used directly as ESCR’s indicators
because variations might be attributed to a normal change.

Certain changes enhancing fault resilience also influence KPI
patterns during fault occurrences. In ResilienceGuardian, the
identification of ESCRs is composed of two phases: KPI-level
analysis and result aggregation.

1) KPI-level analysis: In the first phase, for each injected
faultf , we analyze the classification results of each KPI’s
three pairs (Table III) and divide KPIs into 4 categories. The
first phase contains two steps. First, the classification of p1
is performed for every KPI, whose output Op1 quantifies
KPI pattern variations that reflect the impacts of software
changes. We assign a KPI to category C1 if its Op1

does
not exceed a threshold δ, indicating that the KPI’s pattern
remains consistent after deploying the software change. The
default value of δ is set to 0.5, given that Op1

is a probability
value ranging from 0 to 1. We conduct the second step for
other KPIs in which variations exist, containing classifications
of p2 and p3. Op2

denotes the impacts of faults on the pre-
change microservice system. Op3

denotes the impacts of faults
after deploying the software change. In Op2

and Op3
, a smaller

value indicates that patterns are more similar, reflecting a more
resilient microservice system. Hence, the lack of a significant
difference (|Op2

− Op3
| < σ) between Op2

and Op3
means

that the software change affects KPI patterns rather than the
system’s resilience (C2). Such a change is also acceptable. The
value of σ is determined by the dispersion of Op2

and Op3
;

thus, we utilize k-σ rule [17] to set σ to 3×min(σOp2
, σOp3

),
where σOp2

and σOp2
denote the standard deviations of Op2

and Op3
. A greater value for Op2

compared to Op3
indicates

that the change enhances resilience (C3), whereas the inverse
suggests that resilience is compromised by the change (C4).

2) Result aggregation: In the second phase, we aggregate
the results to identify ESCRs. We calculate a vulnerability
score vsf for each member f in the fault set F , resulting in
V S = {vsf1 , vsf2 , ..., vsfn}. The vs derives from aggregating
the classification outputs of KPIs categorized into C4. Eq. (3)
shows the calculation of vsf .

vsf =

KPI∈C4∑ |Op2 −Op3 |
σ

Op1
(3)

The magnitude of |Op2
− Op3

| signifies the extent to which
variations are associated with resilience degradation, thereby
being utilized to scale Op1 . A threshold θ is set to determine
whether a vsf indicates an ESCR. Owing to the skewed
distribution of vsf s, the knee-point method [19] can be applied
to automatically pick the knee-point as θ. If one of vsf s in
V S exceeds θ, the software change is identified as an ESCR.

F. Operator Decision

Despite the results recommended by ResilienceGuardian,
automated algorithms could not make the final decision. Op-
erators should confirm these results to avoid false positives and
negatives. Following each detection phase, ResilienceGuardian
records the KPI-level analysis and the aggregation result to
generate a detection report of the evaluated software change,
aiming to facilitate the manual decision process. Fig. 5 shows
an example of the report for an ESCR.

6

Fig. 5: A demo of report generated by ResilienceGuardian

IV. EVALUATION

To evaluate the performance of ResilienceGuardian, we
conducted experiments to answer four research questions:
• RQ1: What is the performance of ResilienceGuardian in

identifying ESCRs?
• RQ2: What is the performance of the classification model

in ResilienceGuardian?
• RQ3: What is the contribution of key components to Re-

silienceGuardian’s performance?
• RQ4: What is the impact of related hyperparameters?

A. Experiment Setup

1) Dataset and Metrics: Three datasets are used in the
evaluation.

Dataset A and Dataset B. We adopt dataset A and dataset
B to evaluate ResilienceGuardian’s performance in identifying
ESCRs. These datasets are collected from two widely adopted
benchmark microservice systems, HipsterShop [10] and Train-
Ticket [11], respectively. The sizes of the monitored KPI
sets configured in HipsterShop and Train-Ticket are 100 and
410. The corresponding F is composed of 10 typical faults
in production. The construction of dataset A and dataset B
uses the data collection component in ResilienceGuardian,
consisting of D′, Dsc, d′n, and dscn . Dataset A has 80 ESCRs
and 50 normal changes in HipsterShop, containing 286,000
KPI segments in total. Dataset B has 120 ESCRs and 75
normal changes in Train-Ticket, containing 1,758,900 KPI seg-
ments in total. The design of these ESCRs has been presented
in Section III-C1. With the utilization of fault injection in
ResilienceGuardian, baseline approaches can detect ESCRs by
analyzing the fault-affected KPI data in these two datasets.

Dataset C. The third dataset is the UEA classification
archive [20], a popular choice for evaluating classification
algorithms. It consists of 30 datasets, representing a variety
of critical classification domains. We adopt dataset C to
demonstrate the classification ability of ResilienceGuardian.

Metrics. We adopt the precision (P), recall (R), and F1-
score (F1) to evaluate the effectiveness of approaches. To
evaluate the overhead of ResilienceGuardian, the training
time of models and the average duration of the detection
phase for each software change is additionally considered.
When employing the UEA archive in RQ2, we use a Critical

Difference (CD) diagram [21], which is a powerful tool for
performance comparison over multiple datasets [22]. The hor-
izontal coordinates of the CD diagram indicate the mean ranks
of the models for all datasets, where lower ranks correspond
to higher performance. The solid line is created by Wilcoxon-
Holm tests, indicating no significant difference in performance
among the models crossed by that line. The running time
compared in the CD diagram refers to the duration to complete
the classification of the entire UEA archive.

2) Implementations and Parameters: We conducted all ex-
periments on Ubuntu 20.04.6 LTS with an Intel(R) Xeon(R)
CPU E5-2630 v3 @ 2.40GHz, a 64-bit operating system, and
one NVIDIA GeForce RTX 3090 GPU. All methods were im-
plemented in Python. The parameters of ResilienceGuardian
are as follows. We generated 1000 positive and negative
instances for each KPI to build the training dataset, while
the fine-tuning dataset contained 10 positive and negative
instances per KPI. For the classification model, the hidden
sizes of two-layer LSTM were configured as 100 and 60,
respectively. The hidden sizes of the two FC layers were
set to 30 and 2. During training, the batch size was 1000,
the number of epochs was 100, and the Adam optimizer
was adopted with a learning rate of 0.001. In the detection
phase, we configured parallelism strategies to process all KPI
pairs in each change simultaneously due to the small scale of
HipsterShop and Train-Ticket. For the compared baselines, we
used the parameters provided in their papers and open-source
codes. In addition, we configured a uniform early stopping
strategy for the deep classification models to avoid overfitting.

B. RQ1: ResilienceGuardian’s performance for ESCR Identi-
fication

We used dataset A and dataset B to perform the evaluation.
1) Baselines: The compared approaches could be divided

into two categories by deriving domains.
Erroneous software change identification. Gandalf [3]

and SCWarn [5] detect anomalies attributed to ESCRs after
deployments in the fault-affected KPIs. Gandalf implements an
anomaly detection component whose design is not clear; thus,
we followed prior studies [5, 9] to use HoltWinters. SCWarn
predicts post-change KPIs using a multi-modal LSTM and
compares predictions with real ones. Differing from preced-
ing approaches, Kontrast [9] utilizes contrastive learning to
directly compare pre-change and post-change KPIs.

Anomaly Detection. We chose three baseline approaches
that can be adapted for identifying ESCRs. Lumos [4] uses
a t-test to compare pre-change and post-change KPIs [5, 23].
Donut [24] builds a generative model to compute the recon-
struction probability of post-change KPIs. Telemanom [18]
uses LSTM to predict post-change KPIs.

2) Experiment results: ResilienceGuardian outperforms all
other approaches, as shown in Table V, achieving 0.90 and
0.89 F1-score in two microservice systems. In comparison,
the optimal baseline, Kontrast, achieves an average F1-score
of 0.82. Furthermore, ResilienceGuardian achieves a training
time reduction of at least 56.23% on both two datasets,

7

TABLE V: Performance of approaches on dataset A and dataset B

Task Approach Dataset A Dataset B
P R F1 Training(min) Detection(s) P R F1 Training(min) Detection(s)

ESCR identification

Gandalf 0.74 0.68 0.71 87.32 34.32 0.72 0.66 0.69 355.21 31.09
SCWarn 0.64 0.59 0.61 23.91 9.35 0.69 0.65 0.67 77.36 38.18
Kontrast 0.88 0.81 0.84 290.74 0.10 0.82 0.79 0.80 693.33 0.11
Lumos 0.55 0.70 0.62 - 15.12 0.63 0.59 0.61 - 19.07
Donut 0.78 0.54 0.64 327.86 17.24 0.72 0.67 0.69 1368.57 21.38

Telemanom 0.59 0.67 0.63 197.31 5.24 0.55 0.58 0.56 814.89 5.32
ResilienceGuardian 0.91 0.89 0.90 8.32 0.12 0.87 0.92 0.89 33.86 0.12

Ablation study

ResilienceGuardianpre 0.79 0.83 0.81 9.42 0.12 0.81 0.78 0.79 35.42 0.12
ResilienceGuardiancate 0.77 0.87 0.82 20.85 0.13 0.83 0.80 0.81 68.54 0.14
ResilienceGuardianone 0.83 0.79 0.81 6.88 0.12 0.76 0.87 0.81 31.09 0.13
ResilienceGuardianall 0.94 0.91 0.92 68.79 0.12 0.93 0.95 0.94 310.92 0.12

Fig. 6: The relationship between the number of KPI pairs
processed in parallel and the detection duration

This is primarily attributed to the lightweight classifiers
design and transfer learning, which significantly facilitates
ResilienceGuardian’s deployment in large-scale microservice
systems. When considering the average duration of a single
software change’s detection phase, both ResilienceGuardian
and Kontrast surpass other approaches, achieving an approxi-
mate processing time of 0.1 seconds per change. To further
demonstrate the advanced scalability of ResilienceGuardian
utilizing parallelism strategies, we build a dataset containing
one million KPIs by duplicating KPI segment pairs. Fig. 6
illustrates the relationship between the number of KPI pairs
processed in parallel and the detection duration of the dataset,
with both axes logarithmically scaled. We only explore strate-
gies with n set to 1 due to the satisfactory performance achiev-
able with a single 3090 GPU. Empirical tests demonstrate
that a 3090 GPU can classify approximately up to 81,300
KPI pairs in parallel, corresponding to a (2710, 1) strategy,
as one KPI leads to 30 pairs in ResilienceGuardian. The
optimal strategy accomplishes the detection phase within a
mere 48 seconds, whereas the serial strategy demands nearly
13 hours. In conclusion, ResilienceGuardian is a competitive
approach for accurately and timely identifying ESCRs before
their deployments, thereby ensuring the fault resilience of
microservice systems in production. Moreover, the CPU and
memory consumption of data collection and fault injections
in ResilienceGuardian is less than 5% for each pod in the
microservices, indicating that it does not impact the operation
of microservices.

C. RQ2: ResilienceGuardian for Classification

The fundamental task in ResilienceGuardian is to classify
KPI segment pairs, which is crucial for identifying ESCRs.

1) Baselines: The evaluation involves the following base-
lines: ROCKET [25] is a SOTA non-deep classifier [22] that

(a) Pairwise statistical difference of F1-score

(b) Pairwise statistical difference of running time

Fig. 7: Critical difference diagrams on dataset C

utilizes random convolution kernels to obtain feature maps.
ResNet [26] is a SOTA deep classifier [22] that comprises a
deep architecture containing 9 convolutional layers connected
by residual shortcuts. MCDCNN [27] is a traditional deep
CNN that applies convolutions independently to each dimen-
sion of the time series. In addition, we implemented CNNone
by simply replacing LSTM with CNN in ResilienceGuardian’s
model. The primary difference between CNNone and MCD-
CNN is that CNNone applies one convolution to all dimensions
of the input. We added MCDCNN and CNNone to demonstrate
the benefits of utilizing LSTM.

2) Experiment results: Fig. 7a indicates no significant
difference in performance between ResilienceGuardian and
ROCKET in F1-score. While ROCKET outperforms other
deep learning approaches, it becomes computationally inten-
sive to achieve outstanding accuracy, as shown in Fig. 7b. Con-
sequently, it is impractical for large-scale microservice systems
containing millions of KPIs. ResilienceGuardian and ResNet
are similarly efficient and significantly better than ROCKET.
On average, ROCKET requires 9 times longer for classification
tasks than ResilienceGuardian. Furthermore, the superiority of
ResilienceGuardian over MCDCNN and CNNone verifies the
adoption of LSTM for classification purposes. In summary, the
findings from dataset C demonstrate that ResilienceGuardian is
generally competitive in typical classification tasks, attributed
to a satisfactory balance between effectiveness and efficiency.

8

Fig. 8: The acceleration ratio of transfer learning

D. RQ3: Ablation Study of Key Components

1) Data Augmentation: To evaluate the design of data
augmentation in ResilienceGuardian, we compared it with the
SOTA augmentation technique proposed in Kontrast. There are
two primary distinctions: First, compared with the predefined
injector Ipre in Kontrast, Ip and In in ResilienceGuardian
are crafted to inject noise aligned with variations identified
in clustering research on KPI pairs. Second, while Kontrast
divides KPIs into 5 categories to mitigate the diversity of
NI and generates a dataset for each category, we employ
noise intensity scaling to produce a single dataset. Therefore,
we evaluated two variants of ResilienceGuardian. Resilience-
Guardianpre is built by replacing Ip and In with Ipre. Re-
silienceGuardiancate is built by replacing the scaling technique
with the classifier. As listed in Table V, ResilienceGuardianpre
achieves an average F1-score of 0.80, validating the superiority
of our injector design. ResilienceGuardiancate requires nearly
double the time of ResilienceGuardian to achieve an average
F1-score of 0.82. We present an analysis using HipsterShop as
a case study. According to Kontrast’s design, a total of 400,000
KPI pairs are generated for 5 training datasets, while utilizing
the scaling technique generates one dataset containing 200,000
pairs, leading to a reduction in the training time. Besides, the
set of 100 KPIs monitored in HipsterShop contains dozens
of distinct NI , rendering the division into 5 NI categories
coarse-grained. Scaling KPI pairs to a uniform NIdefault
demonstrates better performance.

2) Transfer Learning: We constructed two variants of Re-
silienceGuardian to demonstrate the benefits of utilizing trans-
fer learning. ResilienceGuardianone trains one fault-specific
classifier and employs it for all faults, while Resilience-
Guardianall trains the suite of classifiers without leveraging
transfer learning. ResilienceGuardian achieves a better F1-
score (0.9) than ResilienceGuardianone’s F1-score (0.8) and
only increases 1.44 minutes of training time. Compared with
ResilienceGuardianall, ResilienceGuardian can reduce 88.51%
training time and only decrease the F1-score by 3% on
average. These observations prove that the design of transfer
learning in Section III-D2 can highly speed up the model
training process. Building upon the parameters outlined in
Section IV-A2, we expanded the training set through duplica-
tion to further investigate the benefits of implementing transfer
learning within a larger microservice system containing more
KPIs. Fig. 8 illustrates that the acceleration ratio of transfer
learning stabilizes at approximately 70 times that of standard
training as the number of KPIs increases. Therefore, we could
calculate the approximate acceleration ratio as #F×70

(#F−1)×1+70

(a) Hyperparameter-α (b) Hyperparameter-β

Fig. 9: Impacts of α and β on two microservice systems

for a complete training phase. The effect of transfer learning
increases as the fault set F expands. In dataset A and dataset
B where the size of F is 10, the calculated ratio is 8.86,
approximately equal to the real average ratio of 8.73.

E. RQ4: Impacts of Hyperparameters

In ResilienceGuardian, the size of training and fine-tuning
datasets affects the effectiveness of corresponding classifiers
and determines the training overhead. Two hyperparameters
configure the size of these generated datasets.

1) #Pairs per KPI for Training (α): α determines the size
of the training dataset. Fig. 9a shows that both the F1-score and
training time of one classifier increase as α becomes larger.
The performance is relatively stable when α exceeds 1000.
Thus, α is set to 1000 in this paper.

2) #Pairs per KPI for Transfer Learning (β): β determines
the size of the fine-tuning dataset. Fig. 9b illustrates that
small datasets are sufficient for transfer learning, as the F1-
score is insensitive to small values of β. This finding verifies
that transfer learning can be accomplished with minimal
investment. Thus, we set β to 10 in this paper.

V. DISCUSSION

There are two primary limitations of ResilienceGuardian.
The first is the lack of utilizing multiple data sources. Ex-
isting research has explored the feasibility of using traces
and logs to facilitate the identification of erroneous software
changes [3, 5]. The potential benefit of using multiple data
sources can be studied in the future. The second is the
risk that the performance of detecting ESCRs in the staging
environment is not necessarily equivalent to that in the pro-
duction environment. However, ResilienceGuardian can also
work in the production environment where fault injection is
acceptable. Therefore, subsequent research has two directions:
(1) Controlling the risks associated with change deployment
and fault injection in production. (2) Evaluating and reducing
disparities between the staging and production environment.

VI. RELATED WORK

A. Fault Injection

In the current research, several tools have been proposed
to inject faults into microservice systems [13, 28, 29]. These
tools support injections of an extensive range of faults, capable
of covering typical faults in production. The blast radius is
an important feature to characterize the potential scope and
impact of injected faults. Recent investigations advocate for
the incorporation of multiple blast radii, spanning service [29],

9

service instance [13], and request levels [28]. However, achiev-
ing the utmost granularity with request-level injections may
necessitate modifications tailored to the target microservice
system [28], hindering widespread adoption.

B. Erroneous Software Change Identification
Current research identifies erroneous software changes by

comparing a system’s pre-change and post-change behaviors
[3, 4, 5, 9]. These approaches extract expected patterns of
post-change behaviors from pre-change data, such as KPIs and
logs [3, 5]. Gandalf [3] and SCWarn [5] convert the problem
to anomaly detection and predict the post-change behaviors,
while Lumos [4] and Kontrast [9] directly compare the pre-
change and post-change behavior patterns.

VII. CONCLUSION
This paper conducts an empirical study on 256 real-world

incidents from several enterprises. Our quantitative analysis
reveals the importance of avoiding ESCRs to maintain the
quality of service. Furthermore, the observations motivate us to
propose a novel framework named ResilienceGuardian, which
aims to identify ESCRs in a staging environment through
fault injection and parallel KPI classification. The output of
ResilienceGuardian can effectively assist engineers in carrying
out proactive operations to prevent ESCRs with greater ease. In
the evaluation, ResilienceGuardian achieves outstanding F1-
score in identifying ESCRs, outperforming SOTA baselines.
Due to several novel model designs, ResilienceGuardian can
significantly reduce training overhead and support minute-level
ESCR detection in large-scale microservice systems.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China under Grant 62072264, and the Beijing
National Research Center for Information Science and Tech-
nology (BNRist) key projects.

REFERENCES
[1] A. Singleton, “The economics of microservices,” IEEE Cloud Comput-

ing, vol. 3, no. 5, pp. 16–20, 2016.
[2] B. Beyer, C. Jones, J. Petoff, and N. R. Murphy, Site reliability

engineering: How Google runs production systems. ” O’Reilly Media,
Inc.”, 2016.

[3] Z. Li, Q. Cheng, K. Hsieh, Y. Dang, P. Huang, P. Singh, X. Yang,
Q. Lin, Y. Wu, S. Levy et al., “Gandalf: An intelligent,{End-To-
End} analytics service for safe deployment in {Large-Scale} cloud
infrastructure,” in 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20), 2020, pp. 389–402.

[4] J. Pool, E. Beyrami, V. Gopal, A. Aazami, J. Gupchup, J. Rowland, B. Li,
P. Kanani, R. Cutler, and J. Gehrke, “Lumos: A library for diagnosing
metric regressions in web-scale applications,” in Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, 2020, pp. 2562–2570.

[5] N. Zhao, J. Chen, Z. Yu, H. Wang, J. Li, B. Qiu, H. Xu, W. Zhang,
K. Sui, and D. Pei, “Identifying bad software changes via multimodal
anomaly detection for online service systems,” in Proceedings of the
29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2021, pp.
527–539.

[6] Google cloud. https://status.cloud.google.com/summary, accessed 2023-
10-26.

[7] X. Li, G. Yu, P. Chen, H. Chen, and Z. Chen, “Going through the
life cycle of faults in clouds: Guidelines on fault handling,” in 2022
IEEE 33rd International Symposium on Software Reliability Engineering
(ISSRE). IEEE, 2022, pp. 121–132.

[8] P. Alvaro, K. Andrus, C. Sanden, C. Rosenthal, A. Basiri, and
L. Hochstein, “Automating failure testing research at internet scale,”
in Proceedings of the Seventh ACM Symposium on Cloud Computing,
2016, pp. 17–28.

[9] X. Wang, K. Yin, Q. Ouyang, X. Wen, S. Zhang, W. Zhang, L. Cao,
J. Han, X. Jin, and D. Pei, “Identifying erroneous software changes
through self-supervised contrastive learning on time series data,” in 2022
IEEE 33rd International Symposium on Software Reliability Engineering
(ISSRE). IEEE, 2022, pp. 366–377.

[10] Hipstershop. https://github.com/GoogleCloudPlatform/
microservices-demo, accessed 2023-10-26.

[11] Train-ticket. https://github.com/FudanSELab/train-ticket, accessed 2023-
10-26.

[12] Prometheus. https://prometheus.io/, accessed 2023-10-26.
[13] Chaosblade. https://github.com/chaosblade-io/chaosblade, accessed

2023-10-26.
[14] Locust. https://locust.io/, accessed 2023-10-26.
[15] S. Zhang, D. Li, Z. Zhong, J. Zhu, M. Liang, J. Luo, Y. Sun, Y. Su,

S. Xia, Z. Hu et al., “Robust system instance clustering for large-scale
web services,” in Proceedings of the ACM Web Conference 2022, 2022,
pp. 1785–1796.

[16] C. Wu, N. Zhao, L. Wang, X. Yang, S. Li, M. Zhang, X. Jin, X. Wen,
X. Nie, W. Zhang et al., “Identifying root-cause metrics for incident
diagnosis in online service systems,” in 2021 IEEE 32nd International
Symposium on Software Reliability Engineering (ISSRE). IEEE, 2021,
pp. 91–102.

[17] 3-sigma rule. https://en.wikipedia.org/wiki/68-95-99.7 rule, accessed
2023-10-26.

[18] K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and T. Soder-
strom, “Detecting spacecraft anomalies using lstms and nonparametric
dynamic thresholding,” in Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery & data mining, 2018,
pp. 387–395.

[19] V. Satopaa, J. Albrecht, D. Irwin, and B. Raghavan, “Finding a” kneedle”
in a haystack: Detecting knee points in system behavior,” in 2011 31st
international conference on distributed computing systems workshops.
IEEE, 2011, pp. 166–171.

[20] A. Bagnall, H. A. Dau, J. Lines, M. Flynn, J. Large, A. Bostrom,
P. Southam, and E. Keogh, “The uea multivariate time series classi-
fication archive, 2018,” arXiv preprint arXiv:1811.00075, 2018.

[21] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
The Journal of Machine learning research, vol. 7, pp. 1–30, 2006.

[22] A. P. Ruiz, M. Flynn, J. Large, M. Middlehurst, and A. Bagnall,
“The great multivariate time series classification bake off: a review and
experimental evaluation of recent algorithmic advances,” Data Mining
and Knowledge Discovery, vol. 35, no. 2, pp. 401–449, 2021.

[23] S. Levy, R. Yao, Y. Wu, Y. Dang, P. Huang, Z. Mu, P. Zhao, T. Ramani,
N. Govindaraju, X. Li et al., “Predictive and adaptive failure mitigation
to avert production cloud {VM} interruptions,” in 14th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 20),
2020, pp. 1155–1170.

[24] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao, D. Pei,
Y. Feng et al., “Unsupervised anomaly detection via variational auto-
encoder for seasonal kpis in web applications,” in Proceedings of the
2018 world wide web conference, 2018, pp. 187–196.

[25] A. Dempster, F. Petitjean, and G. I. Webb, “Rocket: exceptionally
fast and accurate time series classification using random convolutional
kernels,” Data Mining and Knowledge Discovery, vol. 34, no. 5, pp.
1454–1495, 2020.

[26] Z. Wang, W. Yan, and T. Oates, “Time series classification from scratch
with deep neural networks: A strong baseline,” in 2017 International
joint conference on neural networks (IJCNN). IEEE, 2017, pp. 1578–
1585.

[27] Y. Zheng, Q. Liu, E. Chen, Y. Ge, and J. L. Zhao, “Exploiting multi-
channels deep convolutional neural networks for multivariate time series
classification,” Frontiers of Computer Science, vol. 10, pp. 96–112, 2016.

[28] J. Zhang, R. Ferydouni, A. Montana, D. Bittman, and P. Alvaro, “3mile-
beach: A tracer with teeth,” in Proceedings of the ACM Symposium on
Cloud Computing, 2021, pp. 458–472.

[29] C. S. Meiklejohn, A. Estrada, Y. Song, H. Miller, and R. Padhye,
“Service-level fault injection testing,” in Proceedings of the ACM
Symposium on Cloud Computing, 2021, pp. 388–402.

10

