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» A Wireless Base Station (WBS), also known as a cell tower or cellular
tower, is a fundamental component of mobile web systems.

» To maintain high service quality, operators from Internet Service
Providers (ISPs) constantly monitor the operational status of WBSes and
deploy multivariate time series (MTS) anomaly detection methods

» Feedback data serve as crucial sources for improving the anomaly
detection performance.

» However, for unsupervised KPl anomaly detection, feedback data
are not effectively used to improve anomaly detection performance.

0.0

-1125

-115.0

1175

-120.0

Motivation
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» Feedback derived from real-world applications of an multivariate time
series anomaly detection method significantly contributes to the
enhancement of the method.

* The reliable operation of WBSes is crucial for ISPs, hence, the impact of
false negatives on WBSes is particularly severe.

» The proportion of false negative and false positive feedback on the
MTS anomaly detection methods is imbalanced.
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- Biased data distribution: The
distribution of the feedback
data collected after deploying
an MTS anomaly detection
method can differ significantly
from that of the training.

» Scarce data: It is difficult for MTS
anomaly detection methods to learn
effectively from the scarce data of
false negative feedback, which
operators are seriously concerned.
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Methodology P{ERE

Label Aware ELBO

+ Categorization based on feedback
» Where y = 0, our objective is to minimize the reconstruction error, thereby

» Fory =1, our goal is to amplify the reconstruction error, ensuring that the

False Negative Augmentation

* A deep learning-based conditional
» Generate data similar to the false

» Enhance the fine-tuning performance

Two-Stage Active Learning
» Step 1 Cluster-Based Filter

+ Identify data from Cluster Filter
the historical data |, , . .
Historical Data
that differs from - 5 - D
the existing Data for
feedback data. Feedback Data Encoded Data Clusters Next Stage
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approximating the distributions

distributions diverge significantly.
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generation for MTS.

negative feedback data.

the anomaly detection model

Step 2 Bias-Eliminating Sampling
Judiciously sample from the data selected in the first stage, thereby
reducing the distribution bias in the final dataset used for fine-tuning.
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» Compared to SOTA

models, Ano utilizes AnomalyTrans  0.9170 09120 09149  0.8735 0.8955  0.8841
feedback better. ACVAE 09158 08856 09005 09222 08964  0.9091
AnoTuner 08922 09411 09160 0.9451 0.9770 0.9608
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» High-quality data generated by
False Negative Augmentation
effectively enhance performance.

Precision Recall F1-Score

» TSAL effectively improves the
effect of anomaly detection.

The mechanism effectively solves
the problem of biased feedback.
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Proposed Ano , a supervised anomaly tuner for unsupervised
KPI anomaly detection.

Introduced Label Aware ELBO loss and False Negative Augmentation to
effectively learn patterns from scarce false negative data.

Developed Two-Stage Active Learning to counter bias caused by
discrepancy between distributions of feedback data and training data.
Demonstrated Ano ‘s effectiveness on a real-world dataset from a
top-tier global ISP, even with limited feedback data (0.74% of test set).




