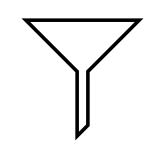
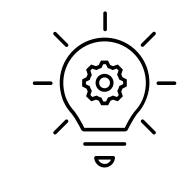

Guardian of the Resiliency: Detecting Erroneous Software Changes Before They Make Your Microservice System Less Fault-Resilient

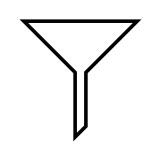

Guanglei He^{1, 4}, Xiaohui Nie², Ruming Tang³, Kun Wang^{1, 4}, Zhaoyang Yu^{1, 4}, Xidao Wen³, Kanglin Yin³, Dan Pei^{1, 4}

21 June 2024 // Guangzhou, IWQoS 2024

OUTLINE

BACKGROUND


FRAMEWORK


EVALUATION


SUMMARY

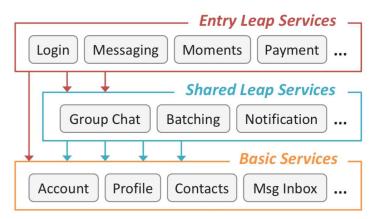
OUTLINE

BACKGROUND

FRAMEWORK

EVALUATION

SUMMARY


Microservice Architecture

Microservice architecture has become a staple in production.

Microservice Architecture

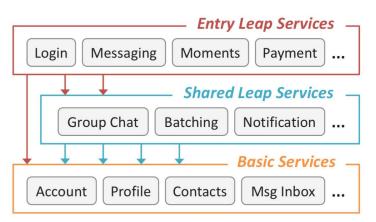
Arrange an application as a collection of loosely coupled, fine-grained services

Advantage: Scalability, Flexibility

Example: WeChat's microservice architecture* 3,000 services, over 20,000 nodes

*: Zhou, Hao, et al. "Overload control for scaling wechat microservices." Proceedings of the ACM Symposium on Cloud Computing. 2018.

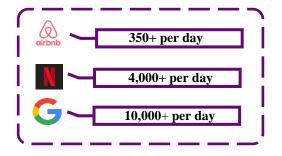
Microservice Architecture


Microservice architecture has become a staple in production.

Microservice Architecture

Arrange an application as a collection of loosely coupled, fine-grained services

Advantage: Scalability, Flexibility

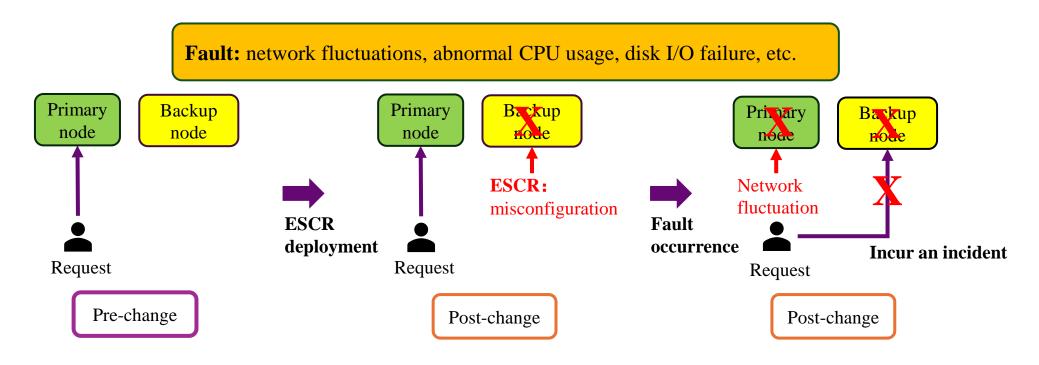


Software changes in a microservice system

- Frequent but error-prone
- Google:

70% of incidents were attributed to erroneous software changes

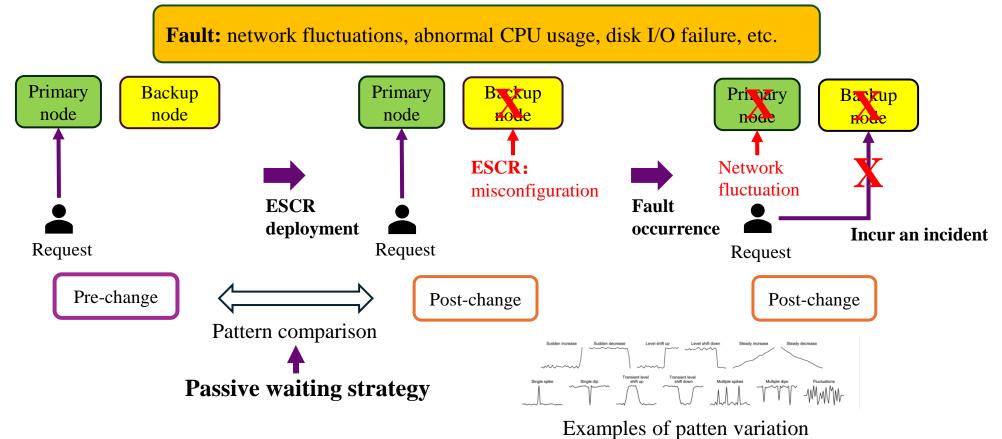
Software Change Bug fixes, configuration adjustments, etc.


Example: WeChat's microservice architecture* **3,000** services, over **20,000** nodes

*: Zhou, Hao, et al. "Overload control for scaling wechat microservices." Proceedings of the ACM Symposium on Cloud Computing. 2018.

Erroneous Software Changes that Reduce fault Resilience

Some Erroneous Software Changes Reduce the fault Resilience (ESCR) of microservice systems.


• ESCRs incur incidents when faults occur in systems.

Erroneous Software Changes that Reduce fault Resilience

Some Erroneous Software Changes Reduce the fault Resilience (ESCR) of microservice systems.

- ESCRs incur incidents when faults occur in systems.
- Our empirical study reveals that **37.87% of the erroneous software changes qualified as ESCRs.**

Challenge

Lack of training data

- Insufficient real-world abnormal data
- The high labeling cost of data generated through fault injection

Complex KPI patterns

- **Dozens of faults** should be injected to test the fault resilience
- Faults can **affect** the pattern of KPIs

Significant overhead

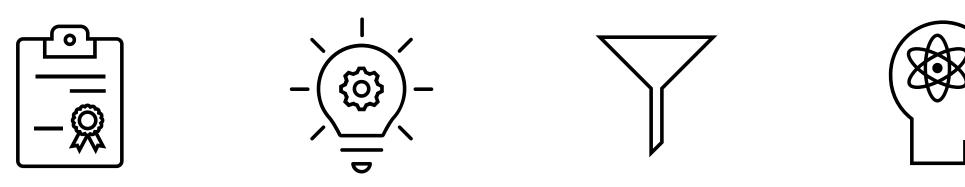
- Millions of KPIs to be checked in real-world microservice systems
- Training overhead & Detection overhead

Challenge

Lack of training data

- **Insufficient** real-world abnormal data
- The high

Complex


ResilienceGuardian!

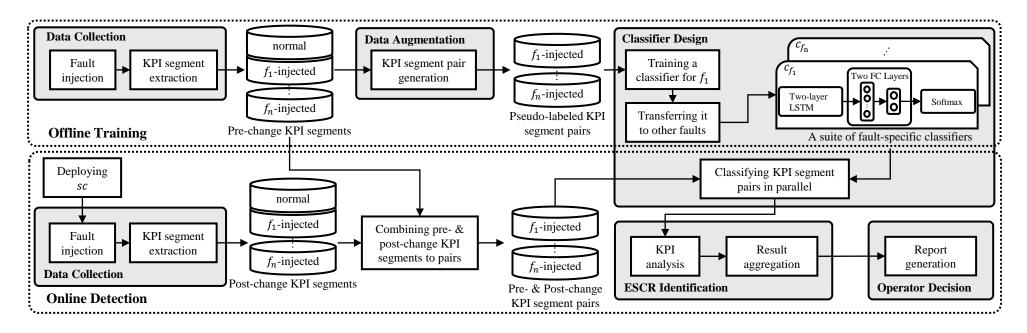
- Dozens of faults should be injected to test the fault resilience
- Faults can **affect** the pattern of KPIs

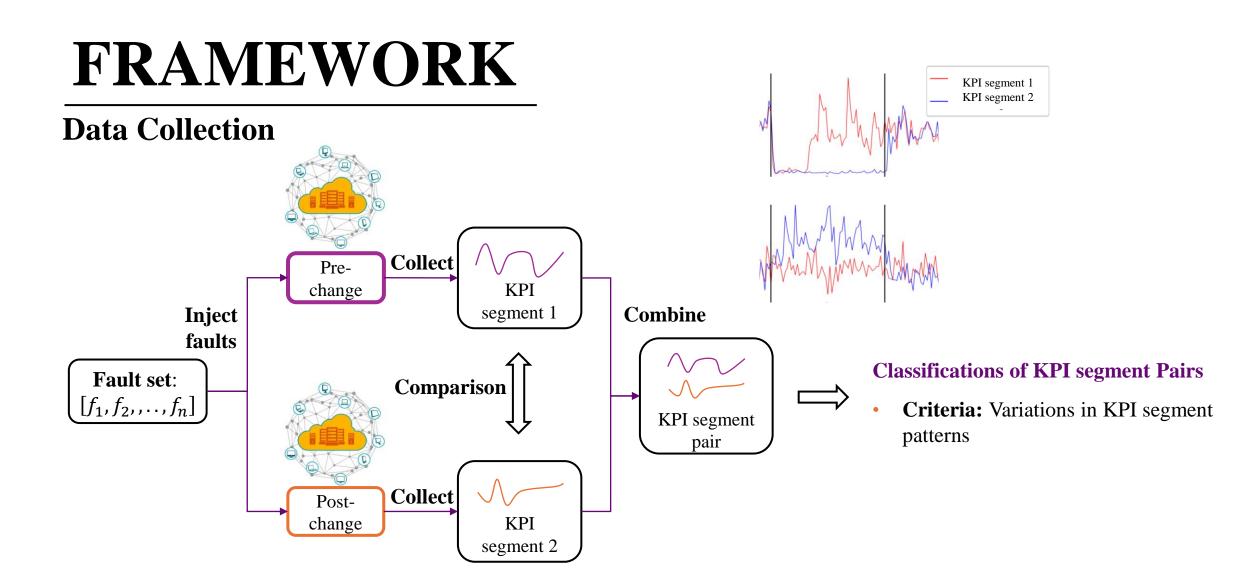
Significant overhead

- Millions of KPIs to be checked in real-world microservice systems
- Training overhead & Detection overhead

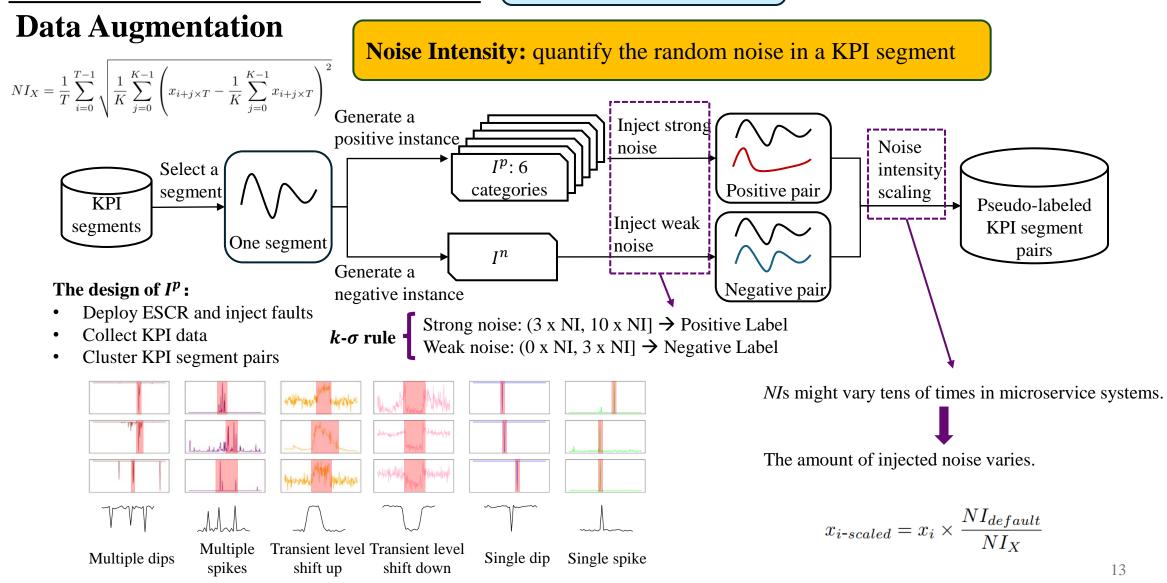
OUTLINE

BACKGROUND

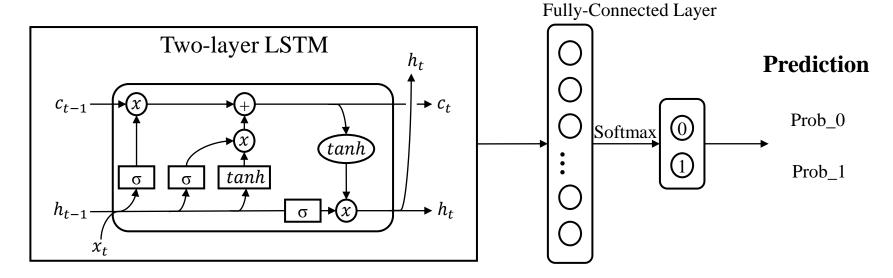

FRAMEWORK


EVALUATION

SUMMARY


ResilienceGuardian

- Deploy the software change in the **staging environment**.
- Perform **fault injection** to test the resilience.
- Utilize machine learning models to process KPI data, aiming to assess the fault resilience.



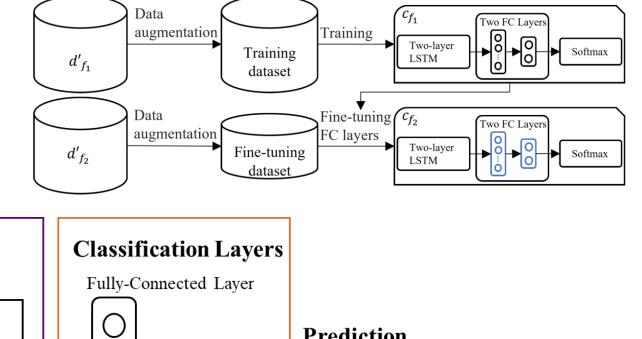
Lack of training data

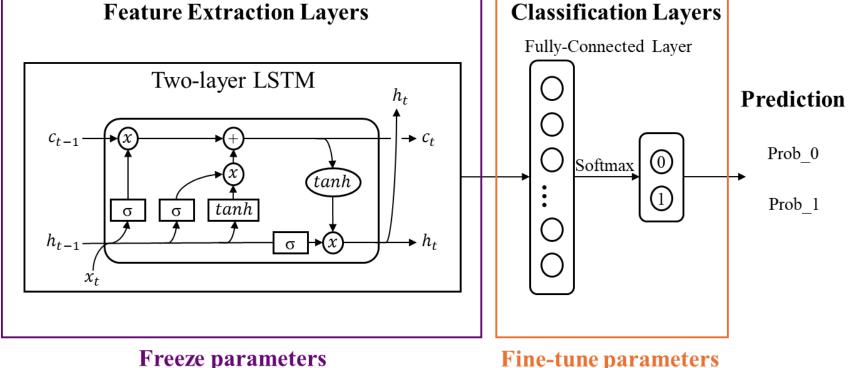
Classifier Design: Model

- A **fault-specific** strategy: train individual classifiers for each fault.
- A **lightweight** deep-learning model

Feature Extraction Layers

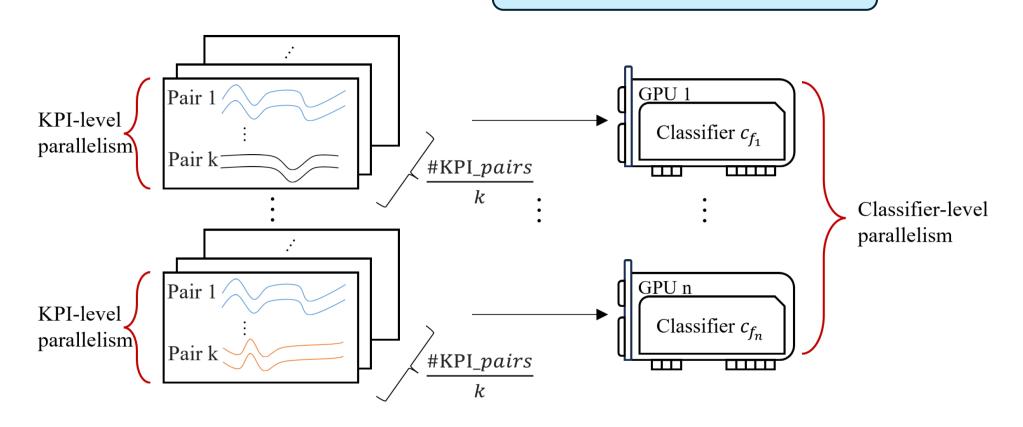
Significant overhead

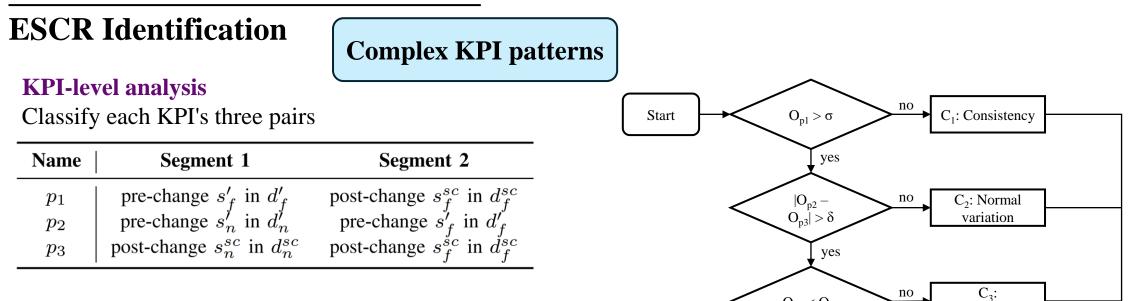

Complex KPI patterns


Classification Layers

Classifier Design: Transfer Learning

Significant training overhead





Classifier Design: Parallelism Strategy

Strategy configuration: a 2-tuple (k, n)

Significant detection overhead

 $O_{p2} < O_{p3}$

C₄: ESCR

yes

Improvement

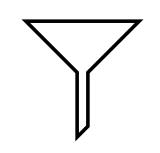
End

Result aggregation:

Calculate a vulnerability score vs_f for each fault f

$$vs_f = \sum_{\sigma}^{KPI \in C_4} \frac{|O_{p_2} - O_{p_3}|}{\sigma} O_{p_1}$$

Operator Decision


- **Operator** should **confirm** these results.
- **Detection report**: records the KPI-level analysis and the aggregation result


Software Change Ticket								ision Panel
Service Operation Submit Time Recommendation		HipsterShop-AdService Backup node modification of the 'testbed-worker1' server 2023-09-30 17:00:00 ESCR					Accept	Reject
Detection Result								
Rank	1 Vul	nerability Score 21.32 F	ault Network	_Packet_Loss-5	0%_testbed-woker1	Start 2023-09	9-30 21:00:00	Duration 15 min
Index	Туре	КРІ	Category			Visualization		
1	Business KPI	adservice-request_count	4	pre-change — post-change	100 50 0	~~~~	mayoun	mannam
2	Machine KPI	adservice-net_send_packet	4	pre-change — post-change	100 50 1 Armana	maynum	m My Maradas	have the the the the the the the the the th
Rank 2 Vulnerability Score 9.67 Fault Abnormal_CPU_Usage-80%_testbed-woker1 Start 2023-09-30 22:00:00 Duration 15 min								
Index	Туре	KPI	Category			Visualization		
1	Machine KPI	adservice-cpu_usage	4	pre-change — post-change	0.15 0.10	bergengengerete	mappe	An and another and an
2	Business KPI	adservice-request_duration	4	pre-change post-change	1.5 1.0	non-many-maked M	mM	la strong and and an

OUTLINE

BACKGROUND

FRAMEWORK

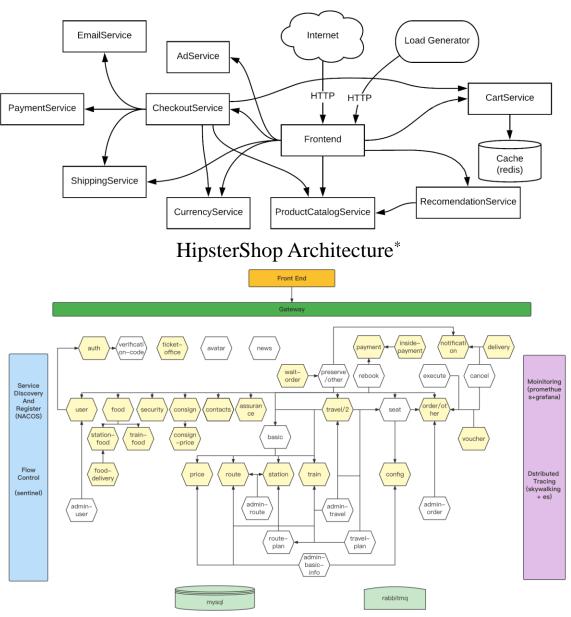
EVALUATION

SUMMARY

Datasets

Dataset A & Dataset B

- Deploy ESCRs and perform fault injection ۲
- **Dataset** *A*: HipsterShop (**80** instances) **Dataset** *B*: Train-Ticket (**120** instances) •
- •


Category	Description			
Ι	<i>E1</i> - Reducing CPU resources improperly <i>E2</i> - Reducing memory resources improperly			
II	<i>E3</i> - Configuring insufficient CPU resources <i>E4</i> - Configuring insufficient memory resources			
III	 E5 - Permitting expired requests to access invalid databases E6 - Permitting expired requests to invoke death loops 			
IV	<i>E7</i> - Interrupting the forwarding of requests<i>E8</i> - Forwarding requests to invalid backup nodes			

Dataset C

The UEA Archive •

*: https://github.com/lightstep/hipster-shop

#: https://github.com/FudanSELab/train-ticket

Train-Ticket Architecture[#]

ESCR Identification & Ablation Study

Datase	t Approach	Р	R	F1	Training (min)	Detection (s)
	Gandalf	0.74	0.68	0.71	87.32	34.32
	SCWarn	0.64	0.59	0.61	23.91	9.35
	Kontrast	0.88	0.81	0.84	290.74	0.10
\mathcal{A}	Lumos	0.55	0.70	0.62	-	15.12
	Donut	0.78	0.54	0.64	327.86	17.24
	Telemanom	0.59	0.67	0.63	197.31	5.24
	ResilienceGuardian	0.91	0.89	0.90	8.32	0.12
	Gandalf	0.72	0.66	0.69	355.21	31.09
	SCWarn	0.69	0.65	0.67	77.36	38.18
	Kontrast	0.82	0.79	0.80	693.33	0.11
В	Lumos	0.63	0.59	0.61	-	19.07
	Donut	0.72	0.67	0.69	1368.57	21.38
	Telemanom	0.55	0.58	0.56	814.89	5.32
	ResilienceGuardian	0.87	0.92	0.89	33.86	0.12

Dataset *A*: collected from **HipsterShop Dataset** *B*: collected from **Train-Ticket**

ESCR Identification

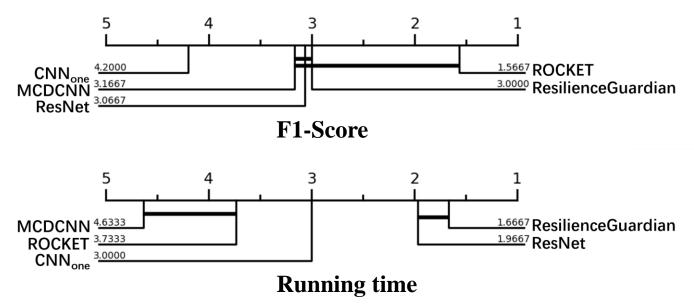
- F1 score: 0.91
- Training time: a reduction of 56.23% 97.53%
- Detection time: 0.12s

Ablation Study

- Verify the contribution
 - Data augmentation
 - Transfer learning

Dataset	Approach	Р	R	F1	Training (min)	Detection (s)
	ResilienceGuardian	0.91	0.89	0.90	8.32	0.12
	ResilienceGuardian _{pre}	0.79	0.83	0.81	9.42	0.12
\mathcal{A}	$ResilienceGuardian_{cate}$	0.77	0.87	0.82	20.85	0.13
	$ResilienceGuardian_{one}$	0.83	0.77	0.80	6.88	0.12
	$ResilienceGuardian_{all}$	0.94	0.91	0.92	68.79	0.12
	ResilienceGuardian	0.87	0.92	0.89	33.86	0.12
	ResilienceGuardian _{pre}	0.81	0.78	0.79	35.61	0.12
В	$ResilienceGuardian_{cate}$	0.83	0.80	0.81	68.54	0.14
	$ResilienceGuardian_{one}$	0.76	0.87	0.81	31.09	0.13
	$ResilienceGuardian_{all}$	0.93	0.95	0.94	310.92	0.12

Scalability



Scale the dataset by duplicating KPI segment pairs.

Classification

Critical Difference Diagram

• Coordinate: the mean rank of the model for all datasets

Dataset C: The UEA archive

Effectiveness

• F1-Score: Similar to ROCKET

Efficiency

• **Running time: Outperform** ROCKET

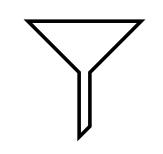
Conclusion


• A **satisfying balance** between effectiveness and efficiency

Hyperparameter Configuration

α: #Pairs per KPI for Training *α* == 1000

β: #Pairs per KPI for Transfer Learning


• β == 10



OUTLINE

BACKGROUND

FRAMEWORK

EVALUATION

SUMMARY

Summary

- To the best of our knowledge, this paper is **the first attempt** to address **Erroneous Software Changes that Reduce fault Resilience** (ESCR) identification.
- Our framework, ResilienceGuardian, enables **the early detection** of ESCRs before they impact the **fault resilience** of microservice systems in production.
- ResilienceGuardian is systematically evaluated on **two well-known microservice systems**, achieving an average **F1-score** of **0.90** in identifying ESCRs.

Thank you! Q&A

hgl21@mails.tsinghua.edu.cn IWQoS 2024