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Modeling ExL of  a Span: From a Toy Example There are Two parts of ExL:

• 𝑛-related
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service code execution:
• Unexpected code branch

• Unexpected queueing delays

• Unexpected abortion

• …

23



Design: Span ExL Modeling & Inferencing

Modeling ExL of  a Span: Verified in Real-world Case

24

Call Numbers to Child Microservices

E
x

L
(s

)

There are Two parts of ExL:

• 𝑛-related

• 𝑛-unrelated

Abnormal ExL indicates the abnormal 

service code execution:
• Unexpected code branch

• Unexpected queueing delays

• Unexpected early abortion

• …
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Design: Span ExL Modeling & Inferencing

Modeling the ExL of span 𝑺𝒊

• ET 𝑆𝑖 : the Expected ExL distribution of span 𝑆𝑖
• P 𝑆𝑖 : the pattern of 𝑆𝑖 , P 𝑆𝑖 = ( 𝐺, 𝐴 , {𝐵, 𝐶})

• 𝑅 : the ExL components unrelated to the downstream call 

numbers

• 𝐂 :  the ExL components related to the call numbers to 

each of the downstream nodes

• 𝐍(𝑆𝑖) : call numbers to each of the child microservices

• 𝜃(P 𝑆𝑖 ) : the pattern parameters (learned during training) 
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Design: Span ExL Modeling & Inferencing

Gaussian Noise Assumption

Theoretically derived by LSM Approximated by EM

Modeling the ExL of span 𝑺𝒊
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Overview of SparseRCA

Workflow of SparseRCA
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Standard Deviation Relative Deviation

Root Cause Score Modification
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…

…

…
…
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RCA cannot fully depend on ExL 

anomalies because anomalous high ExLs 

may also appear in ancestor nodes

(Highest root cause score)
Redistribute the root cause scores
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Evaluation Research Questions

RQ1:Effectiveness
How does SparseRCA improve the accuracy of RCA in real-world TE dataset?

RQ2:Ablation Study
What is the individual and combined contribution of some designs in SparseRCA?

RQ3:Trace Sparsity Robustness
How does our model perform with even sparser traces?
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Evaluation Dataset

Experiment Dataset 

• Collected from the real-world testing environment in a datacenter in Hangzhou of Ant Group

• 6k+ traces (SLO-satisfied and SLO-violated) as the training set

• The root cause of 120 SLO-violated traces manually labeled serve as the test set

• The dataset covers 29 days and involves 500+ services

Dataset Overview
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Evaluation RQ1: Effectiveness

Evaluation Metric

• Average Expected Top-k accuracy
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strategy

Comparison with Baselines
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Evaluation RQ1: Effectiveness

Evaluation Metric

• Average Expected Top-k accuracy

• Tie-breaking with probability 

strategy

Comparison with Baselines

SparseRCA outperforms baselines in TE
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Evaluation RQ2: Ablation Study

Analyzed Components
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Evaluation RQ3: Trace Sparsity Evaluation

With Sparser Traces

SparseRCA is more robust and 

tolerate in scenarios with even 

sparser traces
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Summary

SparseRCA
• The trace sparsity and system volatility in testing environments

• An unsupervised trace-based RCA method performing robust single-trace 
inference and capable of processing unseen span patterns

• High top-k accuracy of RCA evaluated with real-world dataset

Key Designs of SparseRCA
• Span-pattern-based modeling of span ExL distributions

• Predicting unseen patterns with pattern similarity

• Topology-based Optimization with personalized PageRank

• Proved effectiveness of the key components in ablation study



Thank You!

SparseRCA: Unsupervised Root Cause Analysis in 

Sparse Microservice Testing Traces
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Zhenhe Yao1, HaoweiYe, Changhua Pei2, Guang Cheng, Guangpei Wang, Zhiwei Liu, 

Hongwei Chen, Hang Cui, Zeyan Li, Jianhui Li, Gaogang Xie, Dan Pei
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Q: Why do you model the ExL with linear gaussian assumption?

Testing Environment

Traces from manually constructed test cases

• Sparse traces (mostly less than 10/min at peak)

• Centralized in testing period

Trace Sparsity in Testing Environment limits the training of some DL-based methods

• VAE

• GNN

• …
Non-convergence
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Q: Can SparseRCA be applied to trace-dense scenarios?

1. SparseRCA addresses the challenges for sparse scenarios

• Theoretically, SparseRCA can be applied dense scenario. The design insights holds for trace-dense scenarios.

• But in dense environment where more data are available and some important weaknesses are not strong, the 

performance improvement by SparseRCA might not be as significant as in sparse environment.

2. Some of the implementations could be altered with larger data input

• With large volumes of data, we usually train the models batch by batch, avoiding processing the data together.

• Some of the SparseRCA designs could be altered if being applied to dense scenario. E.g., we could:

• Utilize complex models like VAE to derive the variance

• Introduce mixed distributions
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Q: How does SparseRCA compare with statistical code analysis 

tasks?

• SparseRCA focuses the end-to-end testing scenarios

• Multiple teams/developers maintain different microservices, with little knowledge about the other 

teams’ code details.

• It’s hard for a developer to perform code analysis for his upstream or downstream service

Is that my 

problem?
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Q: Why do you choose the best metric instead of utilizing all 

together?

• Sparsity introduces compromises

• In scenarios with sparse samples, simply introducing more features as new input channels usually 

results in worse performance.

• Model easily overfits to bad RCA indicator metric

• General machine learning principle

• Incorporating additional metrics would be preferred for scenarios with dense traces


