
Guardian of the Resiliency: Detecting Erroneous
Software Changes Before They Make Your
Microservice System Less Fault-Resilient

Guanglei He1, 4, Xiaohui Nie2, Ruming Tang3, Kun Wang1, 4,

Zhaoyang Yu1, 4, Xidao Wen3, Kanglin Yin3, Dan Pei1, 4

1 2 3 4

21 June 2024 // Guangzhou, IWQoS 2024

1

OUTLINE

BACKGROUND FRAMEWORK EVALUATION SUMMARY

2

OUTLINE

BACKGROUND FRAMEWORK EVALUATION SUMMARY

3

BACKGROUND

Microservice architecture has become a staple in production.

Microservice Architecture

Arrange an application as a collection of loosely coupled, fine-grained services

Example: WeChat's microservice architecture*

3,000 services, over 20,000 nodes

4

Microservice Architecture

*: Zhou, Hao, et al. "Overload control for scaling wechat microservices." Proceedings of the ACM Symposium on Cloud Computing. 2018.

Advantage: Scalability, Flexibility

BACKGROUND

Microservice architecture has become a staple in production.

Microservice Architecture

Arrange an application as a collection of loosely coupled, fine-grained services

Example: WeChat's microservice architecture*

3,000 services, over 20,000 nodes

5

Microservice Architecture

*: Zhou, Hao, et al. "Overload control for scaling wechat microservices." Proceedings of the ACM Symposium on Cloud Computing. 2018.

Advantage: Scalability, Flexibility

Software Change

Bug fixes, configuration adjustments, etc.
350+ per day

4,000+ per day

10,000+ per day

Software changes in a microservice system
• Frequent but error-prone

• Google:

70% of incidents were attributed to erroneous software changes

BACKGROUND

6

Erroneous Software Changes that Reduce fault Resilience

Some Erroneous Software Changes Reduce the fault Resilience (ESCR) of microservice systems.

• ESCRs incur incidents when faults occur in systems.

Primary

node

Backup

node

Request

Post-change

XX

Fault

occurrence Incur an incident

XNetwork

fluctuation

Primary

node

Backup

node

Request

Pre-change

Primary

node

Backup

node

Request

Post-change

ESCR：
misconfiguration

X

ESCR

deployment

Fault: network fluctuations, abnormal CPU usage, disk I/O failure, etc.

BACKGROUND

7

Erroneous Software Changes that Reduce fault Resilience

Some Erroneous Software Changes Reduce the fault Resilience (ESCR) of microservice systems.

• ESCRs incur incidents when faults occur in systems.

• Our empirical study reveals that 37.87% of the erroneous software changes qualified as ESCRs.

Fault: network fluctuations, abnormal CPU usage, disk I/O failure, etc.

Primary

node

Backup

node

Request

Post-change

XX

Fault

occurrence Incur an incident

XNetwork

fluctuation

Primary

node

Backup

node

Request

Pre-change

Primary

node

Backup

node

Request

Post-change

ESCR：
misconfiguration

X

ESCR

deployment

Passive waiting strategy

Pattern comparison

Examples of patten variation

BACKGROUND

8

Challenge

Lack of training data

Complex KPI patterns

Significant overhead

• Insufficient real-world abnormal data

• The high labeling cost of data generated through fault injection

• Dozens of faults should be injected to test the fault resilience

• Faults can affect the pattern of KPIs

• Millions of KPIs to be checked in real-world microservice systems

• Training overhead & Detection overhead

BACKGROUND

9

Challenge

Lack of training data

Complex KPI patterns

Significant overhead

• Insufficient real-world abnormal data

• The high labeling cost of data generated through fault injection

• Dozens of faults should be injected to test the fault resilience

• Faults can affect the pattern of KPIs

• Millions of KPIs to be checked in real-world microservice systems

• Training overhead & Detection overhead

ResilienceGuardian!

OUTLINE

BACKGROUND FRAMEWORK EVALUATION SUMMARY

10

FRAMEWORK

11

ResilienceGuardian

Data Collection

Operator DecisionESCR Identification

Data Augmentation

KPI segment pair

generation

Training a

classifier for 𝑓1

Offline Training

Fault

injection

KPI segment

extraction

Data Collection

Pseudo-labeled KPI

segment pairs

𝑓𝑛-injected

𝑓1-injected

…

Transferring it

to other faults

Classifier Design

Fault

injection

KPI segment

extraction

Combining pre- &

post-change KPI

segments to pairs

Classifying KPI segment

pairs in parallel

𝑐𝑓n

𝑐𝑓1
…

Two FC Layers

Two-layer

LSTM
Softmax

A suite of fault-specific classifiers

Result

aggregation

Report

generation

Online Detection

Deploying

𝑠𝑐

Post-change KPI segments

𝑓𝑛-injected

𝑓1-injected

…

normal

Pre- & Post-change

KPI segment pairs

𝑓𝑛-injected

𝑓1-injected

…

𝑓𝑛-injected

𝑓1-injected

…

normal

Pre-change KPI segments

KPI

analysis

• Deploy the software change in the staging environment.

• Perform fault injection to test the resilience.

• Utilize machine learning models to process KPI data, aiming to assess the fault resilience.

FRAMEWORK

12

Data Collection

Pre-

change

Post-

change

Fault set:

𝑓1, 𝑓2, , . . , 𝑓𝑛

Inject

faults

KPI

segment 1

KPI

segment 2

Collect

Collect

KPI segment

pair

Combine

Comparison
Classifications of KPI segment Pairs

• Criteria: Variations in KPI segment

patterns

KPI segment 1

KPI segment 2

FRAMEWORK

13

Data Augmentation

Strong noise: (3 x NI, 10 x NI] → Positive Label

Weak noise: (0 x NI, 3 x NI] → Negative Label

Noise Intensity: quantify the random noise in a KPI segment

NIs might vary tens of times in microservice systems.

The amount of injected noise varies.

KPI

segments

𝐼𝑛
One segment

Negative pair

Positive pair
Select a

segment

𝐼𝑝: 6

categories

Generate a

positive instance

Generate a

negative instance

Inject strong

noise

Inject weak

noise

Pseudo-labeled

KPI segment

pairs

Noise

intensity

scaling

Multiple dips
Multiple

spikes

Transient level

shift up

Transient level

shift down
Single dip Single spike

𝒌-𝝈 rule

The design of 𝑰𝒑：
• Deploy ESCR and inject faults

• Collect KPI data

• Cluster KPI segment pairs

Lack of training data

FRAMEWORK

14

Classifier Design: Model

• A fault-specific strategy: train individual classifiers for each fault.

• A lightweight deep-learning model

σ σ

+

σ

𝑐𝑡−1 𝑥

𝑥

𝑥

𝑡𝑎𝑛ℎ

𝑡𝑎𝑛ℎ

ℎ𝑡−1

𝑥𝑡

ℎ𝑡

𝑐𝑡

ℎ𝑡
Two-layer LSTM

…

0

1

Fully-Connected Layer

Feature Extraction Layers Classification Layers

Softmax
Prob_0

Prob_1

Prediction

Complex KPI patterns

Significant overhead

FRAMEWORK

15

Classifier Design: Transfer Learning

Significant training overhead

FRAMEWORK

16

Classifier Design: Parallelism Strategy

Strategy configuration: a 2-tuple (k, n) Significant detection overhead

FRAMEWORK

17

ESCR Identification

KPI-level analysis

Classify each KPI's three pairs

C2: Normal

variation

Start Op1 > σ C1: Consistency

|Op2 –

Op3| > δ

Op2 < Op3

C3:

Improvement

C4: ESCR End

yes

yes

yes

no

no

no

Result aggregation:

Calculate a vulnerability score vsf for each fault f

Complex KPI patterns

FRAMEWORK

18

Operator Decision

Software Change Ticket Decision Panel

Service HipsterShop-AdService

Operation Backup node modification of the ‘testbed-worker1’ server

Submit Time 2023-09-30 17:00:00

Recommendation ESCR

Accept Reject

Detection Result

Rank 1 Vulnerability Score 21.32 Fault Network_Packet_Loss-50%_testbed-woker1 Start 2023-09-30 21:00:00 Duration 15 min

Index Type KPI Category Visualization

1
Business

KPI
adservice-request_count 4

2
Machine

KPI
adservice-net_send_packet 4

Rank 2 Vulnerability Score 9.67 Fault Abnormal_CPU_Usage-80%_testbed-woker1 Start 2023-09-30 22:00:00 Duration 15 min

Index Type KPI Category Visualization

1
Machine

KPI
adservice-cpu_usage 4

2
Business

KPI
adservice-request_duration 4

• Operator should confirm these results.

• Detection report: records the KPI-level analysis and the aggregation result

OUTLINE

BACKGROUND FRAMEWORK EVALUATION SUMMARY

19

Evaluation

20

Datasets
Dataset A & Dataset B
• Deploy ESCRs and perform fault injection
• Dataset A: HipsterShop (80 instances)
• Dataset B: Train-Ticket (120 instances)

Dataset C

• The UEA Archive

HipsterShop Architecture*

Train-Ticket Architecture#
*: https://github.com/lightstep/hipster-shop

#: https://github.com/FudanSELab/train-ticket

Evaluation

21

ESCR Identification & Ablation Study

Dataset A: collected from HipsterShop

Dataset B: collected from Train-Ticket

Dataset Approach Detection (s)Training (min)

ESCR Identification
• F1 score: 0.91
• Training time: a reduction of 56.23% - 97.53%
• Detection time: 0.12s

Ablation Study
• Verify the contribution

• Data augmentation
• Transfer learning

Dataset Approach Detection (s)Training (min)

22

Scale the dataset by duplicating KPI segment pairs.

Transfer Learning

• Ratio: 70

Parallel Detection

• Serial: 13 hours

• Parallelism: 48s

Evaluation
Scalability

23

Critical Difference Diagram

• Coordinate: the mean rank of the model for all datasets

Effectiveness

• F1-Score: Similar to ROCKET

Efficiency

• Running time: Outperform ROCKET

Conclusion

• A satisfying balance between effectiveness

and efficiency

Dataset C: The UEA archive

Evaluation
Classification

F1-Score

Running time

24

α: #Pairs per KPI for Training

• α == 1000

β: #Pairs per KPI for Transfer Learning

• β == 10

Evaluation
Hyperparameter Configuration

OUTLINE

BACKGROUND FRAMEWORK EVALUATION SUMMARY

25

26

• To the best of our knowledge, this paper is the first attempt to address

Erroneous Software Changes that Reduce fault Resilience (ESCR)

identification.

• Our framework, ResilienceGuardian, enables the early detection of

ESCRs before they impact the fault resilience of microservice systems

in production.

• ResilienceGuardian is systematically evaluated on two well-known

microservice systems , achieving an average F1-score of 0.90 in

identifying ESCRs.

Summary

27

Thank you!

Q&A

hgl21@mails.tsinghua.edu.cn

IWQoS 2024

	幻灯片 1: Guardian of the Resiliency: Detecting Erroneous Software Changes Before They Make Your Microservice System Less Fault-Resilient
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18
	幻灯片 19
	幻灯片 20
	幻灯片 21
	幻灯片 22
	幻灯片 23
	幻灯片 24
	幻灯片 25
	幻灯片 26
	幻灯片 27

