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Abstract—Log parsing involves extracting appropriate tem-1

plates from semi-structured logs, providing foundational informa-2

tion for downstream log analysis tasks such as anomaly detection3

and log comprehension. Initially, the task of log parsing was4

approached by domain experts who manually designed heuristic5

rules to extract templates. However, the effectiveness of these6

manual rules deteriorates when certain characteristics of a new7

log dataset do not conform to the pre-designed rules. To address8

these issues, introducing large language models (LLM) into9

log parsing has yielded promising results. Nevertheless, there10

are two limitations: one is the reliance on manually annotated11

templates within the prompt, and the other is the low efficiency12

of log processing. To address these challenges, we propose a13

self-evolving method called SelfLog, which, on one hand, uses14

similar <group, template> pairs extracted by LLM itself in the15

historical data to act as the prompt of a new log, allowing the16

model to learn in a self-evolution and labeling-free way. On the17

other hand, we propose an N-Gram-based grouper and log hitter.18

This approach not only improves the parsing performance of19

LLM by extracting the templates in a group-wise way instead20

of a log-wise way but also significantly reduces the unnecessary21

calling to LLMs for those logs whose group template is already22

extracted in history. We evaluate the performance and efficiency23

of SelfLog on 16 public datasets, involving tens of millions of24

logs, and the experiments demonstrate that SelfLog has achieved25

state-of-the-art (SOTA) levels in 0.975’s GA, and 0.942’s PA. More26

importantly, without sacrificing accuracy, the processing speed27

has reached a remarkable 45,000 logs per second.28
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I. INTRODUCTION30

Logs [1] and time series [2], along with trace [3], jointly31

constitute the three vital types of data for monitoring and32

analyzing the reliability of software systems. Log data is33

the most easily acquired and the most widely encompassing.34

However, due to its semi-structured nature, it poses a greater35

challenge for analysis. Modern software systems such as36

operating systems like Windows and Android, or file systems37

like HDFS [1], generate a substantial volume of logs daily.38

Analyzing and detecting anomalies in such a vast number39

of logs manually is impractical. To achieve automatic log40

processing, log parsing, which involves transforming semi-41

structured logs into a structured format, making it the most42

crucial preliminary step for downstream tasks such as log43

anomaly detection [4], [5], log compression [6], [7], and log44

summarizing [8].45

As shown in Fig. 1, log parsing primarily involves dis-46

tinguishing between the constant and variable parts (named47

parameters in Fig. 1) of the log content through a series of48

methods. By replacing the variable parts with wildcards, we49

create a log template. It can be observed from Fig. 1 that50

Fig. 1. An illustration example of log parsing.

if the source code is available, it becomes much easier to 51

extract the corresponding template. However, in many systems, 52

the original software code is not accessible, leading to the 53

emergence of many data-driven log parsing methods [9]– 54

[11]. These data-driven methods are primarily categorized 55

into unsupervised and supervised approaches. Unsupervised 56

methods typically employ heuristic rules [12]–[14] or sta- 57

tistical features [9]–[11] to extract templates. However, the 58

effectiveness of these methods can be greatly impacted if the 59

log datasets to be analyzed do not align well with the pre- 60

designed rules or features. For example, in Drain [12], it is 61

assumed that the first token of each log is constant. Yet, in 62

real-world systems, we have found that this is not always the 63

case, such as with “proxy.cse.cuhk.edu.hk:5070 64

close, 451 bytes sent, 353 bytes received, 65

lifetime <1 sec”, where the first token is variable. 66

Supervised log parsing methods [15], [16], on the other hand, 67

train or fine-tune models using manually annotated <log, 68

template> pairs or token types. However, these methods are 69

sensitive on the distribution of the training data and may 70

perform poorly on logs unseen during training. 71

To address the issues with the aforementioned methods, 72

some current research has begun to employ Large Language 73

Models (LLMs) for log parsing [17]. Logs are inherently 74

statements printed by programmers, naturally containing se- 75

mantic information, and LLMs are inherently capable of 76

extracting semantic information. Furthermore, LLMs, due to 77

their powerful zero-shot capabilities, can better transfer to a 78



new set of logs without the need for additional hyperparameter79

adjustments. Thus, using LLMs for log parsing is a promising80

direction. However, existing LLM-based log parsing methods81

have the following two drawbacks:82

• Current methods, such as DivLog [17], provide the LLM83

with prompts containing similar logs and corresponding84

templates, enabling the LLM to extract new log tem-85

plates through in-context learning (ICL). However, this86

approach heavily relies on the quality of the examples87

in the prompt. When software systems undergo upgrades88

and iterations, a new round of manual annotation of new89

log templates is required.90

• Most importantly, existing LLM-based methods do not91

explicitly evaluate and discuss the log processing speed92

and token cost after deployment, which is key to de-93

termining whether LLMs can be widely applied in log94

parsing. We find through actual measurement that existing95

LLM-based methods can only process no more than 1096

logs per second (as detailed in Section IV-F), whereas97

in real software systems, it is very common for tens of98

thousands of logs to be generated per second.99

To address these challenges, we propose a self-evolutionary100

group-wise LLM-based log parsing system called SelfLog.101

Although the templates extracted by the LLM from historical102

logs are not as accurate as those of domain experts, they can103

provide useful information for LLM to revise its responses.104

Inspired by this, we build a Prompt Database to store LLM105

history extracted <log, template> pairs. When a new log106

arrives, the most similar logs can be retrieved through an107

approximate nearest neighbor (ANN) search. Then, by incor-108

porating similar logs and the templates previously extracted109

by the LLM itself into the prompt, it can help the LLM110

reflect on the correctness of the previously extracted templates,111

thereby improving the extraction performance for new logs112

and helping SelfLog no longer rely on manual annotation by113

human experts.114

In the meantime, we observe that existing LLM methods115

process logs one at a time for template extraction, as depicted116

in Fig. 2(a), a method we refer to as point-wise parsing.117

However, this approach overlooks certain information. Typ-118

ically, domain experts determine the variables in a log by119

comparing it with several similar logs and identifying the120

differences between them. As shown in Fig. 2(a), if a single121

log is given to an LLM, it might incorrectly identify status122

code 503 as a variable. Yet, if we present a group of123

similar logs to the LLM, as shown in Fig. 2(b), the model124

accurately identifies 503 as the variable and status code125

as a constant, resulting in the correct template: status126

code <*>. Therefore, we design an N-Gram-based Grouper127

that first groups the logs and then invokes the LLM to extract128

templates for each group. This method not only enhances129

accuracy but also has the advantage of reducing the need to130

invoke the LLM for each log. We only need to call the LLM to131

extract templates for each group. For groups whose templates132

have already been extracted, we store the templates in our133

(a) Point-wise parsing. (b) Group-wise parsing.

Fig. 2. An example from the Proxifier dataset [1], demonstrating the template
extraction effectiveness of LLM when each log is given to the model, versus
when several similar logs are grouped together and then given to the model.

designed Log Hitter. Groups that hit Log Hitter return directly 134

without invoking the LLM, which significantly increases the 135

parsing speed of SelfLog and substantially reduces the number 136

of tokens required for model calls. 137

We evaluated SelfLog on 16 public datasets, and its perfor- 138

mance exceeded the current state-of-the-art (SOTA). In Group 139

Accuracy, its precision was 10% higher than SOTA, and in 140

Parsing Accuracy, it improved by 16%. At the same time, 141

we tested it on a dataset of tens of millions of logs, and our 142

processing rate reached 45,000 logs per second, meeting the 143

log generation rate of current online systems. 144

In summary, our main contributions are as follows: 145

• We propose SelfLog , a self-evolutionary group-wise log 146

parser that achieves excellent log parsing results without 147

the need for manual annotation of new templates, relying 148

solely on LLM’s historical parsing results through con- 149

tinuous reflection and correction. 150

• For the first time, we focus on the efficiency issue 151

in LLM-based log parsing. By combining a specially 152

designed N-Gram-based Grouper, Log Hitter, SelfLog can 153

parse over 45,000 logs per second with higher parsing 154

accuracy. At the same time, SelfLog only consumes 1% 155

tokens quota compared with the SOTA LLM-based log 156

parsing method, making it affordable for real-world sys- 157

tems. 158

The following sections of the paper are organized as fol- 159

lows: In Section II, we introduce the motivation. In Section III, 160

we detail the implementation of our SelfLog. In Section IV, 161

we describe the experimental setup and evaluate the algorithm. 162

Section V discusses threats to validity. Section VI reviews 163

related work, and Section VII summarizes the paper. 164

II. MOTIVATION AND BACKGROUND 165

In this section, we present a broad definition of system logs 166

and explain the basic steps involved in log parsing. We also 167

introduce the large language models (LLM), as well as the 168

background knowledge related to in-context learning (ICL) 169

and prompts. 170

A. Log Parsing 171

The system generates a large amount of logs every day [18], 172

[19]. It is unrealistic to rely on operation and maintenance 173

person to manually check the logs to detect system abnor- 174

malities in time. Therefore, fully automatic log processing 175



is necessary [1], [20]. The first step in log processing is176

log parsing, which processes semi-structured and unstruc-177

tured logs and converts them into structured data for other178

downstream tasks such as log anomaly detection [4], [5], log179

compression [6], [7], and root cause analysis [21], [22]. Log180

parsing includes preprocessing and log template extraction,181

as shown in Fig. 1. The original log includes the timestamp182

automatically stamped by the system, verbosity level, and log183

content written in the program code. The formats of the first184

two parts are bound to the system settings and only require185

fixed regular expressions to be aligned and extracted. The186

log content consists of a constant string written in the code187

and a part that changes dynamically according to the system188

status. The log parser extracts the constant parts from the log189

content and replaces the variable parts with wildcards, such190

as the asterisk (*). This text string, composed of constants191

and wildcards, is commonly referred to as a log template.192

A single log template corresponds to multiple logs where193

the variables take on different values. The earliest log parser194

directly parsed the system code and extracted the log template195

according to the log output statement [23], [24] which is196

shown in the source code part of Fig. 1. In many scenarios,197

the original source code of the system itself is not accessible,198

hence there is a substantial amount of work that relies on199

extracting templates directly from the output logs themselves,200

which can be divided into unsupervised method [9], [10], [12]201

and supervised method [15], [16], [25]. However, there are202

still various shortcomings and the effectiveness need to be203

improved.204

Unsupervised log parsers, which propose heuristic rules to205

extract log templates based on the author’s observation of logs,206

often have design flaws that cannot correctly parse all logs.207

For example, when Drian [12] clusters logs, it first divides208

them according to the length after word segmentation. How-209

ever, in the publicly available dataset Proxifier [1], there are210

two log entries: ...received, lifetime <1 sec and211

...received, lifetime 00:02. After tokenization by212

whitespace, these two logs will have different lengths, but they213

actually belong to the same template. Furthermore, Drain [12]214

assumes that the first token of each log is a constant, but in215

Proxifier, there are logs that start with variables. These exam-216

ples illustrate that existing methods based on heuristic rules217

or statistical features require special treatment for different218

datasets. If the dataset is not properly handled, the accuracy219

of template extraction can be greatly reduced.220

Supervised log parsing requires training a template extrac-221

tion model, or fine-tuning a pre-trained model, based on a222

dataset that has been manually annotated. However, manual223

annotation is costly, especially when the system generating224

the logs is dynamically changing and undergoing updates225

and upgrades, making manual annotation even more difficult.226

VALB [25] trains a BiLSTM [26] model by manually annotat-227

ing variable types to distinguish between the types of constants228

and variables. They have predefined nine types of variables,229

such as Object ID (OID) and Location Indicator (LOI). In230

real-world datasets, such as LogPai [1], some corresponding231

templates have very few logs associated with them, which is 232

insufficient for model training or fine-tuning. 233

B. Large Language Model and In-Context Learning 234

Large Language Models (LLMs) are a subcategory of 235

machine learning models. Initially, they are used in the field 236

of Natural Language Processing (NLP) [27] to understand and 237

generate text that is readable by humans. Subsequently, their 238

application has been extended to include images (PLEASE 239

add reference) and speech (PLEASE add reference). The 240

widespread use of LLMs is not only due to their large number 241

of parameters but, most importantly, their impressive ability to 242

follow instructions, which allows them to be employed for a 243

variety of different downstream tasks and demonstrates their 244

strong zero-shot capabilities. These tasks include translation, 245

text generation, and logical reasoning, among others. 246

In-context learning (ICL) is a vital aspect of LLMs [28]. 247

In the context of Large Language Models (LLMs) such as 248

GPT-3 [29], a prompt represents the initial user input that 249

kickstarts the process of text generation by the model. The 250

nature and specificity of the prompt broadly determine the 251

direction and content of the generated response [30]. Prompts 252

can range from single words to complex paragraphs. Through 253

their training on diverse and extensive data, LLMs can handle 254

a wide spectrum of prompts, generate appropriate responses, 255

and provide insights or narratives based on them. In essence, 256

the prompt is the steering wheel that guides the text generation 257

journey of the LLM. The ability to absorb, interpret, and 258

utilize the shared contextual information in the conversation 259

to provide more relevant and useful responses [31] of LLM is 260

called ICL. 261

The emergence of Large Language Models (LLMs) and 262

Inductive Conformal Logic (ICL) has provided new insights 263

for robust and universal log parsing. System logs are output 264

to log files by programmers through code. They are records of 265

events that happen within a software application, system, or 266

network [24]. To facilitate operation and maintenance people 267

to monitor the system based on the logs, the logs are highly 268

readable and very similar to natural language. Besides, there 269

is also log information in the training data of LLM [32]. With 270

the human knowledge and in-context examples in prompts, 271

DivLog [17] found that it can achieve better results than SOTA 272

log parsers in log template extraction without fine-tuning 273

LLM. In real scenarios, the number and content of system 274

log templates change dynamically. Traditional log parsers may 275

need to re-train or re-design rules to improve the parsing effect 276

of new logs. With the powerful natural language understanding 277

capabilities of LLM, LLM-based Log Parsers only need to 278

change the in-context examples in prompt to achieve accurate 279

parsing of new log. 280

However, even though LLMs can effectively understand 281

logs, their calling costs and the speed at which they generate 282

templates are quite limited. In industrial systems, it is very 283

common to produce tens of thousands of logs in a single 284

minute, which presents a challenge for large models to process 285

within such a short time frame. In Section III, we design 286



Fig. 3. The workflow of SelfLog framework. Here we demonstrate how to process streaming logs, but this system is also capable of seamlessly handling
offline logs. In the case of offline log processing, only a forward pass (represented by the solid black line in the diagram) is necessary, without the need for
iterative updates to the online database operations (represented by the dashed blue lines in the diagram).

algorithm that utilizes a self-evolution approach to generate287

higher-quality prompts without the need for manual expert288

annotation, thus enhancing the effectiveness of log parsing.289

Concurrently, we have also designed a framework to increase290

the efficiency of log processing using LLMs, aiming to in-291

crease the log processing rate of existing LLM-based log292

parsing systems(ADD CITATION) from one log per second293

to tens of thousands of logs per second.294

III. OUR APPROACH295

In this section, we present SelfLog, a self-evolutionary296

log parsing system that focuses on how, through a self-297

evolutionary approach, Large Language Models (LLMs) can298

achieve good results without relying on manually annotated299

<log, template> data. Additionally, it addresses the issue300

where the log processing efficiency is influenced by the gener-301

ation rate of the LLM. We first provide an overview of SelfLog,302

followed by a detailed introduction to each of its key modules.303

It is noteworthy that we will introduce the system with a304

focus on the most common scenario in industrial systems:305

streaming logs. In a streaming setup, logs are continuously306

generated, and downstream log parsing algorithms need to307

extract templates in real-time. At the end of this section, we308

will discuss how the scenario of offline analysis is actually a309

special case of online streaming analysis.310

A. Overview of SelfLog311

As shown in Fig. 3, the SelfLog system only needs to312

call the LLM API, through In-Context Learning (ICL), by313

providing a specially designed prompt to the LLM, to perform314

the task of log parsing without the need to train the LLM. The315

entire system is divided into four major modules: N-Gram-316

based Grouper, Log Hitter, LLM-based Log Parser, and317

Tree-based Merger.318

The N-Gram-based Grouper is primarily used to cluster and 319

group the preprocessed logs, which has two main goals. One 320

is that it can greatly save on the financial cost of calling the 321

large model, as we no longer need to call the model for each 322

log entry. Instead, we only need to call the model once for a 323

new group as a whole. Additionally, it can greatly enhance 324

accuracy because if there is only one log, the model can 325

only determine which token is a variable based on semantic 326

information. However, if there are multiple logs within the 327

same group, the model can determine which token is a variable 328

by comparing which parts of the logs differ, which is also the 329

core idea behind methods like Drain [12]. We are the first to 330

apply this to LLMs. 331

With the Grouper in place, the design of the Log Hitter 332

naturally follows, as the same group is likely to correspond to 333

a same template. If this group already has an existing template, 334

there is no need to make further calls to the large model, 335

which is particularly important in an online environment. This 336

is because repeated calls to the model not only greatly reduce 337

processing efficiency but also, due to the hallucinations and 338

uncertain outputs of large models, can lead to unstable parsing 339

results. The LLM-based Log Parser mainly achieves good 340

detection results through a carefully designed prompt and the 341

method of ICL. The in-context examples in the prompt play an 342

important role for the model to continuously revise its current 343

output based on the previous outputs in a self-evolution way. 344

The Tree-based Merger is primarily responsible for correcting 345

the model’s output because neither the Grouper nor the LLM 346

can guarantee a 100% accuracy rate. The Merger will merge 347

some logs that were incorrectly divided into multiple groups 348

and templates, thereby enhancing the model’s precision. 349



B. Pre-processing350

The original logs contain the timestamps assigned351

by the system to the log content, and log types such352

as INFO and ERROR, process ID, etc. In the same353

system, these contents are all in fixed locations in the354

log, so they can be extracted through simple regular355

expressions. For example, “17/06/09 20:10:40 INFO356

spark.SecurityManager: Changing view acls357

to: yarn,curi” is a raw log from Spark [1] system.358

The regular expression “[r’(\d+\.){3} \d+’,359

r’\b[KGTM]?B\b’, r’([\w-]+\.){2,}[\w-]+’]”360

can extract each part separately. Thus we only need to361

focus on the log content, which is printed by the system362

code through the log print statement (see Fig. 1), which363

contains fixed constants prewritten in the code and variables364

dynamically filled in based on system operating information.365

Since methods based on statistical features [12] require366

calculating the characteristics of a segment of text within367

a log to determine whether that segment is a variable or368

a constant, how to segment a log text becomes critically369

important. Existing methods mostly involve segmenting a log370

by using delimiters, and converting it into separate segments371

of text, each of which we refer to as a token. However, this372

method of segmentation necessitates selecting appropriate373

delimiters for different datasets. For instance, for BGL [1]374

logs, the delimiters might be “..()”, while for Windows375

datasets [1], the delimiters could be “=:[]”. We believe that376

this approach to segmentation is not robust enough. With377

the advent of large models, we no longer need to strictly378

rely on such tokenization rules. In SelfLog, the purpose of379

tokenization during preprocessing is to facilitate subsequent380

log grouping, rather than directly extracting templates.381

Therefore, we only need to identify the commonalities across382

multiple logs and filter out as many of the variable parts as383

possible. Hence, we have chosen “[A-Za-z0-9*]+” as our384

tokenization rule. It can be seen that anything not composed385

of letters and numbers is used as a delimiter. For example, for386

the log “pam_unix(sshd:auth): authentication387

failure; logname= uid=0 euid=0 tty=ssh388

ruser= rhost=202.100.179.208 user=root”,389

after our tokenization process, it becomes a list of390

constant tokens “unix sshd auth authentication391

failure logname euid ruser rhost user392

root”. By comparing the token list with the original log, we393

can observe that pure numeric sequences have been removed,394

as we assume that pure numbers are most likely variables395

and cannot represent a category of logs. Furthermore, to396

mitigate the potential impact of variables, we query the397

WordNet [33] lexicon for all tokens that, after tokenization,398

are three characters or fewer in length. If a token appears399

infrequently in WordNet, we consider it to be an invalid word400

and likely a prefix or suffix. In the previous example, tokens401

such as “pam”, “uid”, “tty”, and “ssh” were eliminated.402

Algorithm 1: N-Gram-based Grouper
Input : log X

1 TX = get token list(X)
2 // step1: find 2-gram const token
3 position = get 2gram const index(TX)
4 // step2: Get variable token list

from right part
5 variable list right = PILAR gram(TX , position)
6 // step3: Get variable token list

from left part
7 variable list left = PILAR gram(TX , position)
8 // step4: removing variable from TX
9 CX = TX - variable list right - variable list left

Output: CX: constant tokens of log X

C. N-Gram-based Grouper 403

In the pre-processing phase, each log is represented with a 404

list of tokens, and yet some of these tokens may be variables. 405

We need to further identify these variables, remove them from 406

the token list, and then use the token list for grouping, ensuring 407

that logs within each group belong to the same template. It 408

is worth noting that even if we do not identify all variables 409

here, leading to logs of the same template being divided into 410

two different groups, it is not a problem because later stages 411

involving the Large Language Model (LLM) and the Tree- 412

based Merger can correct them. We have improved upon the 413

entropy-based method from PILAR [10] to determine whether 414

a token is a variable or a constant, with the specific method 415

detailed in Algorithm 1. The constants in the log are written 416

in the code by programmers to facilitate the person to observe 417

the system status and code debugging. Therefore, constant 418

tokens are often words with higher frequency in the corpus. 419

Different tokens are assigned different frequencies according 420

to their frequency of occurrence in WordNet [33]. Function 421

get 2gram const index (Line 3) calculates the largest sum 422

of 2 consecutive token weights and returns their position. 423

Then, starting from the position and moving to the right(Line 424

5), the algorithm employs the method from PILAR, using 425

a 3-gram approach to dynamically determine whether each 426

token is a variable. Each token is based on the ratio of the 427

number of co-occurrences with its neighbors and the number 428

of neighbor occurrences after removing itself, compared with 429

the set threshold. If it is less than the threshold, it is considered 430

a variable. Function PILAR gram is the algorithm in listing 431

1 of the PILAR. It returns the variable list righ. Similarly, 432

starting from the position and moving to the left, it determines 433

whether each token is a variable (Line 7). Finally, return 434

CX(Line 9). 435

Compared to PILAR, our N-Gram-based Grouper differs in 436

the following two ways: Firstly, PILAR relies on assuming 437

that the first word of the log is a constant, but this is often 438

inaccurate because some logs start with variables. By checking 439

the log templates in the Proxifier ground truth, we found that 440

2000 logs all start with variables. Because the algorithm in 441



PILAR defaults to the first token as a constant, the execution442

direction of the algorithm is from left to right. We judge443

whether a token is a variable based on the weight value, the444

starting point of the algorithm needs to be executed in both445

directions from right to left and from left to right to calculate446

the entropy of log tokens. Secondly, Unlike PILAR, which447

sets thresholds based on expert experience, we directly set the448

threshold to be automatically adjusted according to the number449

of different logs to improve the robustness of the group stage.450

After obtaining the list of constant tokens for each log451

through Algorithm 1, we then categorize the logs into different452

groups based on the token list. Each group is keyed by the453

token list, with the value being a list of logs that records all454

logs belonging to that group. Subsequently, the LLM-based455

Log Parser will extract the corresponding log template for each456

newly emerged group, and after the template is extracted, it457

will be updated into the log hitter in the form of a <token list,458

template> pair.459

D. Log Hitter460

After grouping, the logs are divided into multiple groups461

according to the token list. The Log Hitter maintains a462

dictionary with the token list as the key and the log template463

as the value. The grouped logs will first be looked up in464

the dictionary according to the token list, and if there is a465

hit, the corresponding template will be directly returned to466

complete the log parsing. If there is no hit, the token list will be467

recorded as the key first, and the three logs with large editing468

distances in the group will be selected as the input of the469

LLM-based Log Parser, and the logs will be parsed by LLM.470

Finally, the log template obtained after Tree-based Merger471

processing is updated to the dictionary. Log Hitter records472

historical grouping information and continuously updates it.473

Only logs that have not appeared before are handed over to474

LLM for processing, which greatly improves the efficiency of475

log parsing.476

E. LLM-based Log Parser477

A model prompt is a brief text snippet provided to an478

LLM model to guide its generation of related content. Unless479

stated otherwise, we use GPT-3.5 as our LLM model, and480

we also evaluate the performance of other LLMs in the481

evaluation section. These prompts are typically crafted as482

questions, descriptions, or instructions to elicit the model’s483

output on specific topics or styles. By cleverly constructing484

prompts, it’s possible to steer the model towards generating485

text that aligns with expectations, thereby meeting user needs486

or accomplishing particular tasks. In this paper, we carefully487

design prompts to guide LLM in log template extraction. As488

shown by the different colors in Fig. 4, our prompts mainly489

consist of the following five parts, which we will introduce490

one by one.491

Task Description: This part should be placed at the very492

beginning of the prompt to clearly state the task that the LLM493

needs to perform, and it is part of the instruction section. Our494

specific task description is shown in the figure. In addition495

Fig. 4. An example of the complete prompt. The yellow block is the task
description and the green block is human knowledge. The apricot block is the
selected three input logs from the same group. The blue block is an example
dynamically selected based on the Approximate Nearest Neighboring (ANN)
from the prompt database, which is one of the core designs of our work. The
purple part specifies the output format.

to providing the model with instructions for log extraction, 496

we also inform the model of the system to which these logs 497

belong, activating the corresponding log training part within 498

the model. 499

Human Knowledge Injection: This part is optional. If 500

there is explicit knowledge that can be articulated in actual 501

applications, it can be added here to enhance the model’s 502

expression. We include knowledge to inform the model that 503

the asterisk (*) is not a multiplication sign but a representative 504

of a wildcard, to prevent conflicts with other parts of the 505

model’s knowledge. Examples of log machine correspondence 506

templates based on historical manual confirmation in DivLog 507

can also be placed in this part. Therefore, our algorithm can 508

be combined with DivLog to achieve better improvement. 509

Input Logs: This part is the main input corresponding to 510

the log template extraction task. Through the design of the N- 511

Gram-based Grouper mentioned earlier, our model no longer 512

extracts templates from individual logs. Instead, we extract 513

new templates for each group. So, when a new group that 514

has not been seen before appears, we randomly select three 515

logs with the greatest edit distance from this new group as the 516

model’s input for template extraction. In Fig. 2, we demon- 517

strate the difference in final effect between using the LLM to 518

perform template extraction on each log entry individually and 519

feeding multiple similar logs into the LLM as a group for log 520

parsing. From Fig. 2 (a), it can be seen that when a single 521

log is fed to the LLM, the model will identify the status 522

code 503 as a variable type of error message, thereby 523



recognizing the entire status code 503 as a variable. In524

fact, the status code is a constant, and 503 is the variable.525

If similar logs are input into the model as a group, as shown526

in Fig. 2(a), the model sees both the status code 503527

and the status code 403, thus accurately identifying the528

variable part. We will evaluate in Section 5 the impact of529

choosing different numbers of logs in a group on the final530

outcome.531

Self-evolution Examples: This part is the main part de-532

signed in this paper. DivLog [17] works by adding manu-533

ally annotated logs and their corresponding templates to the534

prompt, but this still needs manual annotation for new logs.535

In this paper, we record the logs and their corresponding536

templates that the LLM has parsed in history, storing them in537

the Prompt Database. Each time a new log needs to be parsed,538

we retrieve the most similar historical logs and their templates539

from the data through an Approximate Nearest Neighbors540

(ANN) search, serving as the corpus for In-Context Learning541

(ICL). This approach not only allows for complete automation542

without the need for expert annotation but also enables the543

model to reflect on potential issues in previously extracted544

templates and make timely corrections.545

Output JSON Format: The content provided by the LLM546

model is usually quite diverse and often includes some analysis547

and explanations of the problem. These outputs are usually548

mixed with the extracted templates. If there are no constraints549

on the model’s output, it would be difficult to directly extract550

the answer from the large model’s response. Therefore, we551

impose explicit constraints to let the LLM fill the analysis552

process and the final template into the pre-set json fields,553

which facilitates the subsequent accurate extraction of the log554

template from LLM’s answers.555

F. Tree-based Merger556

We test existing large models and find that even models557

like GPT-3 cannot identify all variables. As shown in the558

example in Fig. 5, since logs are mostly entered in a streaming559

manner, and the initial logs are all from the user “cyrus”, the560

model will extract a template with session opened for561

user cyrus by (uid=<*>. Following this, when logs562

from the user “news” are entered, the model will propose a563

corresponding template, and so on. When there is a period564

with logs from both “cyrus”, “news”, “test”, and other users,565

the model can recognize that what lies between “user” and566

“by” is a variable. To address this issue, we construct a tree567

as depicted in Fig. 5. This tree updates in real-time based568

on the parsing results of the streaming data. By utilizing this569

tree, we can perform a double check of corner cases that the570

large model cannot accurately recognize, thereby enhancing571

the parsing performance of the model.572

IV. EVALUATION573

In this section, we design detailed experiments to answer574

and verify the following six research questions:575

Fig. 5. Illustration of Tree-based Merger.

RQ1: Effectiveness of SelfLog. How does SelfLog perform 576

in comparison to other state-of-the-art algorithms across the 577

16 publicly annotated datasets by LogPai [1]? 578

RQ2: Efficiency and Cost of SelfLog. Compared with the 579

LLM-based log parsing method, how efficient is SelfLog? 580

RQ3: Ablation Study. How do the different constituents in 581

our design contribute to overall performance? 582

RQ4: Parameter Sensitivity. How do configuration parame- 583

ters affect the parsing effects? 584

RQ5: Parsing Speed. What is the maximum parsing speed at 585

which SelfLog currently processes streaming logs? 586

RQ6: LLM Backbone. What is the impact of different LLMs 587

on the SelfLog effect? 588

A. Experimental setup 589

1) Datasets: The experimental dataset comes from the real 590

log data of 16 different systems open-sourced by LogPai [1]. 591

LogPai manually labeled templates of 2K logs for each dataset. 592

593

2) Evaluation metric: Consistent with recent research find- 594

ings [34], we employ Parsing Accuracy (PA), Precision Tem- 595

plate Accuracy (PTA), and Recall Template Accuracy (RTA). 596

Additionally, we have incorporated the Group Accuracy (GA) 597

metric as used in the paper [12], [15], [16], [25], [34]. 598

• GA (Group Accuracy) was initially introduced by the pa- 599

per [34] and has since been adopted for strictly assessing 600

the accuracy of log template extraction. It considers a 601

template extraction to be correct only if all correspond- 602

ing logs belonging to the same template are accurately 603

extracted. 604

• PA (Parsing Accuracy) was first proposed by LogGram 605

[9]. PA focuses on the consistency between the log 606

template extracted by the algorithm and the ground truth. 607

If all tokens in the log are correctly identified as constants 608

and variables, the extraction is considered correct. 609

• PTA (Precision Template Accuracy) and RTA (Recall 610

Template Accuracy) is proposed by Khan et al. [34]. 611

PTA is measured by the percentage of correctly identified 612

templates to the total number of identified templates, 613

whereas RTA is measured by the percentage of correctly 614

identified templates to the total number of ground truth 615

templates. 616



TABLE I
ACCURACY COMPARISON WITH DIFFERENT LOG PARSERS ON LOGPAI DATASETS ( [1]). THE BEST SCORES FOR EACH METRIC OF EVERY DATASET ARE

BOLDED. DUE TO LIMITED TABLE SPACE, WE OMIT PTA AND RTA BECAUSE THEY SHOW CONSISTENT RESULTS WITH PA. IT IS NOTEWORTHY THAT, IN
ADDITION TO THIS TABLE, WE INCLUDE GA, PA, PTA, AND RTA IN THE FOLLOWING FIGURES AND TABLES.

Dataset LenMa Spell Drain Logram LogPPT DivLog SelfLog
GA PA GA PA GA PA GA PA GA PA GA PA GA PA

HDFS 0.998 0.01 1.000 0.297 0.998 0.3545 0.940 0.005 0.845 0.389 0.143 0.966 1.000 1.000
BGL 0.690 0.082 0.787 0.197 0.963 0.342 0.645 0.125 0.478 0.789 0.451 0.949 0.994 0.934
HPC 0.830 0.632 0.654 0.5295 0.887 0.6355 0.906 0.643 0.947 0.927 0.194 0.936 0.924 0.909

Apache 1.000 0.000 1.000 0.694 1.000 0.694 0.314 0.0065 1.000 0.994 0.012 0.928 1.000 1.000
HealthApp 0.174 0.129 0.639 0.152 0.780 0.1085 0.279 0.112 1.000 0.6685 0.548 0.944 1.000 1.000

Mac 0.698 0.125 0.757 0.0325 0.787 0.218 0.520 0.169 0.778 0.490 0.548 0.771 0.831 0.82
Proxifier 0.508 0.000 0.527 0.000 0.527 0.000 0.027 0.000 1.000 0.000 0.025 0.895 1.000 0.999

Zookeeper 0.841 0.452 0.964 0.452 0.967 0.497 0.725 0.474 0.995 0.988 0.154 0.976 0.993 0.864
Thunderbird 0.943 0.026 0.844 0.027 0.955 0.047 0.189 0.004 0.257 0.473 0.256 0.971 0.991 0.933

Spark 0.884 0.004 0.905 0.3205 0.920 0.362 0.382 0.2585 0.4915 0.954 0.634 0.967 0.997 0.943
Android 0.880 0.714 0.919 0.245 0.911 0.709 0.791 0.413 0.885 0.331 0.523 0.842 0.983 0.965
Linux 0.701 0.122 0.605 0.088 0.690 0.184 0.147 0.124 0.389 0.388 0.185 0.971 0.937 0.868

Hadoop 0.885 0.0825 0.778 0.1125 0.948 0.269 0.428 0.113 0.787 0.384 0.291 0.949 0.989 0.902
OpenStack 0.743 0.019 0.764 0.000 0.733 0.019 0.236 0.000 0.503 0.872 0.092 0.744 0.957 0.938
Windows 0.566 0.1535 0.989 0.0035 0.997 0.159 0.695 0.1405 0.991 0.354 0.401 0.974 0.996 0.994
OpenSSH 0.925 0.133 0.554 0.1905 0.788 0.508 0.430 0.298 0.2295 0.9335 0.495 0.939 1.000 0.997
Average 0.766 0.167 0.792 0.208 0.865 0.319 0.478 0.18 0.723 0.62 0.309 0.920 0.975 0.942

3) Baselines: We compared the most advanced open-source617

log parsing methods. LenMa [35] clusters logs based on log618

similarity. Logram [9] distinguishes constant variables based619

on the frequency of log tokens. Drain [12] clusters logs based620

on rule trees. Spell [13] clusters logs based on the longest621

identical subsequence between logs. LogPPT [15] uses 32 logs622

to fine-tune the language model for log analysis. DivLog [17]623

uses LLM for log parsing by adding contextual knowledge to624

prompts.625

B. Effectiveness of SelfLog626

Table I displays the GA and PA of seven log parsing627

methods across the 16 datasets. SelfLog outperformed the628

other methods, achieving the highest average performance (see629

the bottom line of Table I) in both GA and PA. SelfLog also630

ranks as the best among existing algorithms in terms of631

PTA and RTA. Due to space limitations, to compare with632

more log parsers, we only selected the GA and PA to be633

displayed in the table. The PTA and RTA of SelfLog are634

shown in Table II below. It showed a 12.7% improvement635

in GA compared to Drain and a 51.9% improvement in PA636

compared to LogPPT. LogPPT and Logram methods are the637

most unstable. The accuracy of Logram on Proxifier dataset638

is only 0.027. This is because variables appear repeatedly639

in Proxifier dataset, causing many variables to be incorrectly640

recognized as constants. Drain has also achieved good results641

in both stability and average GA, but in Proxifier dataset642

the GA of Drain is only 0.527. Because all logs start with643

variables, Drain needs to perform group analysis based on the644

first few tokens, so the effect will be poor. This is because645

Drain assumes that the initial tokens in logs are constants,646

but in the Proxifier dataset, the majority of logs start with647

variables, leading to misjudgments by Drain.648

C. Efficient and Cost of SelfLog 649

As shown in Table I, DivLog is the best method apart 650

from SelfLog. Both our SelfLog and DivLog are based on 651

LLMs, and the two most important metrics for using LLMs are 652

processing time and cost. Therefore, we used 2000 logs from 653

five representative datasets to compare the processing time of 654

the two methods, as well as the number of input and output 655

tokens, since LLMs are billed based on the number of tokens. 656

In addition to these, we also detail PTA, RTA, PA, and GA as 657

accuracy criteria. From Fig. 6, it can be seen that SelfLog is 658

significantly lower than DivLog in both processing time and 659

token size. Under the circumstances that the log processing 660

accuracy of SelfLog is better than that of DivLog (as shown 661

in Fig. 6 (d), with a 190.5% improvement in the GA metric 662

and a 9.1% improvement in the PA metric), the processing 663

time of Proxifier dataset for SelfLog is only 1% of that for 664

DivLog, and the number of tokens is 1
10 that of DivLog. The 665

main reason behind this is that DivLog requires a call to the 666

LLM for each log entry, whereas SelfLog, through N-Gram- 667

based Grouper and Log Hitter, only needs to call the LLM 668

when a new group appears. Since the LLM is currently the 669

bottleneck in log processing, reducing the number of calls to 670

the LLM can greatly improve the efficiency of log processing. 671

Moreover, as shown in Fig. 7(b), giving a group of logs to 672

the LLM for template extraction can better assist the model in 673

finding differences in the logs, thereby preparing to identify 674

constants and variables, and thus achieving better results. 675

D. Ablation Study 676

As shown in Table II, we sequentially removed the grouper, 677

parser, and merger of SelfLog to observe changes in the 678

model across four evaluation metrics. We did not perform 679

an ablation on Log Hitter because it does not contribute 680

to accuracy. Its main function is akin to a cache, capable 681

of storing previously parsed log groups and their templates 682



(a) Run Time (b) Input Tokens (c) Output Tokens (d) Parsing Result

Fig. 6. Comparative histogram of log parsing effect between SelfLog and DivLog at running time, number of input tokens and output tokens when calling
API, and log parsing effect.

for quick retrieval, eliminating the need for additional LLM683

invocations. The second row of Table II indicates that the684

component most affected within the entire SelfLog is the N-685

Gram-based Grouper. Upon its removal, GA dropped by 0.632,686

PTA by 0.658, RTA by 0.285, and PA by 0.19. Concurrently,687

the number of invocations of the LLM by SelfLog increased,688

leading to a significant rise in overall input and output tokens.689

The decline in efficiency is mainly due to the absence of690

grouping, every log entry requires an invocation of the LLM.691

The reason for the decline in effectiveness is illustrated in692

Fig. 7(b) with a detailed example, showing that presenting693

logs to the LLM in a grouped manner, as opposed to one by694

one, is more beneficial for template extraction, as the model695

can more accurately determine variables by comparing logs696

within the group.697

Besides the Grouper, the second most impactful module on698

effectiveness is the LLM-based Log Parser, with declines of699

at least 0.5 in PA, PTA, and RTA. This is because, compared700

to statistical rule-based log parsing methods, LLM can make701

better judgments on whether each token is a variable or a702

constant leveraging its powerful natural language processing703

abilities. Without the LLM module, even with the presence704

of the Grouper, the accuracy of PA could only reach 0.434.705

Although the effectiveness of log parsing is already relatively706

high after the N-Gram-based Grouper and LLM-based Log707

Parser, Table II also shows that the final Tree-based Merger can708

enhance PA, PTA, and RTA one step further (more than 0.1).709

This is because logs are generally produced in a streaming710

manner, and it is possible that within a certain input window,711

a particular variable’s token may appear frequently (as shown712

in Fig. 5) and be mistakenly identified as a constant. The713

Merger, through the construction of a token tree, can correct714

these misidentified variables, thereby improving the model’s715

performance.716

E. Parameter Sensitivity717

In this section, we explore the impact of hyperparameters of718

our model on the outcome. There are three hyperparameters for719

the entire SelfLog system: the threshold used when dividing720

groups with N-Gram, the number of Input Logs from the721

same group fed into the prompt during log parsing with LLM,722

and the number of Self-evolution Examples selected from the723

prompt database. Their respective results are displayed in724

Table III, and Fig. 7(a) and Fig. 7(b). Firstly, we evaluate725

the impact of varying the N-Gram threshold in the Grouper726

TABLE II
ABLATION STUDY RESULTS OF SelfLog. THE LAST THREE LINES

RESPECTIVELY REPRESENT THE PARSING EFFECT AFTER REMOVING
DIFFERENT COMPONENTS FROM SelfLog .

Variants GA PA PTA RTA

SelfLog 0.975 0.942 0.876 0.873

- N-Gram-based Grouper 0.343 0.752 0.218 0.588

- LLM-based Log Parser 0.943 0.434 0.345 0.346

- Tree-based Merger 0.932 0.837 0.626 0.791

TABLE III
THE AVERAGE GA UNDER DIFFERENT THRESHOLDS OF PILAR AND

SelfLog ON 16 DATASETS, THE IMPROVED EFFECT IS THE IMPROVEMENT
OF SelfLog RELATIVE TO DIVLOG. lines REPRESENTS THE TOTAL

NUMBER OF LOG ENTRIES.

Threshold GA of PILAR GA of SelfLog Improved effect
threshold=0.10 0.81 0.876 8.14%
threshold=0.15 0.82 0.876 6.82%
threshold=0.20 0.82 0.877 6.95%
threshold=0.25 0.82 0.874 6.58%
threshold=0.30 0.79 0.870 10.12%
threshold=0.35 0.80 0.891 11.37%
threshold=0.40 0.81 0.891 10.00%
threshold=0.45 0.80 0.889 11.13%
threshold=0.50 0.79 0.889 12.53%

threshold=1/lines ∗ 5 - 0.877 6.95%
fluctuation range 0 ∼ 0.03 0 ∼ 0.019 -

on GA. We also examine the effects on other metrics such 727

as PA, PTA, and RTA with parameter variation, with similar 728

conclusions. Table III shows that our method maintains a high 729

level of performance across different threshold values, with 730

an improvement of at least 6.82% over DivLog [17], ranging 731

from 0.876 to 0.891. Compared to PILAR [10], a method 732

specifically optimized for parsing robustness, our fluctuation 733

across different parameters is 0.019, which is 63% of PI- 734

LAR’s fluctuation (0.019 v.s. 0.3), where a smaller fluctuation 735

indicates better stability. It is noteworthy that the grouping 736

threshold can be removed one step further. We propose a 737

heuristic rule that the threshold for determining whether a 738

token is variable using N-Gram can be dynamically adjusted 739

by the total number of log lines, i.e., 1
lines∗5 . 740

Regarding the number of representation logs in the same 741

group for extracting the template, Fig. 7(a) reflects that the 742

model stabilizes when the number of log entries exceeds 3. 743



(a) Number of Input Logs.

(b) Number of Self-evolution Examples.

Fig. 7. The impact of varying quantities of Input Logs and Self-Evolution
Examples on model performance.

Fig. 8. Parsing speed of different LLM-based log parsing methods.

When the number of log entries for the same group increases744

from 1 to 3, GA improves by 6.7%, and PA by 8.2%, with745

the specific reasons introduced in Section III and Fig. 2 of746

the paper. As shown in Fig. 7(b), it is evident that without747

self-evolution examples, the model performs poorly. When748

the number of self-evolution examples increases from 0 to 3,749

PA improves significantly from 0.3 to 0.82. However, when750

the number of selected examples exceeds 5, the model’s751

performance tends to converge. This is because we use an752

Approximate Nearest Neighbors (ANN) method to select self-753

evolution examples from the prompt database, ensuring that754

as long as there are relevant logs, they can be retrieved.755

Thanks to LLM’s powerful few-shot learning capabilities, we756

can achieve good results with few relevant examples. Further757

adding examples yields marginal improvements.758

F. Parsing Speed759

While employing LLMs for log parsing offers numerous760

advantages, such as their strong semantic understanding ca-761

pabilities and the ability of ICL to enhance the results of762

log parsing, the reality is that existing logs are typically763

generated in a streaming fashion and require real-time template764

extraction for immediate downstream anomaly detection. It765

is quite common for a large distributed system to generate766

tens of thousands of logs per second. However, existing767

algorithms such as DivLog are constrained by the generation768

Fig. 9. A comparison of the performance of SelfLog when using different
models as its backbone.

speed of LLM themselves. The generation speed of current 769

large models is about 100 tokens per second [36], and a 770

single log typically contains between 10 to 100 tokens in 771

LogPAI [1], which means the rate can only reach a few logs 772

per second. In contrast, our SelfLog benefits from a group- 773

wise parsing paradigm and the caching mechanism of the log 774

hitter, which significantly reduces the number of calls to the 775

LLMs. As a result, the LLM is no longer a bottleneck. To 776

get the exact parsing speed for existing LLM-based methods, 777

including SelfLog, We use logs from HDFS [1] as input 778

data, with 11,175,629 logs available. We replay these logs 779

at different rates to test the log parsing speed of various 780

models. In the experiment, we conduct multiple trials, each 781

with a varying log generation speed, as shown in Fig. 8, where 782

we test log generation speeds from 0.01 logs per second to 783

50,000 logs per second. We monitor the processing speeds of 784

DivLog [17], vanilla LLM, and SelfLog, calculating the ratio 785

of log generation speed to log parsing speed as the Yaxis. 786

A ratio of less than 1.0 indicates that the log parsing speed 787

exceeds the log generation speed, suggesting the model has 788

sufficient capacity to handle more logs. Conversely, a ratio 789

greater than 1 means the log parsing speed is less than the 790

log generation speed, leading to a continuous backlog and, 791

over time, potential Out-Of-Memory (OOM) issues. In Fig. 8, 792

we mark the area where the Y-axis is less than 1 as the “safe 793

zone”. When Y equals 1, the corresponding X value represents 794

the peak parsing speed supported by the algorithm. It can be 795

observed from the figure that existing LLM-based log parsing 796

algorithms, which require an LLM call for each log, have 797

processing speeds of fewer than 10 logs per second and are 798

already beyond the “safe zone” when the log generating speed 799

exceeds 10 logs per second, resulting in a backlog. In contrast, 800

SelfLog remains within the “safe zone” even when the log rate 801

is 10,000 per second and reaches a remarkable peak parsing 802

speed of 45,000 logs per second. 803

G. Model backbone 804

Fig. 9 demonstrates the performance of SelfLog when uti- 805

lizing different LLMs as the backbone. It is evident that 806

as the capabilities of the LLMs improve, the performance 807

of SelfLog also continuously enhances. Due to our resource 808

limitations, we have only tested the 7-billion-parameter open- 809

source model. We believe that with the ongoing advancement 810

of the LLM community, SelfLog can achieve further improve- 811

ments in the future. 812



V. THREATS TO VALIDITY813

External Validity: In this article, we study and compare814

the effects of SelfLog and six state-of-the-art log parsing815

algorithms on 16 open-source datasets of LogPai [1]. Although816

these 16 datasets come from different systems, each dataset817

only has 2,000 manually labeled data, which does not represent818

logs in real scenarios. In the future, more realistic hand-labeled819

log datasets can be constructed to optimize the evaluation of820

various log parsers. We tested the efficiency and effect of821

SelfLog when processing a large number of logs in online822

work. Only testing the HDFS dataset cannot comprehensively823

and accurately display the online work efficiency of SelfLog.824

Further testing in real scenarios is needed.825

Internal Validity: In the future, with the improvement of826

model capabilities, N-Gram-based Grouper may become a827

bottleneck limiting the effect of LLM on log analysis. When828

there is an error in classifying logs belonging to different829

templates into the same group, it will directly affect the830

final parsing results. But currently, SelfLog is still a robust,831

effective, and efficient log parsing algorithm.832

Construct Validity: We set the temperature parameter of833

LLM as 0 to reduce the randomness of the results returned by834

LLM, but the results returned by LLM for the same input are835

still inconsistent. We record the experimental results through836

multiple experiments. Though ANN is better than the KNN837

used by DivLog [17] in terms of efficiency, it is not as good838

as KNN (K-Nearest Neighbors) in terms of retrieval accuracy.839

VI. RELATED WORKS840

A. Unsupervised log parsers841

Unsupervised log parser does not require manual annotation842

of data for training and can be directly used in different843

systems for log parsing. Unsupervised log parsers can be844

further divided into frequent pattern mining-based [9]–[11],845

clustering-based [37]–[39], heuristic rule-based [12]–[14], and846

LLM-based methods [17]. Methods based on frequent pattern847

mining start from the data distribution itself and rely on data848

features (e.g. token frequent) to propose templates. The advan-849

tage is that it doesn’t rely on artificially designed hyperparam-850

eters based on the data itself, and the method is highly robust851

(PILAR [10]). The disadvantage is that it is easily affected by852

the imbalance of data distribution. Logram [9] and LogCluster853

[11] all perform log analysis by extracting frequent patterns854

from logs. The clustering-based method adopts grouping first.855

By default, logs in the same group have the same template.856

Templates are proposed based on the differences in logs in the857

same group (different tokens are replaced with <*>). LogMine858

[37] and LogTree [38] use the hierarchical clustering method859

to group logs, and LTE [39] use density-based clustering to860

group logs. LenMa [35] and FLP [40] adopt online grouping861

strategies to support online parsing. Based on the heuristic862

rule method, human knowledge is transformed into rules for863

log analysis by carefully observing the data. Drain [12], Spell864

[13], and IPLoM [14] have achieved good log parsing results865

by fine-tuning algorithm hyperparameters for different data.866

However, due to algorithm design flaws, they cannot correctly 867

parse all log types and have poor robustness. The LLM-based 868

method directly utilizes LLM’s powerful natural language un- 869

derstanding capabilities. By providing a few context examples 870

to build prompts, DivLog [17] has achieved the most advanced 871

results in PA. 872

B. Supervised log parsers 873

Supervised log parsers usually use deep learning methods to 874

train or fine-tune models by manually annotating data. VALB 875

[25] manually annotate constants and variable categories using 876

a method similar to named entity recognition, using the BiL- 877

STM [26] model to understand and perform template extrac- 878

tion and variable category annotation. SemParser [16] extracts 879

concept-instance (CI) pairs through the designed semantic 880

miner, and then uses the joint parser to combine the context 881

information to identify variables. LogPPT [15] proposes to 882

use a small number of logs and template examples to fine- 883

tune the pre-trained model RoBERTa [41] and then perform 884

log analysis. However, the computation cost of fine-tuning is 885

negligible. 886

VII. CONCLUSION 887

The advent of LLMs has presented a promising alternative 888

for accurate log parsing, yet they come with their own set 889

of challenges, particularly the need for manual annotation 890

and the inefficiency of processing large volumes of logs. 891

To overcome these obstacles, we introduce SelfLog, a self- 892

evolving log parsing method that leverages the power of LLMs 893

while mitigating their limitations. Our approach operates in 894

two innovative ways: firstly, by using similar history <group, 895

template> pairs outputted by LLM itself, which serves as 896

prompts for new log entries, thus allowing the model to evolve 897

and learn autonomously without the need for manual labeling. 898

Secondly, we implement an N-Gram-based grouper and log 899

hitter mechanism, which enhances the parsing performance 900

by processing logs in groups rather than individually and 901

significantly reduces redundant calls to LLMs for logs whose 902

group templates have been previously extracted. Our compre- 903

hensive evaluation across 16 public datasets, encompassing 904

tens of millions of logs, has demonstrated that SelfLognot 905

only achieves state-of-the-art performance with a GA of 0.984 906

and a PA of 0.743 but also excels in efficiency, processing at 907

a remarkable speed (over 45,000 logs per secon) compared 908

with existing LLM-based log parsing methods. In a nutshell, 909

by integrating N-Gram-based grouping with self-evolutionary 910

in-context learning, SelfLog fully harnesses the advantages of 911

LLM in few-shot learning while avoiding inefficiency pitfalls. 912

We will continue to explore the application of this paradigm 913

in log analysis in the future. 914
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