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BACKGROUND

Microservice architecture has become a staple in production. 

Microservice Architecture

Arrange an application as a collection of loosely coupled, fine-grained services

Example: WeChat's microservice architecture*

3,000 services, over 20,000 nodes

4

Microservice Architecture

*: Zhou, Hao, et al. "Overload control for scaling wechat microservices." Proceedings of the ACM Symposium on Cloud Computing. 2018.

Advantage: Scalability, Flexibility
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Software Change

Bug fixes, configuration adjustments, etc. 
350+ per day

4,000+ per day

10,000+ per day

Software changes in a microservice system
• Frequent but error-prone

• Google: 

70% of incidents were attributed to erroneous software changes
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Erroneous Software Changes that Reduce fault Resilience  

Some Erroneous Software Changes Reduce the fault Resilience (ESCR) of microservice systems.

• ESCRs incur incidents when faults occur in systems.
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Erroneous Software Changes that Reduce fault Resilience  

Some Erroneous Software Changes Reduce the fault Resilience (ESCR) of microservice systems.

• ESCRs incur incidents when faults occur in systems.

• Our empirical study reveals that 37.87% of the erroneous software changes qualified as ESCRs.

Fault: network fluctuations, abnormal CPU usage, disk I/O failure, etc.
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Challenge

Lack of training data

Complex KPI patterns

Significant overhead

• Insufficient real-world abnormal data

• The high labeling cost of data generated through fault injection 

• Dozens of faults should be injected to test the fault resilience

• Faults can affect the pattern of KPIs

• Millions of KPIs to be checked in real-world microservice systems

• Training overhead & Detection overhead
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• Insufficient real-world abnormal data

• The high labeling cost of data generated through fault injection 

• Dozens of faults should be injected to test the fault resilience

• Faults can affect the pattern of KPIs

• Millions of KPIs to be checked in real-world microservice systems

• Training overhead & Detection overhead

ResilienceGuardian!
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ResilienceGuardian
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• Deploy the software change in the staging environment.

• Perform fault injection to test the resilience.

• Utilize machine learning models to process KPI data, aiming to assess the fault resilience. 
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Data Collection  
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Data Augmentation

Strong noise: (3 x NI, 10 x NI] → Positive Label

Weak noise: (0 x NI, 3 x NI] → Negative Label

Noise Intensity: quantify the random noise in a KPI segment 

NIs might vary tens of times in microservice systems.

The amount of injected noise varies.
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𝒌-𝝈 rule

The design of 𝑰𝒑：
• Deploy ESCR and inject faults

• Collect KPI data

• Cluster KPI segment pairs

Lack of training data
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Classifier Design: Model

• A fault-specific strategy: train individual classifiers for each fault.

• A lightweight deep-learning model
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Complex KPI patterns

Significant overhead
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Classifier Design: Transfer Learning

Significant training overhead
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Classifier Design: Parallelism Strategy

Strategy configuration: a 2-tuple (k, n) Significant detection overhead
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ESCR Identification

KPI-level analysis

Classify each KPI's three pairs

C2: Normal 

variation

Start Op1 > σ C1: Consistency

|Op2 –

Op3| > δ

Op2 < Op3

C3: 

Improvement

C4: ESCR End

yes

yes

yes

no

no

no

Result aggregation:

Calculate a vulnerability score vsf for each fault f 

Complex KPI patterns
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Operator Decision

Software Change Ticket Decision Panel

Service                       HipsterShop-AdService

Operation                  Backup node modification of  the ‘testbed-worker1’ server

Submit Time             2023-09-30 17:00:00

Recommendation     ESCR

Accept Reject

Detection Result

Rank   1 Vulnerability Score 21.32 Fault  Network_Packet_Loss-50%_testbed-woker1     Start 2023-09-30 21:00:00     Duration 15 min

Index Type KPI Category Visualization

1
Business 

KPI
adservice-request_count 4

2
Machine 

KPI
adservice-net_send_packet 4

Rank   2 Vulnerability Score 9.67 Fault  Abnormal_CPU_Usage-80%_testbed-woker1     Start 2023-09-30 22:00:00     Duration 15 min

Index Type KPI Category Visualization

1
Machine 

KPI
adservice-cpu_usage 4

2
Business 

KPI
adservice-request_duration 4

• Operator should confirm these results.

• Detection report: records the KPI-level analysis and the aggregation result 
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Datasets
Dataset A & Dataset B
• Deploy ESCRs and perform fault injection
• Dataset A: HipsterShop (80 instances)
• Dataset B: Train-Ticket (120 instances)

Dataset C

• The UEA Archive

HipsterShop Architecture*

Train-Ticket Architecture#
*: https://github.com/lightstep/hipster-shop

#: https://github.com/FudanSELab/train-ticket



Evaluation

21

ESCR Identification & Ablation Study 

Dataset A: collected from HipsterShop

Dataset B: collected from Train-Ticket

Dataset Approach Detection (s)Training (min)

ESCR Identification
• F1 score: 0.91
• Training time: a reduction of 56.23% - 97.53%
• Detection time: 0.12s

Ablation Study
• Verify the contribution

• Data augmentation
• Transfer learning

Dataset Approach Detection (s)Training (min)
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Scale the dataset by duplicating KPI segment pairs.

Transfer Learning

• Ratio: 70

Parallel Detection

• Serial: 13 hours

• Parallelism: 48s

Evaluation
Scalability
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Critical Difference Diagram

• Coordinate: the mean rank of the model for all datasets

Effectiveness

• F1-Score: Similar to ROCKET

Efficiency

• Running time: Outperform ROCKET

Conclusion

• A satisfying balance between effectiveness 

and efficiency

Dataset C: The UEA archive

Evaluation
Classification

F1-Score 

Running time
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α: #Pairs per KPI for Training

• α == 1000

β: #Pairs per KPI for Transfer Learning

• β == 10

Evaluation
Hyperparameter Configuration
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• To the best of our knowledge, this paper is the first attempt to address 

Erroneous Software Changes that Reduce fault Resilience (ESCR) 

identification.

• Our framework, ResilienceGuardian, enables the early detection of 

ESCRs before they impact the fault resilience of microservice systems 

in production.

• ResilienceGuardian is systematically evaluated on two well-known 

microservice systems , achieving an average F1-score of 0.90 in 

identifying ESCRs.

Summary
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Thank you!

Q&A

hgl21@mails.tsinghua.edu.cn

IWQoS 2024
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