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Background

• A Wireless Base Station (WBS), also known as a cell tower or cellular 
tower, is a fundamental component of mobile web systems.

• To maintain high service quality, operators from Internet Service 
Providers (ISPs) constantly monitor the operational status of WBSes and 
deploy multivariate time series (MTS) anomaly detection methods

• Feedback data serve as crucial sources for improving the anomaly 
detection performance.

• However, for unsupervised KPI anomaly detection, feedback data 
are not effectively used to improve anomaly detection performance.

Methodology

• Feedback derived from real-world applications of an multivariate time 
series anomaly detection method significantly contributes to the 
enhancement of the method.

• The reliable operation of WBSes is crucial for ISPs, hence, the impact of 
false negatives on WBSes is particularly severe.

• The proportion of false negative and false positive feedback on the 
MTS anomaly detection methods is imbalanced.

Conclusion

Evaluation

• Proposed AnoTuner, a supervised anomaly tuner for unsupervised 
KPI anomaly detection.

• Introduced Label Aware ELBO loss and False Negative Augmentation to 
effectively learn patterns from scarce false negative data.

• Developed Two-Stage Active Learning to counter bias caused by 
discrepancy between distributions of feedback data and training data.

• Demonstrated AnoTuner ‘s effectiveness on a real-world dataset from a 
top-tier global ISP, even with limited feedback data (0.74% of test set).

Label Aware ELBO

False Negative Augmentation

Two-Stage Active Learning

Challenge

Motivation

• Scarce data: It is difficult for MTS 
anomaly detection methods to learn 
effectively from the scarce data of 
false negative feedback, which 
operators are seriously concerned.

Data Corpus

Feedback data

• Biased data distribution: The 
distribution of the feedback 
data collected after deploying 
an MTS anomaly detection 
method can differ significantly 
from that of the training.

Our Approach: AnoTuner
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Figure 3: The overall work�ow of AnoTuner.

the �ne-tuning process, the model cannot e�ectively learn from the
false negative data, as the false negative data itself represents anom-
aly patterns that the model mistakenly learned from the training set.
To achieve supervised �ne-tuning, we have made improvements
to the loss function of the CVAE loss function called Label-Aware
Evidence Lower BOund (ELBO), as shown in (2).

The original ELBO loss function of the CVAE typically comprises
two components: the reconstruction loss and the KL divergence.

Given a data point G , its associated condition 2 , and its latent
variable I, the objective of the CVAE is to maximize the ELBO given
by:

ELBO = E@q (I |G,2 ) [log ?\ (G |I, 2)] � KL(@q (I |G, 2) | |?\ (I |2)) (1)

= E@q (I |G,2 ) [log ?\ (G |I, 2)] �
π

@q (I |G, 2) log
@q (I |G, 2)
?\ (I |2)

3I

Where:
• @q (I |G, 2) is the posterior probability distribution de�ned by the
encoder, with parameters represented by q .

• ?\ (G |I, 2) is the generative model de�ned by the decoder, with
parameters represented by \ .

• ?\ (I |2) is the prior probability distribution of the latent variable
I, usually chosen to be a standard normal distribution.

• KL(@q (I |G, 2) | |? (I)) is the KL divergence, measuring the di�er-
ence between two probability distributions.
In practice, we typically do not compute the ELBO directly but

minimize its negative value, which is equivalent to maximizing the
ELBO.

In the proposed model, the given condition serves as an intrin-
sic feature of the data and does not encapsulate any labeling in-
formation. Consequently, the standard ELBO is not applicable to
our framework. The fundamental principle of our approach is the
categorization based on labels ~. For instances where ~ = 0, our
objective is to minimize the reconstruction error, thereby approxi-
mating the distributions @q (I |G, 2) and ?\ (G |2) closely. Conversely,

for ~ = 1, our goal is to amplify the reconstruction error, ensuring
that the distributions @q (I |G, 2) and ?\ (G |2) diverge signi�cantly.

L(G, 2) = � EI⇠@q (I |G,2 ) [log?\ (G |I, 2,~ = 0)]
+ EI⇠@q (I |G,2 ) [log ?\ (G |I, 2,~ = 1)] (2)

�
π

(2~ � 1)@q (I |G, 2) log
@q (I |G, 2)
?\ (I |2)

3I

It is noteworthy that the label-aware ELBO is only used in feedback-
based �ne-tuning.

Subsequent experiments have shown that in the context of anom-
aly detection forWBSes,AnoTuner not only exhibits state-of-the-art
performance but also can e�ectively utilize feedback for �ne-tuning.

3.3 False Negative Augmentation
In the context of anomaly detection in WBSes, operators are re-
luctant to have the method miss any anomalies. As a result, the
method is adjusted to be very sensitive to anomalies, leading to
a relatively large number of false alarms. This results in a much
smaller proportion of false negative data compared to false posi-
tives in the feedback. However, experimental results show that false
negative feedback is crucial for �ne-tuning. To better utilize false
negative data for �ne-tuning, an intuitive approach is to generate
more similar cases using the existing feedback.

The idea of using existing data to generate more similar data
is commonly referred to as data augmentation in the �eld of ma-
chine learning. In computer vision, data augmentation has been
widely applied because images have relatively easy-to-understand
physical meanings [2, 22, 27, 36]. One can use various digital im-
age processing techniques to manipulate the images, generating
more data while preserving their physical meanings. However, the
data generated by WBSes is MTS data. Traditional data augmen-
tation methods struggle to generate new data while ensuring the
correctness of temporal and inter-KPI dependencies, which are

• Categorization based on feedback
• Where 𝑦 = 0, our objective is to minimize the reconstruction error, thereby 

approximating the distributions
• For 𝑦 = 1, our goal is to amplify the reconstruction error, ensuring that the 

distributions diverge significantly.

• A deep learning-based conditional 
generation for MTS.

• Generate data similar to the false 
negative feedback data.

• Enhance the fine-tuning performance of 
the anomaly detection model

Raw Data Generated Data

• Step 1 Cluster-Based Filter

• Step 2 Bias-Eliminating Sampling
• Judiciously sample from the data selected in the first stage, thereby 

reducing the distribution bias in the final dataset used for fine-tuning.

Historical Data

Feedback Data Encoded Data Clusters

Encode Cluster

Data for 
Next Stage 

Filter• Identify data from 
the historical data 
that differs from 
the existing 
feedback data.
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Table 1: The precision (% ), recall (') and F1-Score (�1) ofAnoTuner and baselinemethods.AnoTuner and ACVAE have a particular
mechanism for feedback �ne-tuning.

Method w/o �ne-tuing FP �ne-tuing FN �ne-tuing FP+FN �ne-tuing
% ' �1 % ' �1 % ' �1 % ' �1

LSTM-NDT 0.8234 0.8926 0.8566 0.8499 0.9074 0.8777 0.6851 0.785 0.7317 0.8269 0.8690 0.8474
OmniAnomaly 0.8964 0.9064 0.9014 0.8718 0.8432 0.8573 0.8529 0.7964 0.8237 0.7293 0.7044 0.7167
Interfusion 0.8923 0.8786 0.8854 0.9330 0.8321 0.8796 0.8996 0.8164 0.8560 0.9159 0.8187 0.8646
AnomalyTrans 0.9170 0.9129 0.9149 0.8922 0.9337 0.9125 0.8587 0.8731 0.8658 0.8735 0.8955 0.8841

ACVAE 0.9158 0.8856 0.9005 0.9022 0.8800 0.8910 0.9230 0.8942 0.9084 0.9222 0.8964 0.9091

AnoTuner 0.8922 0.9411 0.9160 0.9105 0.9510 0.9303 0.9329 0.9707 0.9514 0.9451 0.9770 0.9608

4.4 RQ2: Contribution of False Negative
Augmentation

The primary goal of the false negative augmentation is to address
the issue of a low proportion of false negatives in the already scarce
feedback. False negative augmentation can e�ectively generalize
from existing FN data, generating high-quality FN feedback data
while ensuring data time and spatial relations.

To evaluate the contribution of false negative augmentation, we
�rst conduct an ablation study. Under the experimental setup of
Section 4.3, we compare the results with and without the use of
false negative augmentation and compare them with a widely-used
temporal augmentation method for time series anomaly detection,
RSTL [26]. The experiment results are shown in Figure 4.

Figure 4: The performance of AnoTuner under three scenar-
ios: with false negative augmentation (w/ FNA), without false
negative augmentation (w/o FNA), and using RSTL.

The results demonstrate that the high-quality data generated
by false negative augmentation e�ectively enhance the e�ect of
feedback-based �ne-tuning, leading to an improvement in perfor-
mance on the �nal test set. To further analyze the underlying rea-
sons, we conducted an analysis of the data generated by the model.
We �nd that the key to false negative augmentation’s success lies
in its ability to maintain the temporal and inter-KPI characteristics
of the generated data. The anomaly in Figure 5a is that the second
curve does not show a similar decline to the �rst and third KPIs. Fig-
ure 5b represents data generated by the false negative augmentation
mechanism in AnoTuner , while Figure 5c depicts data generated by
RSTL. A comparison reveals that the data generated by AnoTuner
can better ensure the correlation between di�erent KPIs, thus main-
taining the physical relationships among various base station KPIs.
In contrast, RSTL can generate apparent errors in the interrelation-
ship between the KPIs, distorting the physical meanings of the base
station data and thereby preventing the anomaly detection model
learning from the data.

We attribute the observed outcome to three main factors. Firstly,
RSTL is primarily designed for single-KPI time series and thus lacks

(a) raw FN data (b) by AnoTuner (c) by RSTL

Figure 5: The comparison of the generated FN data by
AnoTuner and RSTL for a FN case (the FN occurs in the red
rectangle).

the appropriate mechanism to ensure correct interrelationships
between KPIs in MTS data augmentation. The second reason, as
we see it, is that RSTL lacks a comprehensive understanding of the
complete dataset. AnoTuner , on the other hand, can view a large
amount of WBS data during the training stage, thereby facilitating
a better learning of the physical meanings between KPIs. The third
point is that these are false negatives (FNs) generated by AnoTuner
itself, suggesting that AnoTuner has inadvertently learned this type
of anomalous data pattern during training, thereby generating very
high-quality examples.

Figure 6: The performance of AnoTuner after �ne-tuning at
di�erent ratios of FN/FP under the control of false negative
augmentation.

Wehave studied the impact of the ratio of FN to FP on �ne-tuning,
the results of which are shown in Figure 6. It can be observed from
the �gure that optimal performance can be achieved when the
ratio of FN to FP feedback is approximately 1. Therefore, in our
AnoTuner , we regulate the false negative augmentation mechanism
to maintain the ratio of FN to FP feedback close to 1.

Supervised Fine-Tuning for Unsupervised KPI Anomaly Detection for Mobile Web Systems WWW ’24, May 13–17, 2024, Singapore, Singapore

Table 1: The precision (% ), recall (') and F1-Score (�1) ofAnoTuner and baselinemethods.AnoTuner and ACVAE have a particular
mechanism for feedback �ne-tuning.

Method w/o �ne-tuing FP �ne-tuing FN �ne-tuing FP+FN �ne-tuing
% ' �1 % ' �1 % ' �1 % ' �1

LSTM-NDT 0.8234 0.8926 0.8566 0.8499 0.9074 0.8777 0.6851 0.785 0.7317 0.8269 0.8690 0.8474
OmniAnomaly 0.8964 0.9064 0.9014 0.8718 0.8432 0.8573 0.8529 0.7964 0.8237 0.7293 0.7044 0.7167
Interfusion 0.8923 0.8786 0.8854 0.9330 0.8321 0.8796 0.8996 0.8164 0.8560 0.9159 0.8187 0.8646
AnomalyTrans 0.9170 0.9129 0.9149 0.8922 0.9337 0.9125 0.8587 0.8731 0.8658 0.8735 0.8955 0.8841

ACVAE 0.9158 0.8856 0.9005 0.9022 0.8800 0.8910 0.9230 0.8942 0.9084 0.9222 0.8964 0.9091

AnoTuner 0.8922 0.9411 0.9160 0.9105 0.9510 0.9303 0.9329 0.9707 0.9514 0.9451 0.9770 0.9608

4.4 RQ2: Contribution of False Negative
Augmentation

The primary goal of the false negative augmentation is to address
the issue of a low proportion of false negatives in the already scarce
feedback. False negative augmentation can e�ectively generalize
from existing FN data, generating high-quality FN feedback data
while ensuring data time and spatial relations.

To evaluate the contribution of false negative augmentation, we
�rst conduct an ablation study. Under the experimental setup of
Section 4.3, we compare the results with and without the use of
false negative augmentation and compare them with a widely-used
temporal augmentation method for time series anomaly detection,
RSTL [26]. The experiment results are shown in Figure 4.

Figure 4: The performance of AnoTuner under three scenar-
ios: with false negative augmentation (w/ FNA), without false
negative augmentation (w/o FNA), and using RSTL.

The results demonstrate that the high-quality data generated
by false negative augmentation e�ectively enhance the e�ect of
feedback-based �ne-tuning, leading to an improvement in perfor-
mance on the �nal test set. To further analyze the underlying rea-
sons, we conducted an analysis of the data generated by the model.
We �nd that the key to false negative augmentation’s success lies
in its ability to maintain the temporal and inter-KPI characteristics
of the generated data. The anomaly in Figure 5a is that the second
curve does not show a similar decline to the �rst and third KPIs. Fig-
ure 5b represents data generated by the false negative augmentation
mechanism in AnoTuner , while Figure 5c depicts data generated by
RSTL. A comparison reveals that the data generated by AnoTuner
can better ensure the correlation between di�erent KPIs, thus main-
taining the physical relationships among various base station KPIs.
In contrast, RSTL can generate apparent errors in the interrelation-
ship between the KPIs, distorting the physical meanings of the base
station data and thereby preventing the anomaly detection model
learning from the data.

We attribute the observed outcome to three main factors. Firstly,
RSTL is primarily designed for single-KPI time series and thus lacks

(a) raw FN data (b) by AnoTuner (c) by RSTL

Figure 5: The comparison of the generated FN data by
AnoTuner and RSTL for a FN case (the FN occurs in the red
rectangle).

the appropriate mechanism to ensure correct interrelationships
between KPIs in MTS data augmentation. The second reason, as
we see it, is that RSTL lacks a comprehensive understanding of the
complete dataset. AnoTuner , on the other hand, can view a large
amount of WBS data during the training stage, thereby facilitating
a better learning of the physical meanings between KPIs. The third
point is that these are false negatives (FNs) generated by AnoTuner
itself, suggesting that AnoTuner has inadvertently learned this type
of anomalous data pattern during training, thereby generating very
high-quality examples.

Figure 6: The performance of AnoTuner after �ne-tuning at
di�erent ratios of FN/FP under the control of false negative
augmentation.

Wehave studied the impact of the ratio of FN to FP on �ne-tuning,
the results of which are shown in Figure 6. It can be observed from
the �gure that optimal performance can be achieved when the
ratio of FN to FP feedback is approximately 1. Therefore, in our
AnoTuner , we regulate the false negative augmentation mechanism
to maintain the ratio of FN to FP feedback close to 1.

• Compared to SOTA 
models, AnoTuner utilizes 
feedback better.

• High-quality data generated by 
False Negative Augmentation 
effectively enhance performance.

• TSAL effectively improves the 
effect of anomaly detection.

• The mechanism effectively solves 
the problem of biased feedback.

• After TSAL The distribution 
of the dataset used for fine-
tuning significantly 
resembles the distribution 
of the entire dataset.
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