

中国科学院 计算机网络信息中心 Computer Network Information Center, Chinese Academy of Sciences

SparseRCA: Unsupervised Root Cause Analysis in Sparse Microservice Testing Traces

Zhenhe Yao¹, Haowei Ye, Changhua Pei², Guang Cheng, Guangpei Wang, Zhiwei Liu,

Hongwei Chen, Hang Cui, Zeyan Li, Jianhui Li, Gaogang Xie, Dan Pei

I. Presenter. Email: yaozh20@mails.tsinghua.edu.cn

2. Corresponding Author

Outline

- Background
- Design
- Evaluation
- Summary

Microservice Architecture

Various User Activities

Microservice Architecture

Microservice Architecture

Deploy to TE

Developers

Microservices in Testing Environment (TE)

4

Developers

Service-Level-Objectives (SLOs):

- Normal latencies
- Correct response codes
- Non-abortions

. . .

Microservices in Testing Environment (TE)

Developers

Service-Level-Objectives (SLOs):

- Normal latencies
- Correct response codes
- Non-abortions

. . .

Microservices in Testing Environment (TE)

Developers

Service-Level-Objectives (SLOs):

- Normal latencies
- Correct response codes
- Non-abortions

. . .

Microservices in Testing Environment (TE) Microservices in Production Environment (PE)

- Normal latencies
- Correct response codes
- Non-abortions

. . .

4

SLO-violated Microservice System in Testing Environment (TE)

SLO-violated Microservice System in Testing Environment (TE)

Previous Trace-based or Trace-related RCA Methods

Previous Trace-based or Trace-related RCA Methods

Previous Trace-based or Trace-related RCA Methods Causal Service Call A Test Case Causality Link → Eliminated Call **Rule-based Topology-based Causality-based Spectrum-based** Groot(ASE'21) MicroHECL(ICSE-SEIP'21) TraceRCA(IWQOS'21) MicroRank(WWW'21)

- Some are Dependent on continuous and dense trace data flow
- All need reliable and stable environment where rules/traces don't evolve too fast

Previous Trace-based or Trace-related RCA Methods Causal Service Call A Test Case Causality Link → Eliminated Call **Rule-based Topology-based Causality-based** Spectrum-based Groot(ASE'21) MicroHECL(ICSE-SEIP'21) TraceRCA(IWQOS'21) MicroRank(WWW'21)

- Some are Dependent on continuous and dense trace data flow
- All need reliable and stable environment where rules/traces don't evolve too fast

Production Environment

- Traces from real user requests
 - Dense traces (100k/min on average)
 - Continuous data flow evenly distributed •

Testing Environment

Traces from manually constructed test cases

- Sparse traces (mostly less than 10/min at peak) •
- Centralized in testing period ٠

Example of Trace Distribution in TE

#Trace/min	0	1	[2,10)	[10,30)	[30,50)	50+
Minute Pct. (%)	89.97	3.95	3.85	1.50	0.53	0.19
Abnormal Pct. (%)	1	11.11	8.01	6.16	7.12	2.04

Trace Number Distribution in TE

Production Environment

Traces from real user requests

- Dense traces (100k/min on average)
- Continuous data flow evenly distributed

Testing Environment

Traces from manually constructed test cases

- Sparse traces (mostly less than 10/min at peak)
- Centralized in testing period

Production Environment

- Traces from real user requests
 - Dense traces (100k/min on average)
 - Continuous data flow evenly distributed

Testing Environment

Traces from manually constructed test cases

- Sparse traces (mostly less than 10/min at peak)
- Centralized in testing period

Unstable aggregated metrics

- Average latencies
- Response success rates
- ...

Production Environment

- Traces from real user requests
 - Dense traces (100k/min on average)
 - Continuous data flow evenly distributed

Testing Environment

Traces from manually constructed test cases

- Sparse traces (mostly less than 10/min at peak)
- Centralized in testing period

Unstable aggregated metrics

- Average latencies
- Response success rates
- ...

Topology-based

Causality-based

8

Production Environment

- Traces from real user requests
 - Dense traces (100k/min on average)
 - Continuous data flow evenly distributed

Testing Environment

Traces from manually constructed test cases

- Sparse traces (mostly less than 10/min at peak)
- Centralized in testing period

Unstable aggregated metrics

- Average latencies
- Response success rates

Unreliable mining results

- Correlation
- Path Elimination
- Causality Discovery
- Spectrum Analysis

•

...

...

Production Environment

The environment is stable and less updated

- Experience from history lasts longer
- Microservices and calls can be found in the past

Testing Environment

The environment is frequently updated

- Knowledge expire quickly in frequent updates
- New microservices are deployed frequently
- New microservice calls emerge frequently

PE

TE

Production Environment

The environment is stable and less updated

- Experience from history lasts longer
- Microservices and calls can be found in the past

Deploy to TE SLOs violated Image: Deploy to TE SLOs violated Image: Deploy to TE Image: Deploy to TE

Testing Environment

The environment is frequently updated

- Knowledge expire quickly in frequent updates
- New microservices are deployed frequently
- New microservice calls emerge frequently

TE experiences more frequent updates than PE

Production Environment

The environment is stable and less updated

- Experience from history lasts longer
- Microservices and calls can be found in the past

Deploy to TE SLOs violated TE (SLO Ensured) Deploy to PE Deploy to PE

Testing Environment

The environment is frequently updated

- Knowledge expire quickly in frequent updates
- New microservices are deployed frequently
- New microservice calls emerge frequently

A testing trace

TE experiences more frequent updates than PE

New microservices and calls frequently emerge in TE

Production Environment

The environment is stable and less updated

- Experience from history lasts longer
- Microservices and calls can be found in the past

Testing Environment

> The environment is frequently updated

- Knowledge expire quickly in frequent updates
- New microservices are deployed frequently
- New microservice calls emerge frequently

Rule-based

Causal Service Call Eliminated Call

Topology-based

Causality Link

10

Production Environment

The environment is stable and less updated

- Experience from history lasts longer
- Microservices and calls can be found in the past

Testing Environment

The environment is frequently updated

- Knowledge expire quickly in frequent updates
- New microservices are deployed frequently
- New microservice calls emerge frequently

Manual Configuration for RCA in TE is Impractical

- Labor-intensive
- Knowledge expires soon

Causal Service Call

Topology-based

Causality Link

10

Production Environment

The environment is stable and less updated

- Experience from history lasts longer
- Microservices and calls can be found in the past

Testing Environment

The environment is frequently updated

- Knowledge expire quickly in frequent updates
- New microservices are deployed frequently
- New microservice calls emerge frequently

Manual Configuration for RCA in TE is Impractical

- Labor-intensive
- Knowledge expires soon

New microservices and calls unseen in history frequently emerge

- Topology changes
- Causality needs
 reestablishing

Trace-based RCA in Testing Environment

CI: The infeasibility of human intervention for RCA in TE

C2: The limitations introduced by trace sparsity

C3: Unseen microservices and calls in TE traces

CI: The infeasibility of human intervention for RCA in TE

Unsupervised Tracebased RCA trained with the same batch of traces

C2: The limitations introduced by trace sparsity

C3: Unseen microservices and calls in TE traces

CI: The infeasibility of human intervention for RCA in TE

Unsupervised Tracebased RCA trained with the same batch of traces

C2: The limitations introduced by trace sparsity

Performing single-trace RCA inference

C3: Unseen microservices and calls in TE traces
Challenges for Trace-based RCA in TE

CI: The infeasibility of human intervention for RCA in TE

Unsupervised Tracebased RCA trained with the same batch of traces

C2: The limitations introduced by trace sparsity

Performing single-trace
 RCA inference

C3: Unseen microservices and calls in TE traces

Modeling Unseen
 Microservices and Calls

Training Input: All traces satisfying and violating SLOs in the same test round

Outline

- Background
- Design
- Evaluation
- Summary

Workflow of SparseRCA

Concepts & Definitions

Concepts & Definitions

Concepts & Definitions

• Trace Span

🕜 Con

Concepts & Definitions

• Trace Span

Span S Span Id Start S End Service Parent S Status Code
Span S2 Span Id Start SEnd Service S1 Parent Status Code
Span S3 Span Id Start SEnd Service S2 Parent Status Code
Span S4 Span Id Start SEnd Service S2 Parent Status Code
Trace

Concepts & Definitions

- Trace Span
- Inclusive Latency (InL) of a span
 - Overall time consumption for a span

Span Span Id Start Start Service Parent Status Code]
Span S2 Span Id Start End Service S1 Parent Status Code	
Span S Span Id Start S End Service S Parent S Status Code	
Span Span Id Start Start Service S2 Parent Status Code]
Trace	- Ci

Concepts & Definitions

- Trace Span
- Inclusive Latency (InL) of a span
 - Overall time consumption for a span

Span S1 Span Id Start S End Service Parent S Status Code	Request	Timeline
Span Span Id Start SEnd Service Si Parent Status Code	À	
Span S Span Id Start S End Service S Parent S Status Code	B	
Span S ₄ Span Id Start S End Service S ₂ Parent Status Code	00	
Trace	Trace Topology	Span InLs

Concepts & Definitions

- Trace Span
- Inclusive Latency (InL) of a span
 - Overall time consumption for a span
- Exclusive Latency(ExL) of a span
 - InL excluding the InL of child spans

Span	(S1) Span Id	Start	O End) 🙆 Service	Parent	Status Code]
Span	S_2 Span Id	Start	C End	B Service	S1 Parent	Status Code]
Span	S_3 Span Id	Start	C End	Service	S2 Parent	😥 Status Code]
Span	S ₄) Span Id	Start	U End	C Service	S2 Parent) 🕑 Status Code]
			Т	race			

Concepts & Definitions

- Trace Span
- Inclusive Latency (InL) of a span
 - Overall time consumption for a span
- Exclusive Latency(ExL) of a span
 - InL excluding the InL of child spans

Span	(S1) Spar	ild 🕓	Start	End	(A) Service) († Pa	arent	😧 Status	Code)
Span	(S2) Spar	id 🕓	itart	End	8 Service	<u>S1</u> Pi	arent	🕑 Status	Code]
Span	S_3 Spar	i Id	Start	End	Service) <u>(5</u> 2 Pa	irent	😥 Status	Code)
Span	S ₄ Span	id 🕓	Start	End	C Service	<u>S2</u> Pi	irent	🕑 Status	Code)
				Tr	ace					

?

Concepts & Definitions

- Trace Spans
- Inclusive Latency (InL) of a span
- Exclusive Latency(ExL) of a span

Concepts & Definitions

- Trace Spans
- Inclusive Latency (InL) of a span
- Exclusive Latency(ExL) of a span

Among InL, ExL, and status codes, what metric is most suitable as RCA indicator?

Concepts & Definitions

- Trace Spans
- Inclusive Latency (InL) of a span
- Exclusive Latency(ExL) of a span

Among InL, ExL, and status codes, what metric is most suitable as RCA indicator?

Deals Matria	Top-k Accuracy (%)			
Kank Metric	A@1	A@2	A@3	
ExL Anomaly	30.12	50.15		
InL Anomaly	27.52	45.34	54.68	
Status Code Anomaly	8.52	21.64	35.41	
Random Selection	8.77	17.54	26.31	

(B) Service S1 Parent 😧 Status Code

Service S2 Parent Status Code

Empirical Comparison among the metrics

Span S Span Id Start S End Service Parent Status Code

Span S4 Span Id Start Start Service S2 Parent Status Code

Trace

Span S2 Span Id Start SEnd

Span S 3 Span Id Start S End

Concepts & Definitions

- Trace Spans
- Inclusive Latency (InL) of a span
- Exclusive Latency(ExL) of a span

Among InL, ExL, and status codes, what metric is most suitable as RCA indicator?

The ExL serves as an effective indicator to coarsely identify the root causes

Donk Matria	Top-k Accuracy (%)				
Kank Metric	A@1	A@2	A@3		
ExL Anomaly	30.12	50.15	57.85		
InL Anomaly	27.52	45.34	54.68		
Status Code Anomaly	8.52	21.64	35.41		
Random Selection	8.77	17.54	26.31		

Empirical Comparison among the metrics

?

Concepts & Definitions

- Trace Spans
- Inclusive Latency (InL) of a span
- Exclusive Latency(ExL) of a span

Among InL, ExL, and status codes, what metric is most suitable as RCA indicator?

The ExL serves as an effective indicator to coarsely identify the root causes

Concepts & Definitions

- Trace Spans
- Inclusive Latency (InL) of a span
- Exclusive Latency(ExL) of a span

Among InL, ExL, and status codes, what metric is most suitable as RCA indicator?

The ExL serves as an effective indicator to coarsely identify the root causes

Exclusive Latency Anomaly Ranking

Concepts & Definitions

- Trace Spans
- Inclusive Latency (InL) of a span
- Exclusive Latency(ExL) of a span

Among InL, ExL, and status codes, what metric is most suitable as RCA indicator?

The ExL serves as an effective indicator to coarsely identify the root causes

RCA cannot fully depend on ExL anomalies because anomalous high ExLs may also appear in ancestor nodes

Most Anomalous Least Anomalous
Exclusive Latency Anomaly Ranking

Concepts & Definitions

- Trace Spans
- Inclusive Latency (InL) of a span
- Exclusive Latency(ExL) of a span

Among InL, ExL, and status codes, what metric is most suitable as RCA indicator?

The ExL serves as an effective indicator to coarsely identify the root causes

RCA cannot fully depend on ExL anomalies because anomalous high ExLs may also appear in ancestor nodes

~	Interiec	i Span EXL Distribution			
served Snan FxT s	- Comparison	Span ExL Anomaly Score	Personalized	Service Root Cause Scores	
		10 9280 W10281	PageRank		
	Root	Cause Score Calcul	ation and M	odification	

18

Exclusive Latency Anomaly Ranking

Concepts & Definitions

• Pattern of a span

٠

- **Context** upstream microservice list
- Children Set
 downstream microservice set

Two Example Traces

Concepts & Definitions

• Pattern of a span

٠

- **Context** upstream microservice list
- Children Set
 downstream microservice set

Two Example Traces

Concepts & Definitions

• Pattern of a span

٠

- **Context** upstream microservice list
- Children Set
 downstream microservice set

Two Example Traces

Concepts & Definitions

• Pattern of a span

٠

- **Context** upstream microservice list
- Children Set
 downstream microservice set

Concepts & Definitions

٠

- Pattern of a span
 - **Context** upstream microservice list
 - Children Set
 downstream microservice set

Two Example Traces

Concepts & Definitions

• Pattern of a span

٠

- **Context** upstream microservice list
- Children Set
 downstream microservice set

Two Example Traces

Concepts & Definitions

• Pattern of a span

٠

- **Context** upstream microservice list
- Children Set
 downstream microservice set

Concepts & Definitions

٠

- Pattern of a span
 - **Context** upstream microservice list
 - Children Set
 downstream microservice set

Two Example Traces

All Span Patterns in the Example Traces

Concepts & Definitions

٠

- Pattern of a span
 - **Context** upstream microservice list
 - Children Set
 downstream microservice set

🕜 Cor

Concepts & Definitions

• Pattern of a span

٠

- **Context** upstream microservice list
- **Children Set** downstream microservice set

P ₅	◎ • ◎ • ◎	
$P_{\rm E}$	(<u>⊗</u> •® • ⊙	
Р,	(A) - (B) - (A)	
P_{6}	⊘ → 0	00
P_k	⊗ – ®	00
$P_{\rm g}$	®-0	
P_{2}	0	00
P_{0}	0	6
	Pattern Convest	Children

?

Concepts & Definitions

• Pattern of a span

٠

•

- **Context** upstream microservice list
- **Children Set** downstream microservice set

P 5	◎ • ◎ • ◎	
P _z	0 0 O	
Py .	0 0 O	
P ₄	⊘ → 0	00
P _k	⊗ – ®	O O
P.,	⊗ − ©	
P_{2}	0	00
Ph.	0	6
	Pattern Convest	Children

Relevance Hypothesis Test

🕜 Con

Concepts & Definitions

• Pattern of a span

.

- **Context** upstream microservice list
- **Children Set** downstream microservice set

	(∂ − 0 − 0)	
	(∂ • ® • ⊙	£ 2
	Ø 0 Ø	1 3
	(∂ − 0	00
	(∂ → (6)	O O
	⊗ − ©	1
•	0	00
1	0	0
	Pattern Convest	Children

Why is the span pattern important?

The latency of nearly half of the spans is significantly related to their contexts

Relevance Hypothesis Test

Concepts & Definitions

٠

.

- Pattern of a span
 - **Context** upstream microservice list

Why is the span pattern important?

Children Set downstream microservice set

The latency of nearly half of the spans is significantly related to their contexts

?

Concepts & Definitions

• Pattern of a span

.

- **Context** upstream microservice list
- **Children Set** downstream microservice set

Why is the span pattern important?

The latency of nearly half of the spans is significantly related to their contexts

The latency of about 60% of the spans is significantly related to their call numbers to children

TABLE VIII: Percentage of context-aware spans with ExL relevant and irrelevant to the number of calls to child microservices.

Ho:		a subset	Pct. of Context (%)	
Category	Irrelevant	p-value	ANOVA	Kruskal-Wallis
Relevant	Reject	< 0.05	59.6%	63.4%
Irrelevant	Accept	≥ 0.05	40.4%	36.6%

Relevance Hypothesis Test

Overview of SparseRCA

Workflow of SparseRCA

22

Modeling ExL of a Span: From a Toy Example

Service A which calls Service B for **n** times

Modeling ExL of a Span: Verified in Real-world Case

There are Two parts of ExL: *n*-related

• *n*-unrelated

. . .

- Unexpected code branch
- Unexpected queueing delays
- Unexpected early abortion

$$ET(S_i) = R(\theta(P(S_i))) + \mathbf{C}(\theta(P(S_i))) \cdot \mathbf{N}(S_i)$$

$ET(S_i) = R(\theta(P(S_i))) + \mathbf{C}(\theta(P(S_i))) \cdot \mathbf{N}(S_i)$

- $ET(S_i)$: the Expected ExL distribution of span S_i
- $P(S_i)$: the pattern of S_i , $P(S_i) = ([G, A], \{B, C\})$
- *R* : the ExL components unrelated to the downstream call numbers
- C : the ExL components related to the call numbers to each of the downstream nodes
- $N(S_i)$: call numbers to each of the child microservices
- $\theta(P(S_i))$: the pattern parameters (learned during training)

$$ET(S_i) = R(\theta(P(S_i))) + \mathbf{C}(\theta(P(S_i))) \cdot \mathbf{N}(S_i)$$

$$ET(S_i) = R(\theta(P(S_i))) + \mathbf{C}(\theta(P(S_i))) \cdot \mathbf{N}(S_i)$$

Gaussian Noise Assumption

 $R \sim \mathcal{N}(t_R(P(S_i))), \sigma_R^2(P(S_i)))$ $\mathbf{C} \sim \mathcal{N}(\mathbf{t_C}(P(S_i)), \sigma_{\mathbf{C}}^2(P(S_i)))$

$$\mathrm{ET}(S_i) = R(\theta(P(S_i))) + \mathbf{C}(\theta(P(S_i))) \cdot \mathbf{N}(S_i)$$

Gaussian Noise Assumption

$$R \sim \mathcal{N}(t_R(P(S_i))), \sigma_R^2(P(S_i)))$$

$$\mathbf{C} \sim \mathcal{N}(\mathbf{t_C}(P(S_i)), \sigma_{\mathbf{C}}^2(P(S_i)))$$

Theoretically derived by LSM

$$ET(S_i) = R(\theta(P(S_i))) + \mathbf{C}(\theta(P(S_i))) \cdot \mathbf{N}(S_i)$$

Gaussian Noise Assumption

$$R \sim \mathcal{N}(t_R(P(S_i))), \sigma_R^2(P(S_i)))$$
$$\mathbf{C} \sim \mathcal{N}(\mathbf{t_C}(P(S_i)), \sigma_{\mathbf{C}}^2(P(S_i)))$$

Theoretically derived by LSM

Approximated by EM

Training Stage

 $ET(S_i) = R(P(S_i)) + C(P(S_i)) \cdot N(S_i)$

Training Stage

 $ET(S_i) = \frac{R(P(S_i))}{P(S_i)} + \frac{C(P(S_i))}{P(S_i)} \cdot N(S_i)$

Design: Span ExL Modeling & Inferencing known unknown Training Stage $ET(S_i) = R(P(S_i)) + C(P(S_i)) \cdot N(S_i)$ Learned Patterns $R(P(S_i)) C(P(S_i))$

Design: Span ExL Modeling & Inferencing known unknown **Training Stage** $ET(S_i) = R(P(S_i)) + C(P(S_i)) \cdot N(S_i)$ Learned Patterns $R(P(S_i))$ $C(P(S_i))$

Inference Stage

Inference Stage

Ideal:

 $ET(S_i) = R(P(S_i)) + C(P(S_i)) \cdot N(S_i)$

Inference Stage

Ideal:

 $ET(S_i) = R(P(S_i)) + C(P(S_i)) \cdot N(S_i)$

Reality:

 $ET(S_i) = R(P(S_i)) + C(P(S_i)) \cdot N(S_i)$

Inference Stage

Ideal:

$$ET(S_i) = R(P(S_i)) + C(P(S_i)) \cdot N(S_i)$$

Reality:

 $ET(S_i) = R(P(S_i)) + C(P(S_i)) \cdot N(S_i)$

• New microservices and calls emerge frequently

Inference Stage

Reality:

 $ET(S_i) = R(P(S_i)) + C(P(S_i)) \cdot N(S_i)$

Testing Environment

- Solution The environment is frequently updated
 - New microservices and calls emerge frequently

Predict Unseen Pattern Parameters

Unknown Span Pattern Parameters

Predict Unseen Pattern Parameters

Unrecorded Span Pattern

Unknown Span Pattern Parameters

 $R(P_5)$

 $C_{B \to E}(P_5)$ $C_{B \to F}(P_5)$

Predict Unseen Pattern Parameters

Design: Span ExL Modeling & Inferencing

Overview of SparseRCA

Workflow of SparseRCA

Naïve Root Cause Score

Naïve Root Cause Score

Standard Deviation Relative Deviation

$$Y_{raw}(S_i) = \frac{(ET(S_i) - \mu(S_i))^2}{(\mu(S_i) + \epsilon) * (\sigma(S_i) + \epsilon)}$$

Naïve Root Cause Score

Standard Deviation

$$Y_{raw}(S_i) = \frac{(ET(S_i) - \mu(S_i))^2}{(\mu(S_i) + \epsilon) * (\sigma(S_i) + \epsilon)}$$

 \mathbf{X}

RCA cannot fully depend on ExL anomalies because anomalous high ExLs may also appear in ancestor nodes

Naïve Root Cause Score

Standard Deviation

Relative Deviation

$$Y_{raw}(S_i) = \frac{(ET(S_i) - \mu(S_i))^2}{(\mu(S_i) + \epsilon) * (\sigma(S_i) + \epsilon)}$$

Root Cause Score Modification

Personalized PageRank Redist

Redistribute the root cause scores

$$\begin{split} \mathbf{Y}_{mod}^{(t+1)}(\mathbf{S}) &= \alpha \mathbf{Y}_{raw}(\mathbf{S}) + (1-\alpha) \mathbf{M} \times \mathbf{Y}_{mod}^{(t)}(\mathbf{S}) \\ \mathbf{Y}_{mod}^{(0)}(\mathbf{S}) &= \mathbf{Y}_{raw}(\mathbf{S}) \\ \mathbf{Y}_{final}(\mathbf{S}) &= \mathbf{Y}_{mod}^{(L)}(\mathbf{S}) \end{split}$$

RCA cannot fully depend on ExL anomalies because anomalous high ExLs may also appear in ancestor nodes

Naïve Root Cause Score

Standard Deviation

Relative Deviation

$$Y_{raw}(S_i) = \frac{(ET(S_i) - \mu(S_i))^2}{(\mu(S_i) + \epsilon) * (\sigma(S_i) + \epsilon)}$$

Root Cause Score Modification

Personalized PageRank Redis

Redistribute the root cause scores

$$\begin{split} \mathbf{Y}_{mod}^{(t+1)}(\mathbf{S}) &= \alpha \mathbf{Y}_{raw}(\mathbf{S}) + (1-\alpha) \mathbf{M} \times \mathbf{Y}_{mod}^{(t)}(\mathbf{S}) \\ \mathbf{Y}_{mod}^{(0)}(\mathbf{S}) &= \mathbf{Y}_{raw}(\mathbf{S}) \\ \mathbf{Y}_{final}(\mathbf{S}) &= \mathbf{Y}_{mod}^{(L)}(\mathbf{S}) \end{split}$$

RCA cannot fully depend on ExL anomalies because anomalous high ExLs may also appear in ancestor nodes

Outline

- Background
- Design
- Evaluation
- Summary

Evaluation Research Questions

Evaluation Dataset

Experiment Dataset

- Collected from the real-world testing environment in a datacenter in Hangzhou of Ant Group
- 6k+ traces (SLO-satisfied and SLO-violated) as the training set
- The root cause of 120 SLO-violated traces manually labeled serve as the test set
- The dataset covers 29 days and involves 500+ services

#Traces	#Traces	Overall	#Services	AvgSrv	AvgSpn
(train)	(test)	(Duration)		(per trace)	(per trace)
6,080	120	29 days	507	10.6	38.7

Evaluation RQI: Effectiveness

Evaluation Metric

- Average Expected Top-k accuracy
- Tie-breaking with probability strategy

$$a_{i} = \begin{cases} \min(m, k - n + 1)/m & \text{if } n \leq k \\ 0 & \text{if } n > k \end{cases}$$
$$A@k = \frac{1}{T} \sum_{i=1}^{T} a_{i} \times 100\%$$

Comparison with Baselines

TA	BLI	ΞI	V:	Performance	of	S	parseRCA	and	Baselines

	Model	Category	A@1 (%)	A@3 (%)	A@5 (%)
1	MicroHECL	Stat-based Topology	19.3	26.4	39.5
lines	AutoMap	Stat-based Causality	40.7	50.6	61.5
Base	MicroScope	Stat-based Causality	40.3	66.3	73.0
	MicroRank	Trace InL & Spectrum	61.2	67.6	73.0
Ours	SparseRCA	Trace ExL & Topology	66.1	86.4	88.1

Evaluation RQI: Effectiveness

Evaluation Metric

- Average Expected Top-k accuracy
- Tie-breaking with probability strategy

$$a_{i} = \begin{cases} \min(m, k - n + 1)/m & \text{if } n \leq k \\ 0 & \text{if } n > k \end{cases}$$
$$A@k = \frac{1}{T} \sum_{i=1}^{T} a_{i} \times 100\%$$

Comparison with Baselines

TABLE IV:	Performance	of	SparseRCA	and	Baselines
-----------	-------------	----	-----------	-----	-----------

	Model	Category	A@1 (%)	A@3 (%)	A@5 (%)
	MicroHECL	Stat-based Topology	19.3	26.4	39.5
lines	AutoMap	Stat-based Causality	40.7	50.6	61.5
Base	MicroScope	Stat-based Causality	40.3	66.3	73.0
	MicroRank	Trace InL & Spectrum	61.2	67.6	73.0
Ours	SparseRCA	Trace ExL & Topology	66.1	86.4	88.1

SparseRCA outperforms baselines in TE

Analyzed Components

Analyzed Components

PBM] The Pattern-Based Modeling of the span ExLs (instead of the call-based)

Analyzed Components

PBM] The Pattern-Based Modeling of the span ExLs (instead of the call-based)

Analyzed Components

PBM The Pattern-Based Modeling of the span ExLs (instead of the call-based)

DBA The Distribution-Based Anomaly score of ExL (instead of expectation-based)

$$R \sim \mathcal{N}(t_R(P(S_i))), \sigma_R^2(P(S_i)))$$

$$\mathbf{C} \sim \mathcal{N}(\mathbf{t_C}(P(S_i)), \sigma_{\mathbf{C}}^2(P(S_i)))$$

$$Y_{raw}(S_i) = \frac{(ET(S_i) - \mu(S_i))^2}{(\mu(S_i) + \epsilon) * (\sigma(S_i) + \epsilon)}$$

DBA

Analyzed Components

The Pattern-Based Modeling of the span ExLs (instead of the call-based) PBM

DBA The Distribution-Based Anomaly score of ExL (instead of expectation-based)

$$R \sim \mathcal{N}(t_R(P(S_i))), \sigma_R^2(\mathcal{R}(S_i)))$$

$$\mathbf{C} \sim \mathcal{N}(\mathbf{t_C}(P(S_i)), \sigma_{\mathbf{C}}^2(\mathcal{R}(S_i)))$$

$$Y_{raw}'(S_i) = \frac{|\mathrm{ET}(S_i) - \mu(S_i)|}{\mu(S_i) + \epsilon}$$

Analyzed Components

PBM The Pattern-Based Modeling of the span ExLs (instead of the call-based)

DBA The Distribution-Based Anomaly score of ExL (instead of expectation-based)

RCM The topology-based Root Cause Modification through personalized PageRank

$$R \sim \mathcal{N}(t_R(P(S_i))), \sigma_R^2(\mathcal{R}(S_i))) \qquad \begin{array}{l} \mathbf{Y}_{mod}^{(t+1)}(\mathbf{S}) = \alpha \mathbf{Y}_{raw}(\mathbf{S}) \\ \mathbf{Y}_{mod}^{(0)}(\mathbf{S}) \\ \mathbf{Y}_{mod}^{(0)}(\mathbf{S}) \\ \mathbf{Y}_{final}(\mathbf{S}) \\ \mathbf{Y}_{final}(\mathbf{Y}) \\ \mathbf{Y}_{fi$$

$$Y'_{raw}(S_i) = \frac{|\mathrm{ET}(S_i) - \mu(S_i)|}{\mu(S_i) + \epsilon}$$

$$\begin{aligned} \mathbf{Y}_{mod}^{(t+1)}(\mathbf{S}) &= \alpha \mathbf{Y}_{raw}(\mathbf{S}) + (1-\alpha) \mathbf{M} \times \mathbf{Y}_{mod}^{(t)}(\mathbf{S}) \\ \mathbf{Y}_{mod}^{(0)}(\mathbf{S}) &= \mathbf{Y}_{raw}(\mathbf{S}) \\ \mathbf{Y}_{final}(\mathbf{S}) &= \mathbf{Y}_{mod}^{(L)}(\mathbf{S}) \end{aligned}$$

× € € 1011 1011

Analyzed Components

PBM The Pattern-Based Modeling of the span ExLs (instead of the call-based)

DBA The Distribution-Based Anomaly score of ExL (instead of expectation-based)

RCM The topology-based Root Cause Modification through personalized PageRank

$$\begin{split} R \sim & \mathcal{N}(t_{R}(P(S_{i}))), \sigma_{R}^{2}(\mathcal{R}(S_{i}))) & \mathbf{Y}_{mod}^{(t+1)}(\mathbf{S}) = \alpha \mathbf{Y}_{rav}(\mathbf{S}) + (1 + \alpha)\mathbf{M} \times \mathbf{Y}_{mod}^{(t)}(\mathbf{S}) \\ \mathbf{C} \sim & \mathcal{N}(\mathbf{t}_{\mathbf{C}}(P(S_{i})), \sigma_{\mathbf{C}}^{2}(\mathcal{R}(S_{i})))) & \mathbf{Y}_{mod}^{(t+1)}(\mathbf{S}) = \mathbf{Y}_{mod}^{(i)}(\mathbf{S}) \\ \mathbf{Y}_{final}^{(i)}(\mathbf{S}) = \mathbf{Y}_{mod}^{(j)}(\mathbf{S}) \\ \mathbf{Y}_{final}^{(i)}(\mathbf{S}) = \mathbf{Y}_{mod}^{(j)}(\mathbf{S}) \end{split}$$

Experiment Results

	Model	PBM	DBA	RCM	A@1	A@3	A@5
Complete	SparseRCA	\checkmark	\checkmark	\checkmark	66.1	86.4	88.1
	w/o (RCM)	\checkmark	\checkmark	×	49.2	72.9	72.9
	w/o (DBA)	\checkmark	×	\checkmark	59.3	81.4	84.7
	w/o (PBM)	×	\checkmark	\checkmark	61.0	84.7	88.1
Partial	w/o (DBA,RCM)	\checkmark	×	×	42.4	69.5	72.9
	w/o (PBM,DBA)	×	\checkmark	×	44.1	69.5	74.6
	w/o (PBM,DBA)	×	×	\checkmark	47.5	72.9	84.7
	w/o (PBM,DBA,RCM)	×	×	×	27.1	61.0	72.9

Experiment Results

	Model	PBM	DBA	RCM	A@1	A@3	A@5	Bemove from complete model
Complete	SparseRCA	\checkmark	\checkmark	\checkmark	66.1	86.4	88.1	Kemove from complete model
÷	w/o (RCM)	\checkmark	\checkmark	×	49.2	72.9	72.9	
	w/o (DBA)	\checkmark	×	\checkmark	59.3	81.4	84.7	
	w/o (PBM)	×	\checkmark	\checkmark	61.0	84.7	88.1	
Partial	w/o (DBA,RCM)	\checkmark	×	×	42.4	69.5	72.9	
	w/o (PBM,DBA)	×	\checkmark	×	44.1	69.5	74.6	
	w/o (PBM,DBA)	×	×	\checkmark	47.5	72.9	84.7	Add to partial model
	w/o (PBM,DBA,RCM)	×	×	×	27.1	61.0	72.9	

Experiment Results

	Model	PBM	DBA	RCM	A@1	A@3	A@5	Bemove from comple
Complete	SparseRCA	\checkmark	\checkmark	\checkmark	66.1	86.4	88.1	
	w/o (RCM)	\checkmark	\checkmark	×	49.2	72.9	72.9	
	w/o (DBA)	\checkmark	×	\checkmark	59.3	81.4	84.7	
	w/o (PBM)	×	\checkmark	\checkmark	61.0	84.7	88.1	
Partial	w/o (DBA,RCM)	\checkmark	×	×	42.4	69.5	72.9	
	w/o (PBM,DBA)	×	\checkmark	×	44.1	69.5	74.6	
	w/o (PBM,DBA)	×	×	\checkmark	47.5	72.9	84.7	Add to partial model
	w/o (PBM,DBA,RCM)	×	×	×	27.1	61.0	72.9	

omplete model

The designs are all proved effective

Experiment Results

-	Model	PBM	DBA	RCM	A@1	A@3	A@5	- Pomovo from complete model
Complete	SparseRCA	V	V		66.1	86.4	88.1	Complete model
	w/o (RCM)	\checkmark	\checkmark	×	49.2	72.9	72.9	
	w/o (DBA)	\checkmark	×	\checkmark	59.3	81.4	84.7	
	w/o (PBM)	×	\checkmark	\checkmark	61.0	84.7	88.1	
Partial	w/o (DBA,RCM)	\checkmark	×	×	42.4	69.5	72.9	
	w/o (PBM,DBA)	×	\checkmark	×	44.1	69.5	74.6	
	w/o (PBM,DBA)	×	×	\checkmark	47.5	72.9	84.7	Add to partial model
	w/o (PBM,DBA,RCM)	×	×	×	27.1	61.0	72.9	

The designs are all proved effective

The RCM improves the performance most significantly

36

Experiment Results

Model	PBM	DBA	RCM	A@1	A@3	A@5	Bemove from complete model
SparseRCA	\checkmark	\checkmark	\checkmark	66.1	86.4	88.1	
w/o (RCM)	\checkmark	\checkmark	×	49.2	72.9	72.9	
w/o (DBA)	\checkmark	×	\checkmark	59.3	81.4	84.7	
w/o (PBM)	×	\checkmark	\checkmark	61.0	84.7	88.1	
w/o (DBA,RCM)	\checkmark	×	×	42.4	69.5	72.9	
w/o (PBM,DBA)	×	\checkmark	×	44.1	69.5	74.6	
w/o (PBM,DBA)	X	×	1	47.5	72.9	84.7	Add to partial model
w/o (PBM,DBA,RCM)	×	×	×	27.1	61.0	72.9	
	Model SparseRCA w/o (RCM) w/o (DBA) w/o (PBM) w/o (DBA,RCM) w/o (PBM,DBA) w/o (PBM,DBA) w/o (PBM,DBA,RCM)	ModelPBMSparseRCA✓w/o (RCM)✓w/o (DBA)✓w/o (PBM)×w/o (DBA,RCM)✓w/o (PBM,DBA)×w/o (PBM,DBA)×w/o (PBM,DBA)×w/o (PBM,DBA,RCM)×	ModelPBMDBASparseRCA \checkmark \checkmark w/o (RCM) \checkmark \checkmark w/o (DBA) \checkmark \checkmark w/o (PBM) \times \checkmark w/o (DBA,RCM) \checkmark \checkmark w/o (PBM,DBA) \times \checkmark w/o (PBM,DBA) \times \times w/o (PBM,DBA) \times \times w/o (PBM,DBA,RCM) \times \times	ModelPBMDBARCMSparseRCA \checkmark \checkmark \checkmark w/o (RCM) \checkmark \checkmark \checkmark w/o (DBA) \checkmark \checkmark \checkmark w/o (PBM) \times \checkmark \checkmark w/o (DBA,RCM) \checkmark \checkmark \checkmark w/o (PBM,DBA) \times \checkmark \checkmark w/o (PBM,DBA) \times \checkmark \checkmark w/o (PBM,DBA,RCM) \times \times \checkmark	ModelPBMDBARCMA@1SparseRCA \checkmark \checkmark \checkmark 66.1w/o (RCM) \checkmark \checkmark \checkmark 49.2w/o (DBA) \checkmark \checkmark \checkmark 59.3w/o (PBM) \times \checkmark \checkmark 61.0w/o (DBA,RCM) \checkmark \times \star 42.4w/o (PBM,DBA) \times \checkmark 44.1w/o (PBM,DBA) \times \times \checkmark 47.5w/o (PBM,DBA,RCM) \times \times \times 27.1	ModelPBMDBARCMA@1A@3SparseRCA \checkmark \checkmark \checkmark 66.186.4w/o (RCM) \checkmark \checkmark \checkmark 49.272.9w/o (DBA) \checkmark \times \checkmark 59.381.4w/o (PBM) \times \checkmark \checkmark 61.084.7w/o (DBA,RCM) \checkmark \times \times 42.469.5w/o (PBM,DBA) \times \checkmark \checkmark 44.169.5w/o (PBM,DBA) \times \times \checkmark 47.572.9w/o (PBM,DBA,RCM) \times \times \times 27.161.0	ModelPBMDBARCMA@1A@3A@5SparseRCA \checkmark \checkmark \checkmark 66.186.488.1w/o (RCM) \checkmark \checkmark \checkmark 49.272.972.9w/o (DBA) \checkmark \checkmark \checkmark 59.381.484.7w/o (PBM) \times \checkmark \checkmark 61.084.788.1w/o (DBA,RCM) \checkmark \times \checkmark 42.469.572.9w/o (PBM,DBA) \times \checkmark \checkmark 44.169.574.6w/o (PBM,DBA) \times \times \checkmark 47.572.984.7w/o (PBM,DBA,RCM) \times \times \times 27.161.072.9

The designs are all proved effective

The RCM improves the performance most significantly

While our ExL modeling can roughly identify root causes (A@5), the analyzed components can effectively optimize the ranking within the highly suspicious root cause candidates

36

Experiment Results

5.	Model	PBM	DBA	RCM	A@1	A@3	A@5	Bemove from complete mode
Complete	SparseRCA	\checkmark	\checkmark	\checkmark	66.1	86.4	88.1	Kennove nom complete mode
	w/o (RCM)	\checkmark	\checkmark	×	49.2	72.9	72.9	
	w/o (DBA)	\checkmark	×	\checkmark	59.3	81.4	84.7	
	w/o (PBM)	×	\checkmark	\checkmark	61.0	84.7	88.1	
Partial	w/o (DBA,RCM)	\checkmark	×	×	42.4	69.5	72.9	
	w/o (PBM,DBA)	×	\checkmark	×	44.1	69.5	74.6	
	w/o (PBM,DBA)	×	×	\checkmark	47.5	72.9	84.7	Add to partial model
	w/o (PBM,DBA,RCM)	×	×	×	27.1	61.0	72.9	

The designs are all proved effective

The RCM improves the performance most significantly

While our ExL modeling can roughly identify root causes (A@5), the analyzed components can effectively optimize the ranking within the highly suspicious root cause candidates

Evaluation RQ3:Trace Sparsity Evaluation

With Sparser Traces

trainset used (%)	Model	A@1	A@3	A@5	
100	MicroRank	61.2	67.6		
100	SparseRCA	66.1	86.4	88.1	
50	SparseRCA	66.1	78.0	84.7	
40	SparseRCA	66.1	79.7	83.1	
25	SparseRCA	55.9	72.9	79.7	
20	SparseRCA	59.3	71.2	79.7	
15	SparseRCA	54.2	69.5	78.0	
10	SparseRCA	54.2	66.1	74.6	
5	SparseRCA	42.4	52.5	69.5	

TABLE VI: Accuracy of SparseRCA Under Sparser Traces.

Evaluation RQ3:Trace Sparsity Evaluation

With Sparser Traces

trainset used (%)	Model	A@1	A@3	A@5
100	MicroRank	61.2	67.6	73.0
100	SparseRCA	66.1	86.4	88.1
50	SparseRCA	66.1	78.0	84.7
40	SparseRCA	66.1	79.7	83.1
25	SparseRCA	55.9	72.9	79.7
20	SparseRCA	59.3	71.2	79.7
15	SparseRCA	54.2	69.5	78.0
10	SparseRCA	54.2	66.1	74.6
5	SparseRCA	42.4	52.5	69.5

TABLE VI: Accuracy of SparseRCA Under Sparser Traces.

Evaluation RQ3:Trace Sparsity Evaluation

With Sparser Traces

TABLE VI: Accuracy of Sparse	RCA Under Sparser Traces.
------------------------------	---------------------------

trainset used (%)	Model	A@1	A@3	A@5
100	MicroRank	61.2	67.6	73.0
100	SparseRCA	66.1	86.4	88.1
50	SparseRCA	66.1	78.0	84.7
40	SparseRCA	66.1	79.7	83.1
25	SparseRCA	55.9	72.9	79.7
20	SparseRCA	59.3	71.2	79.7
15	SparseRCA	54.2	69.5	78.0
10	SparseRCA	54.2	66.1	74.6
5	SparseRCA	42.4	52.5	69.5

SparseRCA is more robust and tolerate in scenarios with even sparser traces

Summary

SparseRCA

- The trace sparsity and system volatility in testing environments
- An unsupervised trace-based RCA method performing robust single-trace inference and capable of processing unseen span patterns

High top-k accuracy of RCA evaluated with real-world dataset

Key Designs of SparseRCA

- Span-pattern-based modeling of span ExL distributions
- Predicting unseen patterns with pattern similarity
- Topology-based Optimization with personalized PageRank
 Proved effectiveness of the key components in ablation study

中国科学院 计算机网络信息中心 Computer Network Information Center, Chinese Academy of Sciences

SparseRCA: Unsupervised Root Cause Analysis in Sparse Microservice Testing Traces

Zhenhe Yao¹, Haowei Ye, Changhua Pei², Guang Cheng, Guangpei Wang, Zhiwei Liu, Hongwei Chen, Hang Cui, Zeyan Li, Jianhui Li, Gaogang Xie, Dan Pei

Q:Why do you model the ExL with linear gaussian assumption?

Trace Sparsity in Testing Environment limits the training of some DL-based methods

- VAE
- GNN
- •••

Testing Environment

Traces from manually constructed test cases

- Sparse traces (mostly less than 10/min at peak)
- Centralized in testing period

Q: Can SparseRCA be applied to trace-dense scenarios?

1. SparseRCA addresses the challenges for sparse scenarios

- Theoretically, SparseRCA can be applied dense scenario. The design insights holds for trace-dense scenarios.
- But in dense environment where more data are available and some important weaknesses are not strong, the performance improvement by SparseRCA might not be as significant as in sparse environment.

2. Some of the implementations could be altered with larger data input

- With large volumes of data, we usually train the models batch by batch, avoiding processing the data together.
- Some of the SparseRCA designs could be altered if being applied to dense scenario. E.g., we could:
 - Utilize complex models like VAE to derive the variance
 - Introduce mixed distributions

Q: How does SparseRCA compare with statistical code analysis tasks?

• SparseRCA focuses the end-to-end testing scenarios

- Multiple teams/developers maintain different microservices, with little knowledge about the other teams' code details.
- It's hard for a developer to perform code analysis for his upstream or downstream service

Q:Why do you choose the best metric instead of utilizing all together?

- In scenarios with sparse samples, simply introducing more features as new input channels usually results in worse performance.
 - Model easily overfits to bad RCA indicator metric
- General machine learning principle
- Incorporating additional metrics would be preferred for scenarios with dense traces