
Microservice Root Cause Analysis With Limited Observability
Through Intervention Recognition in the Latent Space

Zhe Xie1, Shenglin Zhang, Yitong Geng, Yao Zhang, Minghua Ma, Xiaohui Nie, Zhenhe Yao, 
Longlong Xu, Yongqian Sun, Wentao Li, Dan Pei

1. Presenter. Email: xiez22@mails.tsinghua.edu.cn



Background

2

Search Engine

Online Shopping

Social Network

Videos

Online applications have been widely used in our daily life



Microservices

3

Pod 1-1

Pod 2-1

Pod 1-2

Pod 2-2

Host 1 Host 2

Service 1

Service 2

Metric#1

Metric#2

Metric#3

Metric#4

Microservice systems are increasingly being used in online service 
systems due to their scalability and flexibility 

Third-Party
Service



Observability in Microservices

4

Pod 1-1

Pod 2-1

Pod 1-2

Pod 2-2

Host 1 Host 2

Service 1

Service 2

Metric#1

Metric#2

Metric#3

Metric#4

• However, system failures are inevitable due to frequent 
change and scale expansion of microservices.

• In microservices systems, observability tools are deployed to 
monitor the system status by collecting data (like metrics)

Monitoring Metrics

Third-Party
Service



Failure Propagation in Microservices Systems

5

Pod 1-1

Pod 2-1

Pod 1-2

Pod 2-2

Host 1 Host 2

Service 1

Service 2

Metric#1

Metric#2

Metric#3

Metric#4

Metric Causal
Relationship

Physical 
Relationship

Call Relationship

Third-Party
Service

Failure 
Propagation

Root 
Cause

Directly 
Affected
Metrics

All metrics are affected by the failure in Service 1:
• Metric#1 and Metric#3 are affected because of the failure
• Metric#2 and Metric#4 are affected by failure propagation

Due to the complex, multi-layered, and heterogeneous components in microservice 
systems, the situations that may arise when a failure occurs become very 
complicated.



Root Cause Analysis

6

Pod 1-1

Pod 2-1

Pod 1-2

Pod 2-2

Host 1 Host 2

Service 1

Service 2

Metric#1

Metric#2

Metric#3

Metric#4

Metric Causal
Relationship

Physical 
Relationship

RCC

Call Relationship

Third-Party
Service

Root Cause Analysis (RCA)
• Rank the Root Cause Candidates (RCCs) according to the 

observations to identify the root cause of the failure



Indirect Metrics of RCC

7

Service 3

Markdown of DB-11 API Call A ErrorMarkdown of DB-11 API Call A Error

DB-11 Third-Party Service A

Service 1 Service 2

Direct
Metric

Metric
Metric Metric Metric

Indirect Metric

Direct Metrics of RCC are metrics monitoring on the location or event of RCC 
(e.g., “API Call A” in Service 3)
Indirect Metrics of RCC are direct metrics of other RCCs that can be used to 
infer its status (e.g., “API Call A” and Third-Party Service A)

The same metric might be associated with multiple RCCs at different levels



Limited Observability in Microservices System

8

Category Percentage Typical Related Metrics

Third-Party Services 63.59% Third-Party API Error*

Internal Services 8.76% Runtime Error

Software Change 7.83% Change Process, Runtime Error*

Database 5.53% Markdown Error*

Table: Some Common Categories of Root Causes in eBay 

(*) Indirect Metrics

Indirect metrics are important for RCA
Many failures (e.g., third-party service failures) require indirect 
metrics to be used in RCA due to their limited observability



Indirect Metrics of RCC

9

Service 3

Markdown of DB-11 API Call A ErrorMarkdown of DB-11 API Call A Error

DB-11 Third-Party Service A

Service 1 Service 2

Direct
Metric

Metric
Metric Metric Metric

Indirect Metric

The status of RCCs are not always visible!
• Indirect Metrics are not accurate enough. In failures, many RCCs are 

associated with anomalous metrics. Due to indirect metrics, 
anomalous metrics are associated with multiple RCCs. Their 
causal relationships are ambiguous.

? ?

? ?



Core Idea: Modeling RCCs as Latent Variables

10

Service 3

Markdown of DB-11 API Call A ErrorMarkdown of DB-11 API Call A Error

DB-11 Third-Party Service A

Service 1 Service 2

Direct
Metric

Metric
Metric Metric Metric

Indirect Metric

Modeling RCCs as Latent Variables
• Latent variables bypasses the need for complete observability of RCCs
• Transforms metric features extraction into inferring latent variables, enabling 

effective RCC modeling even when complete observability is not feasible

z z

z z

z
X X X X

z Latent Variables (RCCs)X Observables (Metrics)



Challenges

• Challenge 1: The graph construction for both latent variables 

(RCCs) and the observable variables (metrics). The relationship 

between RCCs can be heterogeneous. 

• Challenge 2: Modeling latent RCC variables under limited 

observability. Latent variables can only be inferred through related 

observable variables. 

• Challenge 3: Inference the unobservable latent variables with 

observable data and rank the RCCs. An efficient algorithm is 

required to implement the inference.
11



LatentScope Overview

12

Key designs in LatentScope:
• Dual-Space Graph Construction and Modeling

• Latent-Space Intervention Recognition

• LatentScope: An unsupervised RCA algorithm for microservices system 
through latent-space intervention recognition on a dual-space graph.



Dual-Space Graph in LatentScope

• Observable Space: Metrics and their causal relationships (Pre-Defined Rules, etc.)

• Latent Space: RCCs and their physical relationships (e.g., Pod 1 runs on Host A)

• Metric-RCC Link: Many-to-many relationships between spaces (Direct & Indirect)

13

Latent Space (RCCs)

Observable Space (Metrics)

Pod 1-1 Pod 2-1 Pod 2-2

Metric-RCC
Link

Pod 1-2

SVC 1Host 1 Host 2

M
#1

M
#2

M
#3

M
#4

SVC 2
……

Latent
(RCC)

Observable
(Metric)



Modeling of Variables in LatentScope

14

……

Latent
(RCC)

Observable
(Metric)

A monitoring metric may be affected by:
• Parent Metrics (in Observable Space, 

represented by the causal edges)
• Related RCCs (from Latent Space, 

represented by the Metric-RCC links)

Causal 
Edge

Metric
-RCC 
Link

Current 
Metric

Parent 
Metrics

Related 
RCCs

How to find the root cause?



Intervention Recognition

15

Intervention Recognition From CIRCA (KDD 2022) [1]

[1] Li, Mingjie, et al. "Causal inference-based root cause analysis for online service systems with intervention recognition." Proceedings of the 28th ACM SIGKDD Conference on 
Knowledge Discovery and Data Mining. 2022.

Intervention recognition finds the root cause by identifying 
interventions through changes in probability distributions, using 
methods like Regression-based Hypothesis Testing (RHT).



Intervention Recognition

16

Intervention Recognition From CIRCA (KDD 2022)[1]

[1] Li, Mingjie, et al. "Causal inference-based root cause analysis for online service systems with intervention recognition." Proceedings of the 28th ACM SIGKDD Conference on 
Knowledge Discovery and Data Mining. 2022.

However, RHT (Regression-based Hypothesis Testing) 
requires variables to be observable, which cannot be used 
for intervention recognition in latent space. 

Observables



Latent-Space Intervention Recognition

• Theorem: The intervention score of RCC 𝑧𝑎 can be calculated with: 

17

Too slow and too sensitive to noise in practice!

where

High Time Complexity

Sensitive to noise



LatentRegressor

18

LatentRegressor：
• Reduce the number of regression calculations (Faster)
• Use Ridge regressions instead of linear regressions (More 

Robust)



LatentRegressor

19

Step 1: Build the dual-space graph and calculate the residual 
value of metrics

Dual-Space
Graph Residual Value 

of Metrics

• Z1 is the root cause
• Only indirect metrics for Z1
• Some indirect metrics are related to 3 RCCs



LatentRegressor

20

Step 2: Conduct ridge regression iteratively on the related metrics of 
the RCCs with the same parent RCCs (on the Dual-Space Graph)

Up
Step

Residual Value 
of Metrics

Ridge 
Regression

• Z1 is the root cause
• Only indirect metrics for Z1
• Some indirect metrics are related to 3 RCCs

Dual-Space
Graph

The scores of z3, z4 and z5 are eliminated according to 
their regression results of each other



LatentRegressor

21

Up
Step

Down
Step

Residual Value 
of Metrics

LatentRegressor
Results

Ridge 
Regression

• Z1 is the root cause
• Only indirect metrics for Z1
• Some indirect metrics are related to 3 RCCs

Dual-Space
Graph

Step 3: Conduct ridge regression iteratively on the related metrics of the 
RCCs with the same child RCCs and get the final results



Datasets and Evaluation Metrics

• Dataset A: 

• Deployed and evaluated in eBay’s real-world microservices system

• Containing over 300 microservices and 10+ third-party services

• 66 real-world failure cases over 6 months

• Dataset B：

• Collected from Testbed (Online Boutique[1]) with failure injection

• 88 injected failure cases

• Evaluation Metrics:

• Top@k: Root causes are ranked into Top k

• MRR: The average of the reciprocal ranks of the root cause

• Macro Values: Balancing the weights of different categories of root cause cases

22
[1] https://github.com/GoogleCloudPlatform/microservices-demo



Evaluation Results

• RLIR Only: Replace LatentRegressor with the vanilla Latent-Space IR
• Improvements were achieved in all evaluation metrics compared with baselines

23



Evaluation Results

24

The above figures show the evaluation results in different categories of root causes

• Baselines can only achieve good performance on some of the categories, but 
LatentRegressor achieves good performance on almost all categories

• Even if the observability of the root cause is limited (e.g., Database cases in 
Dataset A), LatentRegressor is still able to perform accurate RCA

Comparison with Baselines Study of Latent Variables



Conclusion

25

• Modeling root cause candidates (RCCs) as latent variables for 
heterogeneous RCCs under limited observability

• Propose LatentScope, using a dual-space graph to model RCCs and metrics

• Introduce Regression-based Latent-space Intervention Recognition (RLIR) 
algorithm and LatentRegressor enhancement for real-world adaptation

• Deploy and evaluate LatentScope in eBay's cluster, showing superior 
performance across different root cause categories



Thank you !
Microservice Root Cause Analysis With Limited Observability

Through Intervention Recognition in the Latent Space

Source Code & Data: 
https://github.com/eBay/LatentScope


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

