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Abstract—Time series anomaly detection (TSAD) has gained
significant attention due to its real-world applications to improve
the stability of modern software systems. However, there is no
effective way to verify whether they can meet the requirements
for real-world deployment. Firstly, current algorithms typically
train a specific model for each time series. Maintaining such
many models is impractical in a large-scale system with tens
of thousands of curves. The performance of using merely one
unified model to detect anomalies remains unknown. Secondly,
most TSAD models are trained on the historical part of a time
series and are tested on its future segment. In distributed systems,
however, there are frequent system deployments and upgrades,
with new, previously unseen time series emerging daily. The
performance of testing newly incoming unseen time series on
current TSAD algorithms remains unknown. Lastly, the assump-
tions of the evaluation metrics in existing benchmarks are far
from practical demands. To solve the above-mentioned problems,
we propose an industrial-grade benchmark TimeSeriesBench. We
assess the performance of existing algorithms across more than
168 evaluation settings and provide comprehensive analysis for
the future design of anomaly detection algorithms. An industrial
dataset is also released along with TimeSeriesBench.

Index Terms—Anomaly Detection, Univariate Time Series,
Deep Learning, Benchmark

I. INTRODUCTION

In recent years, we have witnessed the rapid growth in
the scale of software systems and services. To ensure service
quality assurance and maintain user satisfaction, IT operation
engineers must monitor the time series metrics like response
time or success rate to judge if there are system failures. Time
series anomaly detection (TSAD) aims to identify irregular
patterns in these time series data, which indicate potential
or existing system failures. The outliers can often signify
critical deviations from the norm, such as impending machine
failures in industrial processes [1] and malignant network
traffic attacks in web applications [2]. Accurate and timely
anomaly detection can help to reduce the mean time to repair,
reduce the loss in revenue and maintain the reputation and
branding for a company.

Owing to the clear significance and applicability of TSAD
in these real-world scenarios, in recent years, a variety of
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anomaly detection methods, particularly those based on deep
learning, are burgeoning incessantly [3]–[10]. Nonetheless,
there is a considerable divergence across the results reported
by different papers even on the same dataset, as they employed
various evaluation criteria and learning schemas. Despite the
existence of some benchmarks for anomaly detection algo-
rithms [11]–[16], they struggle to provide practical guidance
for industrial domain experts to apply and develop deep
learning methods as they pay more attention to statistical
methods. In general, applying TSAD algorithms to practical
systems faces these main obstacles: (I) Training specific model
for each time series and deploying an exclusive model for
each time series results in unaffordable maintenance costs. (II)
New systems are more likely to encounter issues when first
launched or upgraded, which makes anomaly detection even
more essential despite their almost non-existent volume of
historical data. (III) Existing metrics hold one-sided assump-
tions for evaluating how well the algorithms perform, which
cannot offer an effective reference for industrial practice. (IV)
There is no platform continuously integrating new methods
and comparing them in a unified and intuitive manner, similar
to the GLUE Leaderboard in NLP [17], which prevents experts
in the industry from keeping pace with the latest algorithms
and advancements in academia.

In response to the four challenges mentioned earlier, we
propose TimeSeriesBench, an industrial-grade benchmark for
evaluating time series anomaly detection. This benchmark
has four main features: (I) To address the issue of high
maintenance costs and non-deployability caused by existing
works requiring a separate model for each time series, we
adopt an All-in-One training paradigm to assess the detection
performance of current algorithms when only one unified
model is trained. (II) To tackle the inability of existing works
to handle new time series, we employ a Zero-Shot inference
paradigm during evaluation. By using a novel data-splitting
method, we assess the model’s detection performance on
previously unseen curves without retraining or fine-tuning new
time series. (III) We thoroughly integrate existing evaluation
criteria, and propose our own event-based evaluation metric to
ensure that benchmark results can provide effective guidance
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Fig. 1: The industrial-grade concerns and TimeSeriesBench’s solutions on benchmarking univariate time series anomaly
detection algorithms.

for industrial deployment. Also, TimeSeriesBench provides a
series of well-known metrics, which can meet the detection
needs of different downstream application scenarios. (IV) To
solve the problem of industry experts not having access to
a unified and continuously updated set of evaluation results,
we have built an online leaderboard. This leaderboard com-
bines the above three features and conducts a comprehensive
evaluation across more than 168 evaluation settings in terms
of training and testing paradigms, evaluation metrics, and
multiple datasets.

Based on TimeSeriesBench, we evaluate several representa-
tive time series anomaly detection methods ranging from sta-
tistical machine learning and deep learning to large time series
models. From this, we have made some novel observations,
conducted detailed analyses, and offered insights for algorithm
design and deployment. To name a few, models that employ
variational autoencoder exhibit good detection performance
for pattern-wise anomalies, and so far the general time series
models struggle to outperform methods specifically designed
for anomaly detection tasks.

The paper’s main contributions are as follows:

• We present the first online leaderboard for time series
anomaly detection algorithms, which upgrades the ex-
isting evaluation frameworks across multiple dimensions
such as training, inference, evaluation and datasets. It
effectively supports the industry experts’ need to select
the best academic algorithms and provides an industrial-
grade evaluation method for academic algorithms, ensur-
ing the deployability of future algorithms.

• For the first time, we employ the cost-friendly all-in-
one and zero-shot settings to evaluate several well-known
state-of-the-art (SOTA) anomaly detection methods on
TimeSeriesBench and discover some enlightening con-
clusions, providing directions for future optimization.

• We develop and publish a comprehensive evaluation
toolkit built with Python named EasyTSAD, providing
a one-stop solution for data processing, model training,

and assessment, which we have made open source to
the community to accelerate the efficiency of existing
anomaly detection algorithm optimizations.

• To address the issue of inaccurate anomaly labeling in
existing public datasets [18], we collaborated with a
global large company and invited business system experts
to meticulously annotate anomalies in the online system.
After detailed calibration, we have also made the dataset
publicly available to the community as part of Time-
SeriesBench, supplementing existing anomaly detection
datasets. The codes, data and the online leaderboard are
released publicly1.

II. PRELIMINARIES

A. Time Series Anomaly Detection

A time series consists of successive observations of a metric
(e.g., queries per second, sensor value, etc.) over a long period
of time. The series can be represented as T = x1, x2, · · · , xn,
where xi represents an observation at timestamp i, and n
denotes the length of series. An anomaly within these time
series data can be identified as a single point or a sequence of
points that diverge significantly from their former customary
patterns observed in the sequence. Anomaly detection methods
project sequence observations into a probability distribution
space to represent the degree of anomaly of the current
observation, namely anomaly score, and compare it with a
predefined threshold to determine whether an anomaly has
occurred. Due to the scarcity of anomaly labels, existing
deep-learning methods often opt for self-supervised training
approaches.

B. Anomaly Types

Following the behavior-driven taxonomy [13], anomaly
types can be roughly divided into point-wise outliers and

1The code is available at https://github.com/CSTCloudOps/EasyTSAD. The
new proposed dataset is available at https://github.com/CSTCloudOps/Dataset-
for-TSAD, and the online leaderboard is available at https://adeval.cstcloud.cn.



pattern-wise outliers (Fig. 2). Point-wise outliers denote un-
expected incidents like spikes or glitches on individual time
points or within very short periods of time. Pattern-wise
outliers represent anomalous subsequences that span over a
certain period of time, often characterized as discordances or
inconsistencies within the data.

(a) point-wise outlier (b) pattern-wise outlier

Fig. 2: Illustrations of anomaly types. Anomalous segments
are highlighted in pink.

III. TIMESERIESBENCH SETTINGS

We launch TimeSeriesBench to integrate various aspects
that are widely concerned into a pipeline to meet the diverse
needs of scientific research and practical applications, and
further promote the development of communities related to
the field of time series anomaly detection. Aside from model
implementation, the platform also takes some controversial
issues, for instance, learning schema and evaluation criteria
into consideration, to provide the researchers and engineers
with a more comprehensive view of whether the models
perform well in specific scenarios. In this section, we will
illustrate the motivation and the implementation details of each
inductive setting.

A. Datasets

High-quality datasets are the prerequisite for effective train-
ing and reasonable performance evaluations for models. Un-
fortunately, several publicly available time series datasets are
claimed flawed due to their unrealistic anomaly density, or
mislabeled ground truth [18]. Moreover, the proportion of
different types of outliers can vary widely among datasets
as the time series are gathered from irrelevant domains
and applications. For example, Yahoo [19] is dominated by
global and contextual point-wise outliers on the basis of
the behavior-driven taxonomy proposed by [13] (the trivial
first-order difference can achieve a comparable performance),
while pattern-wise outlier plays a significant role in UCR
archive [20] (shown in Sec. V). To this end, we gather multiple
well-labeled real-world datasets covering many application
domains to diversify the distributions of anomalies, meanwhile
excluding markedly flawed datasets (some cases in [18]).
Furthermore, we introduce a synthetic dataset generated from
TODS [13] for the convenience of specific case analysis due
to its good interpretability, because the time series adheres to
well-designed distributions.
Real-world datasets. We employ AIOPS [21], WSD [22],
Yahoo [19], NAB [23], and UCR [20] for evaluations. Real-
world datasets are more susceptible to uncertainties and tend to
mix up with even inexplicable noise, which raises the demand
in terms of model robustness. As the classes of anomalies are
imbalanced among these datasets, practitioners focusing on the

general-purpose model should refer to detection performance
on all datasets, while application-oriented tasks need to pay
more attention to performance on datasets that are strikingly
similar to specific scenes. Meanwhile, we release a new dataset
collected from the production environment, called NEK (Net-
work Equipment KPI), for a more comprehensive evaluation.
Synthetic dataset. TODS [13] introduces a novel taxon-
omy, categorizes anomalies into five types, and publishes
an anomaly generation toolkit in line with their claims. We
conduct modifications based on their codes to generate longer
and non-trivial anomalies, which would allow researchers
to determine if models are capable of particular types of
anomalies in a straightforward manner.

B. Learning Schema

Existing benchmarks take it for granted that the training pro-
cess of the detector should comply with the naive task-specific
schema, more specifically, training an exclusive detector for
each time series solely leveraging its own historical patterns.
We claim that it’s time to break the prevailing stereotype,
especially for deep learning models, given the great transfor-
mations observed in application scenarios during recent years.
On the one hand, with the maturation and improvement of
surveillance systems in various fields, the quantity of time
series to be monitored has experienced a substantial increase,
reaching several orders of magnitude higher than before. This
significantly raised the storage overheads if detectors are ex-
clusive. On the other hand, the previous years witnessed many
seminal works pertinent to foundational models for time series
forecasting or other general tempo tasks [24]–[27]. We aspire
to establish a foundation for the standardized training and
evaluation of large-scale, general-purpose time series models,
especially those designed for anomaly detection. Thus we
introduce two novel learning schemas, called all-in-one mode
and zero-shot mode, to assess the performance variations of
models in scenarios involving large-scale data or zero-shot
settings.
Naive schema. In this mode, we input a single time se-
ries for model training/fitting, and the trained detector is
specifically employed for online detection on that particular
series. Intuitively, this facilitates the model to make a more
precise description of the temporal pattern given enough data.
Nevertheless, it is worth noting that the volume of a single
series tends to be insufficient.
All-in-one schema. In this mode, only one unified model
instance is trained using all the sequences in the dataset,
and the trained model is then applied for real-time anomaly
detection across all sequences within the dataset. This schema
exposes more patterns embedded in various series to the
model, thereby providing an additional opportunity for the
model to learn common and inherent traits shared among
the time series. However, due to the differing definitions of
anomalies across series, this carries the risk of confounding the
model with conflicting information when detecting anomalies
online (i.e., an anomaly present in a specific curve may not
necessarily be considered an anomaly in other curves). Several



(a) naive (b) all-in-one

(c) zero-shot

Fig. 3: Illustrations of three learning schemas. sn indicates the
n-th time series in the dataset.

novel methods [28], [29] have adopted this schema driven by
practical needs.
Zero-shot schema. In zero-shot mode, the whole dataset
is split into two disjoint subsets. One subset is employed
for model training and the other is used to evaluate the
detection performance. This schema has been devised in light
of practical considerations. Specifically, it addresses situations
where a system is newly deployed with no prior historical
data and a robust and adaptable model is required to navigate
through this gap. This places higher demands on the model’s
ability to capture the intrinsic representations of time series.

C. Evaluation Criteria

A flawless evaluation criteria serves as the foundation for
not only assessing the effectiveness of methods but also
guiding model parameters optimization. Nevertheless, recent
research has uncovered substantial limitations in commonly
employed evaluation criteria, on which some seemingly absurd
methods (e.g. noise generated by Random Guess) can outper-
form all others [30]–[33]. Also, some assumptions employed
by certain evaluation criteria also conflict with the principles
of industrial practice. Therefore, it is imperative to revise an
anti-cheating and industrial-oriented evaluation criterion for
our benchmark. It is crucial to emphasize that the selection of
criterion is closely tied to the specific application context and
determines how models perform with regard to the aspect you
are interested in. In this paper, we focus on a generic real-time
anomaly detection task.

In industrial practice, we prefer a criterion that aligns better
with the typical workflow of real-time anomaly detection sys-
tems deployed in real-world scenarios. In a practical software
system, whenever the anomaly score exceeds a predefined
threshold, the system triggers an alert to notify the operators.
Therefore, an operator tends to prioritize the following key
issues:

a. If a method can always detect anomalies within the
anomaly segments, even if the anomaly score surpasses
the threshold only once in each segment, it is still
considered to possess a significant recall capability.

b. Excessive false alarms would be rather frustrating for
operators as they are obligated to examine each alert.

c. The anomaly that lasts longer is likely to be more severe
or challenging than the shorter ones.

d. Detecting and addressing anomalies as early as possible
can significantly mitigate the economic losses caused by
abnormal situations.

Unfortunately, current evaluation criteria [14], [30], [32],
[34]–[36] fail to simultaneously address all of the above issues.
Thus we propose a new criterion that eliminate the effect of
the factors that distort the evaluation results by the following
strategies:
Point Adjustment. We utilize a strategy of ”adjusting” the
output of the algorithm, namely point-adjustment (PA), as the
solution to issue a. This strategy is widely adopted [1], [9],
[28], [37]–[40]. Under this strategy, all timestamps within an
anomalous segment are assigned the highest anomaly score
present within that segment, thus the whole anomaly segment
is considered to be detected if at least one anomaly score
surpasses the threshold. Then the F1 score is obtained in a
point-based manner (point-wise PA in Fig. 4).
Anomaly Weights Revision. However, the naive point-wise
PA introduces biased true positives and false negatives. As
shown in Fig. 4, as a long anomaly segment is detected
under point-adjustment, even if two false alarms are triggered,
the Precision is up to 0.8, which contradicts the demand
corresponding to issue b. The intrinsic flaw of this criteria
is that the detection is rewarded generously while pulsing
false alarm is penalized just once [30]. Garg et al. [33] revise
the primitive PA from an event perspective. Each anomaly
segment is treated as an individual event and contributes to
a true positive or false negative only once. This criterion,
namely event-wise PA, prevents the inflated evaluation scores
originated from illogical criteria, while absolutely overlooking
the length of the anomaly segments. Based on the observation
c , we apply a severity coefficient ln (k + e) to adjust the true
positive and false positive measurements associated with the
given anomalous segment of length k. The criterion is called
reduced-length PA, and we categorize it along with event-wise
PA as event-based evaluation criteria.
Latency Constraint. Issue d is addressed by imposing strict
constraints on the detection latency. As depicted in the il-
lustration (Fig. 5), assuming the latency limit (k) is set to
3, an anomaly is considered effectively detected only if it is
identified within three sampling points after its occurrence. We
designate this strategy as k-delay adjustment. This measure
enables a more precise assessment of whether the model
can meet the requirement of the scenario where there is
a high demand for real-time responsiveness. It is equally
essential to acknowledge that this approach is applicable only
to datasets whose anomalies are labeled without positional
bias. Unfortunately, not all datasets can meet this requirement,
thus we present the related results as supplementary content.
Anomaly Lag Elimination. Most statistical and deep learn-
ing methods generate anomaly scores under prediction-based
or reconstruction-based frameworks, both heavily relying on



Fig. 4: Illustrations of evaluation criteria based on point-
adjustment (PA). Point-wise PA gives an inflated score when
some anomaly segments persist for a long duration. Event-wise
PA treats each anomaly segment as an event, completely dis-
regarding the length of the anomaly segment. Reduced-length
PA considers the trade-offs between the two methods, holding
greater practical significance in real-world applications.

Fig. 5: Illustrations of k-delay adjustment. This strategy can
be combined with point-adjustment as a complementary eval-
uation paradigm.

the pattern provided by previous time windows. Hence, the
recently concluded anomaly segment, particularly those with
longer durations, has the potential to heavily interfere with
the subsequent detection process. As shown in Fig. 6, from
a qualitative perspective, we observe that the method accu-
rately detects the frequency anomaly event. However, some
unexpected false positives emerge due to the aforementioned
reasons, resulting in an underestimated evaluation. We slightly
extended the anomaly segments (less than 10 time points)
to tolerate such occurrences, to make the evaluation more in
line with our intuitive comprehension. We carefully handle
edge cases to avoid merging two anomaly segments during
the operation.

(a) raw segment (b) prolonged segment

Fig. 6: Illustrations of prolonging the anomaly segments. The
blue line denotes the anomaly scores provided by a particular
method. Considering the interference caused by anomalies
on the detection of normal values, we should exclude false
positives that occur immediately after an anomaly segment.

D. Algorithms

We adopt 17 semi-supervised/unsupervised methods that
have raised significant discussion and wide-ranging impact in

the field of univariate time series anomaly detection. From the
perspective of method attributes, these methods can be divided
into statistical methods and deep learning methods.
Statistical methods. These methods, including Sub-LOF [41],
SAND [42], and MatrixProfile [43], directly compute the
minimum similarity between the current and the historical
time window. This manner, however, would make the model
highly sensitive to the data characteristics in specific scenarios,
resulting in a lack of generalizability.
Deep learning methods. These methods learn the traits of
normal patterns from past data in the training phase and judge
whether the current metric is within the normal range in the
online detection phase. Furthermore, deep learning methods
can be categorized into the following families:

Prediction-based. These methods aim to predict the ”nor-
mal” value of the current metric according to the adjacent
observations. If the ground truth is far from the predicted
value, an anomaly alarm will be triggered. The representative
works include AR [44], LSTMAD2 [45],

Reconstruction-based. These methods aim to denoise the
anomaly points by the encoding-decoding phase. If the re-
constructed value is far from the ground truth, it can be
assumed that an anomaly occurs. The representative works
include AE [46], EncDecAD [47], SRCNN [29], Anomaly
Transformer [3], TFAD [28], and TranAD [48].

VAE-based. These methods hold the assumption that the
distribution mapping and sampling process can enhance the
denoising effect of the model and learn a more robust repre-
sentation of normal patterns. The representative works include
Donut [4] and FCVAE [49].

General Time Series Model. The designed universal model
structure in this class can be used for all time series tasks
including time series forecasting, classification, and anomaly
detection. They tend to introduce a more general inductive bias
that aims to better represent the general features of time series.
The representative works include TimesNet [50], OFA [51]
and FITS [52].

IV. EXPERIMENTAL SETTINGS

A. Experimental Platform

All experiments are performed on a server equipped with
Dual Intel(R) Xeon(R) Silver 4316 (12-core) and 256GB
RAM. The operating system of this server is Ubuntu 22.04
LTS. An NVIDIA GeForce RTX 3090 24GB GDDR6 GPU is
utilized to accelerate the training and inference processes of
all models.

B. Datasets

With the exception of the UCR dataset and AIOPS dataset
where the training and testing sets are already specified, we
partition each time series into training, validation, and test sets
following a 4:1:5 ratio. Given that anomalies in some datasets
are randomly distributed, the test set of some sequences does

2As there is no source code available, we implement LSTMAD in two
forms: LSTMAD-α in a seq2seq manner and LSTMAD-β in a multi-step
prediction manner.



not contain any anomalies after partitioning. Therefore, we
exclude these anomaly-free sequences from consideration. Due
to the fact that the original implementation of TODS some-
times generates anomalies that do not match their specified
anomaly types (e.g., constructing trend and seasonal anomalies
may result in obvious global outliers), we modify the anomaly
generation code in TODS to ensure that the injected anomalies
align more closely with their defined types. It is worth noting
that we aggregate the overall evaluation at the dataset level
instead of the curve level because the imbalance in sample
sizes across different datasets can lead to biased results.

C. Learning Schema

We evaluated existing methods under all proposed learning
schemas to obtain a more comprehensive understanding of
the model’s performance from different perspectives. Statis-
tical methods are not assessed under all-in-one and zero-
shot schema due to assumption conflict. Under the all-in-one
schema, taking the UCR dataset as an example, we mix all
samples together from all time series’ training sets during the
training phase. Under zero-shot schema, we use a fixed random
seed to split UCR into two subsets, each of which includes
half of the time series. We mix all training samples from one
subset, and the other acts as the test set. All methods share
the same training set in zero-shot mode.

D. Evaluation Metrics

Following the event-based evaluation criterion outlined in
Sec. III-C, we establish two concrete metrics, namely F1best
and AUPRC. F1best denotes the highest F1 score calculated
under reduced-length point-adjustment when iterating over all
possible thresholds. AUPRC calculates the area under the
precision-recall curve generated according to reduced-length
point-adjustment, which is widely applied in cases where class
imbalance is present in the data. While F1best can measure the
best detection performance that the model can achieve on the
current test set, AUPRC provides a more nuanced evaluation
of the model’s performance across different levels of recall,
which can be important in anomaly detection. A model with
a higher AUPRC tends to be more robust.

E. Implementation details of Algorithms

All methods are implemented in Sklearn or Pytorch, either
based on open-source repositories3 or reproduced based on the
original paper’s description. All methods are integrated into the
TimeSeriesBench suite. If the model has specific hyperparame-
ters set for a particular dataset, we use the parameters specified
for that dataset. Otherwise, we use the default hyperparameters

3SRCNN comes from https://github.com/microsoft/anomalydetector,
AnomalyTransformer comes from https://github.com/thuml/
Anomaly-Transformer, TimesNet comes from https://github.
com/thuml/Time-Series-Library/blob/main/models/TimesNet.py,
Donut comes from https://github.com/wagner-d/TimeSeAD/blob/
master/timesead/models/generative/donut.py, TFAD comes from
https://github.com/DAMO-DI-ML/CIKM22-TFAD, OFA comes from
https://github.com/DAMO-DI-ML/NeurIPS2023-One-Fits-All, FITS comes
from https://github.com/VEWOXIC/FITS,

provided in the source code. The early stopping mechanism is
applied to all methods on the validation set.

V. EXPERIMENTAL RESULTS

In this section we conduct a rigorous analysis of the model’s
effectiveness under various settings, aiming to provide mean-
ingful research insights (RI) from unprecedented perspectives
that can have implications for the design and application
of methods. We aim to provide insights into the following
research questions:

1. How is the overall performance of the models, and what
factors contribute to these results?

2. How does the model’s performance vary under different
learning schemas?

3. How does the model’s performance vary in detecting
different types of anomalies?

A. Overall Performance

The overall ranking list is presented in Fig. 7, including
the performance of each method using naive, all-in-one, and
zero-shot schema, respectively. Since statistical methods, espe-
cially those based on streaming, heavily rely on the premise
of data being identically distributed, these methods are not
well-suited for the all-in-one and zero-shot learning schemas.
Therefore, we only evaluate them under the naive schema. First
and foremost, the performance of various models under the
naive and all-in-one learning schema can exhibit substantial
disparities (RI 1). For example, on the NEK dataset, although
Donut performs well on the naive schema, its performance
significantly degrades under the all-in-one schema. In contrast,
FITS achieve better performance under all-in-one schema on
this dataset. We list the impacts of different learning schemas
on the performance of different methods in Table I. It is
thought-provoking that these differences do not show a clear
bias, suggesting that these variations are the result of a com-
bination of multifaceted factors, which is discussed in detail in
Sec. V-B. Additionally, given the consideration of errors arising
from random dataset partitioning, the models demonstrated
a relatively consistent performance across the all-in-one and
zero-shot modes, as there may exist interdependence among
time series in the same dataset (RI 2).

Generally, the statistical methods exhibit great performance
on the dataset with relatively stable shapelets and low noise
level (UCR), but work poor on other datasets with more noise.
For deep learning based models, contrary to our expectations,
the overall performances of the models that contain more
complicated structures are not satisfactory (RI 3). We present
a case (Fig. 8) from the AIOPS dataset to vividly demonstrate
this phenomenon. Even though these point-wise anomalies
seem to be quite evident, a significant portion of the methods
are unable to handle such events effectively. As numerous
factors can lead to a decrease in performance for DNNs, we
summarize the major factors that result in the underperfor-
mance of some deep learning methods in anomaly detection
tasks:

https://github.com/microsoft/anomalydetector
https://github.com/thuml/Anomaly-Transformer
https://github.com/thuml/Anomaly-Transformer
https://github.com/thuml/Time-Series-Library/blob/main/models/TimesNet.py
https://github.com/thuml/Time-Series-Library/blob/main/models/TimesNet.py
https://github.com/wagner-d/TimeSeAD/blob/master/timesead/models/generative/donut.py
https://github.com/wagner-d/TimeSeAD/blob/master/timesead/models/generative/donut.py
https://github.com/DAMO-DI-ML/CIKM22-TFAD
https://github.com/DAMO-DI-ML/NeurIPS2023-One-Fits-All
https://github.com/VEWOXIC/FITS
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0.49 0.47 0.56 0.80 0.94 0.49 0.41

0.67 0.64 0.26 0.77 0.17 0.38 0.62

0.37 0.73 0.26 0.58 0.24 0.24 0.67

AIOPSNAB TODSWSDYahoo UCR NEK

(b) all-in-one
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0.82 0.86 0.68 0.93 0.83 0.59 0.95
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0.80 0.94 0.80 0.77 0.80 0.41 0.80

0.77 0.85 0.71 0.90 0.86 0.32 0.96
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0.55 0.85 0.65 0.85 0.83 0.35 0.82

0.75 0.85 0.71 0.83 0.60 0.32 0.94

0.69 0.72 0.62 0.79 0.70 0.41 0.62

0.47 0.93 0.40 0.62 0.49 0.29 0.89

0.49 0.88 0.57 0.62 0.45 0.26 0.72

0.47 0.28 0.64 0.89 0.93 0.47 0.45

0.69 0.64 0.30 0.74 0.14 0.36 0.53

0.44 0.56 0.22 0.30 0.43 0.27 0.54
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(c) zero-shot

Fig. 7: Overall performance ranking using different learning schema under reduced-length F1best. Methods are ranked in
descending order according to the average of all scores. The row names denote the names of methods, while the column
names denote the names of the datasets. The best score of each column is underlined. Due to the inherent assumptions behind
the statistical methods being incompatible with the all-in-one and zero-shot schemas, these methods are not included in the
ranking, and the related score cells are set to grey without values.

Raw Curve AR LSTMAD-α AE EncDecAD

SRCNN AnomalyTransformer TimesNet Donut TFAD

Fig. 8: Illustrations that some methods fail to effectively
detect point-wise anomalies in certain scenarios. The black line
represents the original curve, while the red line represents the
anomaly scores provided by the method. Anomalous segments
are highlighted in pink.

Poor noise resistance. The models’ anti-noise ability plays
an important role in AD tasks. Compared to other domains
like NLP or CV, time series data is affected by more factors
during the collection process, resulting in more and intractable
noise. Although models using simple structures (AR, FITS)
sacrifices some feature expression capability, it’s hard for them
to overfit noise. This contributes to the good results. For
LSTM-series methods, due to the iterative encoding process,
the forget gate in LSTMs is more likely to minimize the

retention of low signal-to-noise ratio data in the hidden state.
In constrast, due to the lack of special design for anti-noise,
simply employing complicated backbones like transformer
may lead to the overfitting of the noise, and finally result in
the poor performance as shown in Fig. 8 (RI 4).
Lack of training data. As shown in Fig. 9, some models,
especially the ones with complicated structures, achieve signif-
icant improvement in performance when using more training
data. Models with complicated structures usually require a
larger volume of training data to avoid overfitting due to their
higher degrees of freedom and flexibility (RI 5). Similarly,
models that employ intricate loss functions often necessitate a
greater amount of training data, including diverse examples, to
prevent the emergence of falling into local minima and even
trivial solutions.

Trends with large periods. Some data may exhibit long-
term trends or patterns that span large periods. These trend
components can cause the data distribution to deviate from
the comfort zone of the model, causing the model to calculate
anomaly scores based on a biased data distribution it has never



TABLE I: Performance differences on all datasets using different learning schemas. Best scores are highlighted in bold, and
second-best scores are highlighted in bold and underlined. Performance improvements exceeding 5% are marked with ↑, while
performance declines exceeding 5% are marked with ↓.

Method AIOPS NAB TODS WSD Yahoo UCR NEK
Sone Sall Sone Sall Sone Sall Sone Sall Sone Sall Sone Sall Sone Sall

AR 0.7517 0.8214↑ 0.9035 0.8881 0.7472 0.7859↑ 0.868 0.9276↑ 0.9195 0.948 0.4454 0.4636 0.9555 0.9612
LSTMAD-α 0.8081 0.8141 0.8984 0.8492↓ 0.7015 0.7538↑ 0.9381 0.9467 0.5496 0.8↑ 0.4836 0.6144↑ 0.9971 0.9349↓
LSTMAD-β 0.8034 0.8151 0.9031 0.8484↓ 0.7589 0.7495 0.939 0.9445 0.5366 0.8114↑ 0.4366 0.6101↑ 0.9744 0.961

AE 0.7222 0.7448 0.8751 0.8375 0.6842 0.7712↑ 0.918 0.9192 0.612 0.8205↑ 0.4198 0.3644↓ 0.9801 0.9609
EncDecAD 0.7583 0.7003↓ 0.8752 0.8336 0.6359 0.6534 0.9285 0.8353↓ 0.5018 0.5842↑ 0.3178 0.3333 0.755 0.9534↑

Donut 0.6957 0.5827↓ 0.8397 0.7966↓ 0.7207 0.836↑ 0.8787 0.7666↓ 0.6813 0.6498 0.4409 0.4↓ 0.9885 0.5801↓
FCVAE 0.7851 0.7593 0.874 0.8857 0.7145 0.8526↑ 0.9087 0.8121↓ 0.6883 0.8537↑ 0.5873 0.4766↓ 0.8977 0.8148↓
SRCNN 0.1627 0.6672↑ 0.5802 0.635↑ 0.3042 0.2598↓ 0.1785 0.7742↑ 0.1261 0.1728↑ 0.3227 0.3791↑ 0.4365 0.6173↑

AnomalyTransform 0.3728 0.3656 0.7739 0.7322↓ 0.2827 0.2631↓ 0.2984 0.5838↑ 0.145 0.2377↑ 0.3104 0.2372↓ 0.3997 0.666↑
TFAD 0.3551 0.4889↑ 0.5746 0.4679↓ 0.4526 0.5626↑ 0.7561 0.8016↑ 0.781 0.9361↑ 0.3398 0.4941↑ 0.625 0.4103↓

TranAD 0.6486 0.6561 0.9101 0.8567↓ 0.2531 0.5624↑ 0.6738 0.7409↑ 0.562 0.5211↓ 0.2527 0.2483 0.9071 0.9571↑
TimesNet 0.6737 0.4988↓ 0.8419 0.8544 0.3695 0.5032↑ 0.8684 0.539↓ 0.4444 0.5341↑ 0.2493 0.1856↓ 0.9335 0.9257

OFA 0.6891 0.5544↓ 0.8869 0.861 0.6263 0.6187 0.8784 0.8111↓ 0.7512 0.766 0.4169 0.2888↓ 0.9471 0.7642↓
FITS 0.7139 0.6986 0.8617 0.8683 0.5371 0.7146↑ 0.8796 0.8788 0.7564 0.9261↑ 0.4092 0.428 0.8975 0.9625↑

Raw Curve AR LSTMAD-α AE EncDecAD

SRCNN AnomalyTransformer TimesNet Donut TFAD

(a) Lacking data under one-by-one schema

Raw Curve AR LSTMAD-α AE EncDecAD

SRCNN AnomalyTransformer TimesNet Donut TFAD

(b) Enriching data by using all-in-one schema

Fig. 9: Case study on Yahoo A3Benchmark-TS13 shows that
lack of training data induces poor performance.

encountered before (RI 6).

Raw Curve AR LSTMAD-α AE EncDecAD

SRCNN AnomalyTransformer TimesNet Donut TFAD

Fig. 10: Case study on Yahoo A3Benchmark-TS14 shows that
trends with large periods induce poor performance. The scores
are obtained under the all-in-one learning schema, eliminating
the impact of insufficient data.

Unreasonable inductive bias. Deep learning models rely on
their architectural design and optimization algorithms to detect
anomalies in a semi-supervised manner. If the chosen model
architecture or optimization approach is not well-suited for
point-wise anomaly detection, the models may have an unrea-
sonable inductive bias that hampers their ability to accurately
detect anomalies (RI 7).

Based on the above observations, it is imperative for newly
proposed methods to place greater emphasis on these factors
to avoid poor results on these distinct anomalies. We believe
that the potential of the powerful representation capability
of complex structures has not been fully explored yet in
time series anomaly detection tasks. We strongly advocate
prioritizing the refinement of module design or loss function

in order to enhance the models’ resilience to noise and their
capacity for generalization. Thus complicated backbones can
better leverage their expressive power for temporal features
without overfitting to noise.

B. Performance in Fine-Grained Scenarios

Merely referring to aggregated data at the granularity of
datasets is insufficient to gain a profound understanding of
the model’s performance. We carry out a fine-grained com-
parison of model performance from the perspectives of both
learning schema and anomaly type. The UCR dataset is widely
acknowledged for its comprehensive annotation of various
anomaly types, making it a well-labeled dataset. Addition-
ally, each time series in the UCR dataset is guaranteed to
contain only one anomaly, which facilitates the categorization
of different anomaly types. To further refine our analysis,
we partition the UCR dataset into two subsets based on its
supplemental materials [53]: one subset exclusively consisting
of point-wise anomalies and another subset focusing solely
on pattern-wise anomalies. We form a 2x2 matrix to reflect
the variations in model performance under different conditions
by incorporating the dimensions of ”naive” and ”all-in-one”
learning schemas, along with different types of anomalies, as
shown in Fig. 11.

From the boxplots, no solution can always outperform the
others in all situations (RI 8). It is also apparent that the
majority of models exhibit a significantly higher detection per-
formance for point-wise anomalies compared to pattern-wise
anomalies regardless of the learning schema employed (RI
9). On a more detailed level, prediction-based models excel
in identifying point-wise anomalies, as the steep peak/valley
is unpredictable in most cases (RI 10). Due to the inclusion
of a more diverse data distribution under all-in-one learning
schema, the models are more likely to learn robust represen-
tations of patterns. As a result, under the all-in-one learning
schema, there is a significant improvement in the detection per-
formance of point-wise anomalies (RI 11). This observation is
particularly pronounced in the case of the Yahoo dataset each
time series of which is relatively short. With regard to pattern-
wise anomalies which are considered to be more challenging,
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(c) all-in-one & point-wise
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(d) all-in-one & pattern-wise

Fig. 11: The 2x2 matrix reflecting the variations in model
performance under different conditions. We denote prediction,
reconstruction, VAE-based, and general time series methods
in light red, yellow, green, and blue backgrounds.

the situation becomes more complex and interesting. Methods
that aim to generate the temporal window after projecting
them to low-dimensional representations (Donut and FCVAE)
surpass all others in detecting pattern-wise anomalies, while
the performance greatly declines when under the all-in-one
mode (RI 12). The former indicates that the assumption of
low-dimensional representations hardly reconstructing high-
level pattern-wise anomaly indeed works. An illustration is
presented to confirm this in Fig. 12(a), where Donut can easily
handle the ”smooth” high-level anomaly. However, the per-
formance deteriorates or even becomes ineffective under the
all-in-one mode (Fig. 12(b)). We hypothesize that the capacity
of low-rank representations may struggle to cover the diverse
data distributions present in various curves. Also, although the
general time series methods (TimesNet, OFA, FITS) perform
well in other time series tasks, they struggle to outperform
methods specifically designed for anomaly detection tasks like
LSTMAD and FCVAE (RI 13). This may indicate that there is
a gap between time series anomaly detection tasks and general
time representation tasks. For example, anomaly detection
tasks may require models to have a stronger denoising effect.
These gaps need special attention when designing models for
anomaly detection tasks.

C. Performance under Delay-Constraint

Issue d in Sec. III-C demands exceptionally high data
set quality, whereas some datasets (including NAB, UCR,
Yahoo) fail to offer labels without positional bias. Therefore,
the result merely provide a approximate reference on these
datasets. We manually set a relatively suitable latency limit
(K) for each dataset based on the sampling frequency and
label quality of the dataset to evaluate the performance of
each method under strict real-time requirements. The over-

Raw Curve LSTMAD-α AE Donut TimesNet TFAD

(a) Model comparison under naive learning schema

Raw Curve LSTMAD-α AE Donut TimesNet TFAD

(b) Model comparison under all-in-one learning schema

Fig. 12: Case study on CIMIS44AirTemperature2 which con-
tains an easily understandable pattern-wise anomaly.

all results are shown in Table II. Compared to the results
without delay-constraint, it can be seen that the performance
of some methods significantly deteriorates in this setup, even
approaching a 50% decrease (e.g., Anomaly Transformer on
TODS). Although EncDecAD is inferior to FITS under all-
in-one schema in Fig. 7, when considering delay-constraint,
EncDecAD outperforms FITS on TODS, suggesting that some
methods may have greater potential in terms of early detection
capabilities.

D. Trade-off Between Performance, Cost, and Efficiency

When deploying algorithms in real-world scenarios, it is
often necessary to strike a balance between performance,
storage costs, and inference speed. Notably different from
other surveys, in this benchmark, we prefer inference time over
training time due to the practical needs of anomaly detection.
Each factor plays a critical role in determining the feasibility
and practicality of the deployed algorithm. The trade-offs be-
tween these considerations are important to ensure an efficient
and effective deployment that meets the specific requirements
and constraints of the application. For example, real-time
monitoring or critical systems may prioritize efficiency to
detect anomalies promptly and respond quickly, while IoT
(Internet of Things) devices with limited on-chip memory have
to focus on the performance of models with a small number
of parameters. We exclude the statistical methods, as their
inference time is not a fixed value (polynomially correlated
with the volume of historical data). Also, we exclude TFAD
because it does not align with the real-time manner. As shown
in Fig. 13, the inference time for a single sample is far less
than 50 milliseconds for all methods under our experimental
platform. The learning-based AR exhibits the most favorable
gain-to-cost ratio among all methods. FCVAE takes the longest
time to inference due to its multi-epoch MCMC process.
EncDecAD has the second longest inference time because it
utilizes LSTM to perform inference for 100 time steps. In
addition to providing guidance for practical applications, we
aim for this perspective and toolkit to assist in discovering the
scaling law in the field of time series anomaly detection under
more reasonable inductive bias and larger parameter spaces
(RI 14).

VI. TIMESERIESBENCH TOOLKIT

One of our primary intentions is to develop a suite that
liberates practitioners from burdensome workflows, allowing



TABLE II: Performance comparison using all-in-one learning schema under K-delay reduced-length F1best and AUPRC

Method AIOPS (K=10) NAB (K=150) TODS (K=3) WSD (K=10) Yahoo (K=3) UCR (K=50) NEK (K=10)
F1best AUPRC F1best AUPRC F1best AUPRC F1best AUPRC F1best AUPRC F1best AUPRC F1best AUPRC

MatrixProfile - - - - - - - - - - - - - -
SAND - - - - - - - - - - - - - -

Sub-LOF - - - - - - - - - - - - - -
AR 0.7815 0.766 0.5334 0.407 0.6748 0.6827 0.7251 0.6888 0.9451 0.9345 0.3422 0.3121 0.9137 0.9154

LSTMAD-α 0.7819 0.7924 0.4235 0.2928 0.6437 0.6424 0.7627 0.7276 0.7946 0.7767 0.4494 0.4063 0.9196 0.9308
LSTMAD-β 0.7826 0.7957 0.4275 0.2928 0.6234 0.63 0.7593 0.7248 0.8033 0.7841 0.4464 0.4073 0.9458 0.9561

AE 0.7077 0.71 0.3685 0.255 0.5843 0.5551 0.7522 0.719 0.8076 0.7882 0.2233 0.1881 0.9439 0.9513
EncDecAD 0.6744 0.6434 0.394 0.2602 0.5346 0.5328 0.6641 0.6271 0.5751 0.5277 0.2064 0.1723 0.9348 0.9256

Donut 0.5618 0.5262 0.4014 0.2859 0.6296 0.617 0.6317 0.5765 0.6423 0.6089 0.1869 0.1556 0.5618 0.4383
FCVAE 0.7389 0.7256 0.5991 0.4845 0.6281 0.6117 0.6838 0.6372 0.847 0.8242 0.3249 0.2813 0.7439 0.6557
SRCNN 0.6253 0.5748 0.3072 0.2383 0.1816 0.1069 0.6267 0.5744 0.1605 0.0978 0.2358 0.2019 0.5446 0.5189

AnomalyTransformer 0.306 0.1596 0.3655 0.2657 0.1331 0.0674 0.4326 0.2876 0.1751 0.0978 0.1243 0.0948 0.6075 0.4891
TFAD 0.4578 0.362 0.15 0.0849 0.4658 0.3988 0.6165 0.569 0.9281 0.9144 0.4206 0.4034 0.3133 0.1913

TranAD 0.6302 0.5726 0.4406 0.3254 0.4199 0.3944 0.588 0.5219 0.511 0.4551 0.1472 0.1261 0.8932 0.8696
TimesNet 0.4663 0.4199 0.433 0.3105 0.3792 0.3232 0.4063 0.3349 0.5242 0.4988 0.0704 0.0501 0.9028 0.9174

OFA 0.4689 0.3818 0.4145 0.2901 0.4664 0.4147 0.605 0.5593 0.7267 0.6979 0.1718 0.1371 0.7155 0.6536
FITS 0.6623 0.6474 0.4341 0.302 0.5232 0.5423 0.6848 0.6573 0.9013 0.8903 0.2802 0.2585 0.8335 0.8122
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Fig. 13: The triad of the model’s performance, cost, and
efficiency trade-off. The x-axis represents the total inference
time (batch size set to 1) of the detectors on AIOPS 7103fa0f-
cac4-314f-addc-866190247439 (around 140,000 samples) un-
der default parameters. The y-axis represents the average
performance of the models on all datasets under the all-in-
one learning schema. The size of the scatter points denotes
each method’s cube root of the number of parameters.

them to engage in TSAD tasks with greater ease and ef-
ficiency. Existing suites narrowly offer convenience for the
implementation of new methods with primitive workflows and
rudimentary evaluations. Here, benefiting from the modular
architecture of TimeSeriesBench, we provide a diverse range
of extension interfaces implemented in Python to enable the
community to conduct comparative experiments more flexibly
and effortlessly, meanwhile reserving the possibilities for
innovative and exceptionally demanding experiments, which
might unlock unexplored avenues of research.

The overview of the toolkit is shown in Fig. 14. Compared
to existing benchmark suites on univariate time series anomaly
detection [13]–[15], [54], our framework provides more pos-
sibilities for diverse experiment setups. As shown in Table III,
in addition to including rich datasets and diverse learning
schemas, the toolkit considers the need for more kinds of
evaluation criteria. We provide more famous evaluation criteria
as built-in criteria. Thus researchers can conveniently compare
the strengths and weaknesses of different criteria.

Despite the built-in settings, TimeSeriesBench toolkit also
takes the requirements for extensibility into consideration. We
provide flexible interfaces for dataset, method, evaluation crite-
ria, runtime statistic (RT), and learning schema, while existing
benchmarks only provides only parts of these interfaces. The
dataset interface and algorithm interfaces are provided to allow
evaluations on new or private datasets and novel methods
under all learning schemas. All plots of raw curves and scores
are saved for specific investigation. Previously mentioned
flaws in evaluation criteria have sparked a research fervor
and several latest works are dedicated to providing evaluation
criteria according to different assumptions [30], [32], [34]–
[36], [55]. Thus we also expose an interface for swiftly
developing neo-criteria for evaluation grounded in realistic
assumptions and evaluating the performance of all methods
w.r.t various datasets. In some scenarios, there might be a
trade-off between model accuracy and model training/testing
cost. Therefore, we also provide a runtime statistics interface
to conveniently track and analyze the runtime information of
the model. Also, you can design your own training, test and
other dataflows via implementing learning schema interface.

Fig. 14: Overview of TimeSeriesBench Toolkit.

Owing to the flexible framework, our benchmark suite can
incorporate real-world scenarios and challenges, aiming to
replicate the complexities and nuances encountered in prac-
tical applications. This enables researchers and practitioners
to gain deeper insights into the strengths and weaknesses
of various deep learning approaches, and is well-prepared
for the emergence and development of Foundation Models
(FMs) in the field of time series anomaly detection. In the
toolkit, we provide four kinds of workflows to meet different
research needs for time series anomaly detection: algorithms
benchmarking, algorithm development, evaluation criteria de-



velopment, and performance analysis. For more information
about TimeSeriesBench, please refer to our repository and the
website of the leaderboard.

TABLE III: Comparison among TimeSeriesBench and existing
UTS anomaly detection benchmark suites. TimeSeriesBench
presents more angles for performance evaluation, meanwhile
offering user-friendly interfaces for up-to-date model and
evaluation criterion developments.

Suites Exathlon [14] TODS [13] TSB [15] TimeEval [54] Ours

Data
Source

Real-World ✓ ✓ ✓ ✓ ✓
Synthetic ✗ ✓ ✓ ✓ ✓

Learning
Schema

One-by-one ✓ ✓ ✓ ✓ ✓
All-in-one ✗ ✗ ✗ ✗ ✓
Zero-shot ✗ ✗ ✗ ✗ ✓

Supported
Eval criteria

Point-based4 ✓ ✓ ✓ ✓ ✓
Range-based5 ✓ ✗ ✓ ✓ ✓
Event-based ✗ ✗ ✗ ✗ ✓

Extensibility

Dataset ✗ ✓ ✓ ✓ ✓
Method ✓ ✓ ✗ ✓ ✓

Eval criteria ✗ ✗ ✗ ✓ ✓
RT Statistics ✗ ✗ ✗ ✗ ✓

Learning Schema ✗ ✗ ✗ ✗ ✓

VII. THREATS TO VALIDITY

As a benchmark, our research is susceptible to several com-
mon threats that can compromise the validity and reliability
of our findings, including dataset, algorithm settings and the
applicable scenarios.
Dataset. Although we have adopted six well-known datasets
and have released a real-world dataset, the scenarios covered
by these datasets are still limited, so the evaluation results
in other scenarios may vary from the main results. We will
supplement more datasets in the future to make the evaluation
results more generalizable.
Algorithms settings. Due to time and computational resource
constraints, we evaluated the algorithms using their default
parameter settings in the experiments. If the hyperparameters
are fine-tuned for each scenario, some methods might achieve
better performance.
Applicable scenarios. In this paper we focus on real-time
anomaly detection scenarios, and introduce a more robust
criterion for evaluation based on real-time detection demands.
All results and analysis are based on this setting. However, for
offline detection tasks that do not have real-time requirements
and require precise detection of the duration of anomalies,
other evaluation criteria such as VUS [34] may be more
suitable. You can specify this criterion as the evaluation criteria
in TimeSeriesBench toolkit to obtain results that are more
tailored to your specific application scenario.

VIII. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we propose TimeSeriesBench, a comprehen-
sive and application-oriented benchmark for evaluating the
performance of existing and emerging UTS anomaly detection
methods. TimeSeriesBench takes into account existing in-
dustrial concerns and conducts a comprehensive performance
evaluation of some well-known and latest methods under set-
tings that meet industrial requirements. Also, it offers unprece-
dented perspectives for measuring algorithm performance,
meanwhile laying a solid foundation for the development of

Foundation Models in the field. Moreover, TimeSeriesBench
includes a user-friendly toolkit and leaderboard, offering easy-
to-use interfaces that allow researchers and practitioners to
focus on advancing their algorithms without getting entangled
in repetitive tasks. We intend to incorporate more latest meth-
ods/evaluation criteria and employ more high-quality data.
Also, we will continue to monitor the latest developments in
general foundation models for time series within the realm
of anomaly detection, adapting them accordingly within our
benchmark. Additionally, whether you propose deep learning
or statistical methods, we welcome your participation in our
leaderboard to help drive the development of the time series
anomaly detection community.
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