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The ExL serves as an effective indicator to coarsely
identify the root causes
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Design: Concepts and Empirical Insights

Concepts & Definitions

* Pattern of a span
. Context upstream microservice list ORG
* Children Set downstream microservice set

Why is the span pattern important?
=

The latency of nearly half of the spans is significantly related to their ~ TABLE VIII: Percentage of context-aware spans with ExL
contexts relevant and irrelevant to the number of calls to child mi-
croservices.

Hy: Pet. of Context (%)

The latency of about 60% of the spans is significantly related to their COROY retevam PV —ANOVA™ Kruskal-Wallis
call numbers to children Relevant Reject < 0.05 59.6% 63.4%
[rrelevant Accept - (.05 40.4% 36.6%

Relevance Hypothesis Test
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Overview of SparseRCA

Span ExLs
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Service A which calls Service B for N times
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Design: Span ExL Modeling & Inferencing

Modeling ExL of a Span: From a Toy Example There are Two parts of ExL:
@

ServiceAOnRequest(request){

preprocessRequest(request)

loop n times{

4 )
preprocessBeforeCallChild()
callMicroserviceB() InL of Service B
} postprocessResponseFromChild() | ExL of Service A
postprocessResponse() \. InL Of SerVICe A J
) exceptionCaseProcess () Abnormal ExL indicates the abnormal
} ® service code execution:
Service A which calls Service B for N times | Pseudocode of Service A | « Unexpected code branch
« Unexpected queueing delays 23

» Unexpected abortion



Design: Span ExL Modeling & Inferencing

Modeling ExL of a Span: Verified in Real-world Case There are Two parts of ExL:
@

Abnormal ExL indicates the abnormal
e GEaT) O WAILD BAnd Waam @iLe Gk ® service code execution:;
Unexpected code branch
Unexpected queueing delays !
Unexpected early abortion

Call Numbers to Child Microservices



Design: Span ExL Modeling & Inferencing

Modeling the ExL of span S;
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Design: Span ExL Modeling & Inferencing

v Modeling the ExL of span S;

ET(5:) = R(O(P(S5:))) + C(0(P(5:))) - N(S;)

* ET(S;) :the Expected ExL distribution of span S;

* P(S;) :the pattern of S;, P(S;) = ([G,A],{B,C})

* R :the ExL components unrelated to the downstream call
numbers

* (: the ExL components related to the call numbers to
each of the downstream nodes

* N(S5;) :call numbers to each of the child microservices

* O(P(S;)) :the pattern parameters (learned during training)

User request

| =m

Context List
l ('I‘, xil I

8 J

I
I
I
I
I
I
!
N |
I
I
I
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multiple calls
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User request
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Context List
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. J
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v Modeling the ExL of span S;

Context List
l(‘l‘, xq I

ET(5i) = R(O(P(S:))) + C(0(P(5;))) - N(S5;)

Gaussian Noise Assumption

R ~N(tr(P(S;))), 0% (P(S;)))
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Design: Span ExL Modeling & Inferencing

User request

v Modeling the ExL of span S;

Context List
l(‘l‘, xq I

Gaussian Noise Assumption

( ( )

R ~N|tr(P(S))l or(P(S;)))
C NNStC(P(Si)))

ET(S;) = RO(P(S))) + CO(P(S))) - N(S;) |

|
|
|
|
|
|
I
N |
|
[
|
]

multiple calls

.?%(P(Sl))) (-— ——————————— ———\lChiIdrunSut

J I {B,C}

Theoretically derived by LSM Approximated by EM
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Design: Span ExL Modeling & Inferencing

known unknown
| All Pattern Parameters I

Training Stage , .
ET(S;) = R(P(S) + C(P(S)) - N(Sp) — ey [
' ' b Paters > Recorded? ' atten Parameters » EXL Estimation
Learned Patterns R(P(S;))  C(P(S))) i ol N s prediction |~ 1
Span EXL Inferencing
Inference Stage Testing Environment

#_5 The environment is frequently updated
* New microservices and calls emerge
Reality: frequently

ET(S;) = R(P(S:)) + C(P(Sy) - N(Sp)

P Modeling for Pattern Unrecorded

Span ExL Distribution
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Design: Span ExL Modeling & Inferencing

Predict Unseen Pattern Parameters

( Pattern ] Context Children Known Parameters Unknown Parameters
AlLO—O—® © R(Py) Cpor(Pr)
P2 | ®© ©® | R(P,) Cpp(P2)

5 lO—® ® ® R(Ps) Cpor (P3)
Pa | @ ® ) R(Py) Cpog(Py) Cpor(Py)

Edit-distance-similarity-weighted Prediction
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Unrecorded Span Pattern Predicted
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Design: Span ExL Modeling & Inferencing

Predict Unseen Pattern Parameters ET% R(P(0) + C(P() - N30

( Pattern ] Context Children Known Parameters Unknown Parameters
AlLO—O—® © R(Py) Cpor(Pr)
P2 | ®© ©® | R(P,) Cpp(P2)

5 lO—® ® ® R(Ps) Cpor (P3)
Pa | @ ® ) R(Py) Cpog(Py) Cpor(Py)

Edit-distance-similarity-weighted Prediction

Ps [ @ ® ] R(Ps) Cp-g(Ps) Cp-r(Ps) 2

Unrecorded Span Pattern Predicted Span Pattern Parameters




Overview of SparseRCA
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Naive Root Cause Score
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Design: Deriving and Optimizing Root Cause Scores

Naive Root Cause Score

Standard Deviation x 0 RCA cannot fully depend on ExL
2

anomalies because anomalous high ExLs
may also appear in ancestor nodes

(/‘1’ ( S'L ) + 6) * (0- ( SZ ) + 6) (Highest ExL anomaly score)

(Ground truth root cause)

— E— "

Most Anomalous Least Anomalous
Exclusive Latency Anomaly Ranking



Design: Deriving and Optimizing Root Cause Scores

Naive Root Cause Score

Standard Deviation x 0 RCA cannot fully depend on ExL

anomalies because anomalous high ExLs
may also appear in ancestor nodes
(ET(S;) — u(Si))?
(/"L(S'L) + 6) * (O-(SZ> + 6) (Highest ExL anomaly score)
Root Cause Score Modification

VYO N[V AT M T-LEN '@ Redistribute the root cause scores «

YUHD(S) = Y aw(S) + (1 —a)M x Y (8)

mod
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(L) E— _ “

Y_[.,j,,,,(,,[ ( S ) = (S ) Most Anomalous Least Anomalous
Exclusive Latency Anomaly Ranking
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(Ground truth root cause)
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Design: Deriving and Optimizing Root Cause Scores

Naive Root Cause Score

Standard Deviation x 0 RCA cannot fully depend on ExL

anomalies because anomalous high ExLs
may also appear in ancestor nodes
(ET(S:) — p(Si))°
(1(S:) +€) * (0(5:) + ¢€)

Root Cause Score Modification

VYO N[V AT M T-LEN '@ Redistribute the root cause scores « _
e (Highest root cause score)

(Ground truth root cause)

Yraw (Sz) —

YUHD(S) = Y aw(S) + (1 —a)M x Y (8)

mod
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Evaluation Research Questions

-(9): RQ1:Effectiveness

How does SparseRCA improve the accuracy of RCA in real-world TE dataset?

-(2): RQ2:Ablation Study

What is the individual and combined contribution of some designs in SparseRCA?

(?)- RQ3:Trace Sparsity Robustness

How does our model perform with even sparser traces!?

32



Evaluation Dataset

Experiment Dataset

» Collected from the real-world testing environment in a datacenter in Hangzhou of Ant Group
« ©6k+ traces (SLO-satisfied and SLO-violated) as the training set

* The root cause of 120 SLO-violated traces manually labeled serve as the test set

» The dataset covers 29 days and involves 500+ services

#Traces #Traces Overall 6 s AvgSrv AvgSpn
(train) (test) (Duration) ‘ (per trace) (per trace)
6,080 120 29 days 507 10.6 38.7

33
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Evaluation RQ |: Effectiveness

Evaluation Metric Comparison with Baselines
* Average Expected Top-k accuracy TABLE IV: Performance of SparseRCA and Baselines
« Tie-breaking with probabilit
g p y Model Catego ACH LAS  Hge
strategy S A (O B CO I ¢
: Stat-based
MicroHECL ~ ‘pocjooe 193 264 395
£ AutoMap Séitlf’j?f; 407 506 615
: I S \ /o SEi ; '33} :
= min(m,k—n+1)/m ifn <Kk & " MicroSoope Séztllaaal;ed P
0 if n >k Trace Ini
MicroRank & Spectrum 61.2 67.6 73.0
T i - Trace ExL
A@k — %Z(Ii « 100% 2 SparseRCA g ooy 661 864 881

1=1
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Evaluation RQ |: Effectiveness

Evaluation Metric Comparison with Baselines
* Average Expected Top-k accuracy TABLE IV: Performance of SparseRCA and Baselines
 Tie-breaking with probabilit
g p y Model Category ACH LAS  Hge
strategy %) (%) (%)
MicroHECL S’Tt;‘;:lfgyd 193 264 395
£ awvomap  Tiomn 407 506 6L
: I S \ /o SEi ; '33} :
e min(m,k—n+1)/m ifn <Kk & " MicroSoope SCtat—ba§ed P
i xcas ausality
0 if n>k . Trace InL
MicroRank & Spectrum 61.2 67.6 73.0
r - Trace ExL
) 1 _ 5 \ i ’ ;
AQk = = Z a; x 100% B OHSESEA gipglopy oo S 55

1=1

v SparseRCA outperforms baselines in TE



Evaluation RQ?2:Ablation Study

Analyzed Components
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Evaluation RQ?2:Ablation Study

Analyzed Components

PBM | The Pattern-Based Modeling of the span ExLs (instead of the call-based)

(A (A (P
O () ()
D@ OO® ©® M

Pattern P; Pattern P,

35

PBM Distinguished Patterns
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Analyzed Components

PBM | The Pattern-Based Modeling of the span ExLs (instead of the call-based)

(A (A (P
O () ()
@O ® ©e ™

Call to Service B
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Evaluation RQ?2:Ablation Study

Analyzed Components

PBM | The Pattern-Based Modeling of the span ExLs (instead of the call-based)

DBA | The Distribution-Based Anomaly score of ExL (instead of expectation-based)

(A) (A) (P) R ~N(tr(P(Si))), 0%(P(S:)))
O O O C ~N(tc(P(S:)), 02 (P(S:)))

(BT(S) — p(5)?
L@@ O® OO QD Yeuuls)= g g 79

Call to Service B
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Evaluation RQ?2:Ablation Study

Experiment Results

Model PBM DBA RCM A@1 A@3 A@5

Complete SparseRCA v v v 66.1 86.4 88.1
w/o (RCM) v v X 49.2 72.9 72.9

w/o (DBA) v X v 59.3 81.4 84.7

w/o (PBM) X v v 61.0 84.7 88.1

Partial w/o (DBA,RCM) v X X 424 69.5 72.9
w/o (PBM,DBA) X v X 44.1 69.5 74.6

w/o (PBM,DBA) X X v 47.5 72.9 84.7

w/o (PBM,DBA,RCM) X X 2 271 61.0 72.9
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Evaluation RQ3:Trace Sparsity Evaluation

With Sparser Traces

TABLE VI: Accuracy of SparseRCA Under Sparser Traces.

trainset used (%) Model A@1 A@3 A@5

100 MicroRank  61.2 67.6 73.0
100 SparseRCA  66.1 86.4 88.1
50 SparseRCA  66.1 78.0 84.7
40 SparseRCA  66.1 79.7 83.1
25 SparseRCA 559 72.9 79.7
20 SparseRCA 593 71.2 79.7
15 SparseRCA  54.2 69.5 78.0
10 SparseRCA 542 66.1 74.6

5 SparseRCA 424 52.5 69.5
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Summary

SparseRCA
* The trace sparsity and system volatility in testing environments

* An unsupervised trace-based RCA method performing robust single-trace
inference and capable of processing unseen span patterns

0 High top-k accuracy of RCA evaluated with real-world dataset

Key Designs of SparseRCA
* Span-pattern-based modeling of span ExL distributions

* Predicting unseen patterns with pattern similarity
* Topology-based Optimization with personalized PageRank
Proved effectiveness of the key components in ablation study
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Q:Why do you model the ExL with linear gaussian assumption?

Trace Sparsity in Testing Environment limits the training of some DL-based methods

* VAE
« GNN
Non-convergence
1500
1250 4
Testing Environment o y
¥ .
500 4 i 5
E Traces from manually constructed test cases C . ”
A — 0 - LI
S Sparse traces (mOStI)’ IeSS than IO/mln at Peak) 2023-04-22 2023-05-01 2023-05-08 2023-05-15 2023-05-22
#Trace/min 0 | 12,100 [10.30)  |30,50) 50+
¢ Centralized in testing period Minute Pet (%) 89.97 395 385 150 053 O.09
Abnormal Pct. (%0) / 11.11 8.01 6.16 7.12 2.4
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Q: Can SparseRCA be applied to trace-dense scenarios!?

1. SparseRCA addresses the challenges for sparse scenarios
* Theoretically, SparseRCA can be applied dense scenario.The design insights holds for trace-dense scenarios.
* But in dense environment where more data are available and some important weaknesses are not strong, the
performance improvement by SparseRCA might not be as significant as in sparse environment.

2. Some of the implementations could be altered with larger data input
* With large volumes of data, we usually train the models batch by batch, avoiding processing the data together.
* Some of the SparseRCA designs could be altered if being applied to dense scenario. E.g., we could:
* Utilize complex models like VAE to derive the variance
* Introduce mixed distributions
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Q: How does SparseRCA compare with statistical code analysis

tasks?

- SparseRCA focuses the end-to-end testing scenarios
* Multiple teams/developers maintain different microservices, with little knowledge about the other
teams’ code details.
* It’s hard for a developer to perform code analysis for his upstream or downstream service

Is that my
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Q:Why do you choose the best metric instead of utilizing all

together?

« Sparsity introduces compromises
* In scenarios with sparse samples, simply introducing more features as new input channels usually
results in worse performance.
* Model easily overfits to bad RCA indicator metric
* General machine learning principle
* Incorporating additional metrics would be preferred for scenarios with dense traces
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