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Abstract—Technical support question-answering (QA) systems
assist users in diagnosing and resolving technical issues, but en-
suring their reliability remains a challenge. Existing QA systems
may generate inaccurate responses due to LLM hallucinations
and retrieval errors, which can lead to misleading guidance.
A reliable evaluation framework is essential for systematically
improving technical support QA systems, ensuring they generate
accurate guidance. However, existing evaluation methods for QA
systems struggle to precisely match key terms, and verify step
order and completeness.

To address these challenges, we propose TECHSUPPORTEVAL,
an automated evaluation framework for technical support QA.
Our framework introduces two novel techniques: (1) ClozeFact,
which formulates fact verification as a cloze test and uses an LLM
to fill in missing key terms to ensure precise key term matching,
and (2) StepRestore, which shuffles ground truth steps and uses
an LLM to reconstruct the actionable instructions in the correct
order, verifying step order and completeness.

To support comprehensive evaluation, we propose a bench-
mark dataset built upon the publicly available TechQA dataset,
containing responses generated by different levels of QA systems.
TECHSUPPORTEVAL achieves an AUC of 0.91, outperforming
the state-of-the-art method by 7.6%. The code and dataset are
available at https://github.com/NetManAIOps/TechSupportEval.

Index Terms—Technical Support, Question Answering, Auto-
mated Evaluation, LLM

I. INTRODUCTION

Technical support is a critical domain focused on diagnosing
and resolving technical issues to maintain the reliability of
IT services, forming a notable part of the trillion-dollar IT
services industry [1], [2]. A common approach to technical
support is the question answering (QA) [3]–[6], where users
(such as customers or developers) describe their issues and
seek guidance from technical experts on platforms such as
Microsoft Forums and IBM Support Forums. Technical experts
typically rely on knowledge bases, e.g., product manuals
and troubleshooting guides, to analyze issues and provide
actionable instructions [2].

Traditional human-driven technical support faces limitations
in response time and scalability, as it relies on a limited
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Question:

Apache can't start. systemctl start apache2 fails, 

journalctl -xe shows AH00558: Could not determine 

server’s FQDN.

Reference documents:

(Troubleshooting Guide)

… Check port 80 (netstat -tulnp), validate 

config (apachectl configtest), set 

ServerName in /etc/apache2/apache2.conf, 

then restart (systemctl restart apache2) …

LLM Generation

Response (Generated):

1. Check port 80: netstat -tulnp

2. Validate config: apachectl configtest

3. Add ServerName in apache2.conf

4. Restart server: systemctl restart apache2

Retrieve

Top-5 relevant paragraphs

Fig. 1. Workflow of a typical LLM-based technical support QA system. The
system takes a question as input, retrieves the top 5 relevant paragraphs from
reference documents, and generates a response through an LLM.

number of technical experts and struggles to handle a high
volume of queries efficiently [7]. With the advancement of
Large Language Models (LLMs) [8], [9], QA systems lever-
aging Retrieval-Augmented Generation (RAG) and LLMs have
emerged to process technical support questions [10], [11],
enhancing both efficiency and scalability. Figure 1 presents
an example of how a typical LLM-based QA system responds
to a technical support question.

However, existing RAG-based QA systems, which are built
upon LLMs, may generate inaccurate responses to technical
support questions. This issue primarily arises from halluci-
nations in LLMs [12], [13] and the omission of relevant
paragraphs when retrieving from knowledge bases [14]. In-



Reference Document (partial):

1. Go to path /etc/xxx

2. Run command: echo enable=1 >> conf

3. Reboot the instance at /etc/xxx

4. Run sql command: update privileges 

set allow_remote=1 where id=admin

Response (Generated):

1. Reboot the instance at /etc/xxx

2. Run sql command: update privileges 

set allow_remote=1 

3. Run command: echo enable=1 >> conf

Question:

Server shows permission denied.

I tried connect to a server, but it constantly 

rejects me with this error: …
How to resolve this issue?

TechSupportEval (Ours)

Previous Evaluation Methods

Phase 1: ClozeFact

1. Go to path  _________________

2. Run command:  ______________________

3. Reboot the instance at __________

4. Run sql command: 

_________________________________

Phase 2: StepRestore

A. Run command: echo enable=1 >> conf 

B. Go to path /etc/xxx

C. Run sql command: update privileges set 

allow_remote=1 where id=admin

D. Reboot the instance at /etc/xxx

(Unanswerable)

echo enable=1 >> conf 

/etc/xxx

update privileges set allow_remote=1 

Steps: D C A

Phase 1: Fact Extraction

    Atomic facts:

• Run command: echo enable=1 >> conf

• Reboot the instance

• Run sql command: update privileges set 

allow_remote=1

Phase 2: Fact Verification (against Response) 

1. Reboot the instance at /etc/xxx       

2. Run sql command: update privileges set 

allow_remote=1

3. Run command: echo enable=1 >> conf     

(LLM does not recognize Step 1 as an atomic fact)

(Missing crucial condition)

Accuracy Score: 1

✓
✘
✓

✘ ✘ Step Missing:  Step 1✘ Key Term Mismatch at Step 1 and Step 4 ✘ Step Reversal: Step 2, 3, 4

Technical Support QA System 

 (To be evaluated)

Verified

Verified

Verified

Retrieve

Accuracy Score: 0

Not

Retrieved

(3 Errors detected)

(3 / 3 Facts Verified)

Fig. 2. Comparison of TECHSUPPORTEVAL with previous evaluation methods. The left plot shows a QA system inaccurately answering a technical support
question. The upper right plot illustrates how previous evaluation methods failed to detect the errors, missing a step during fact extraction and omitting a crucial
condition in the SQL command, leading to incorrect judgments. The lower right plot shows TECHSUPPORTEVAL identifying the errors using ClozeFact and
StepRestore through a comprehensive mechanism, detecting mismatched key terms and verifying that the steps are neither in the correct order nor complete.

accurate responses lead to misleading guidance, making it
impossible for users to resolve their issues successfully. Thus,
an automated evaluation framework is essential for detecting
inaccurate responses, which in turn provides a foundation for
improving the reliability of technical support QA systems.

Various evaluation methods [15]–[28] have been proposed to
assess the accuracy of QA system responses automatically. A
detailed discussion of these methods is provided in Section II-
B. However, these methods cannot reliably assess the accuracy
of responses generated by a technical support QA system.

In this paper, the accuracy of technical support QA corre-
sponds to whether the response mentions all necessary steps of
actionable instructions in the correct order, along with precise
key terms such as commands, file paths, and URLs. This
criterion aligns with the primary goal of technical support,
which is to help users resolve their issues successfully. Based
on this criterion, we identify three key challenges that previous
evaluation methods have not fully overcome:

1) Key Term Matching: LLM hallucinations may introduce
incorrect or non-existent key terms, leading to erroneous
operations, e.g., modifying the wrong file. Existing eval-
uation methods often fail to detect these mismatches.

2) Step Order Verification: RAG retrieval may return frag-
ments in the wrong order, causing incorrect execution.
Prior work typically treats extracted facts as an unordered
set, making it difficult to verify step order.

3) Step Completeness Verification: RAG retrieval may
omit intermediate steps, leading to incomplete guidance.
Existing evaluation methods may fail to recognize all
necessary steps, resulting in omissions during validation.

The limitations of the previous evaluation methods are
further discussed in Section II-B. To address these challenges,

we propose an LLM-based automatic evaluation framework
TECHSUPPORTEVAL, that incorporates two key techniques:

1) ClozeFact identifies key terms within the ground truth
and converts the ground truth into a cloze test by blank-
ing out these key terms. The LLM used for evaluation
(denoted as LLMeval) is then required to fill in the blanks
based on the response (generated by the QA system being
evaluated), ensuring precise key term matching.

2) StepRestore shuffles the steps from the ground truth
and asks LLMeval to reorder the steps by selecting the
mentioned steps from the response. This ensures reliable
verification of step order and completeness.

Figure 2 compares our approach to a typical category of
evaluation methods [22]–[28]. When adopting these evaluation
methods in this example, a step was missed in the fact extrac-
tion phase and an SQL command missed a crucial condition,
leading to a false positive. In contrast, TECHSUPPORTEVAL
avoided these issues using ClozeFact and StepRestore.

The contributions of this paper are concluded as follows:

1) We investigate the evaluation of technical support QA and
pinpoint three key challenges it presents.

2) We propose an LLM-based automated evaluation frame-
work TECHSUPPORTEVAL for technical support QA with
two novel techniques, ClozeFact and StepRestore to
address the challenges effectively.

3) We introduce a benchmark dataset based on the publicly
available TechQA dataset [1], containing responses gen-
erated by different levels of QA systems for compre-
hensive evaluation. Our approach achieves an AUC of
0.91, outperforming RefChecker [27], the state-of-the-art
method, by 7.6%. The code and dataset are available at
https://github.com/NetManAIOps/TechSupportEval.



II. RELATED WORKS

A. Technical Support QA

Technical support QA is a practical domain, with real-world
datasets proposed to facilitate research. TechQA [1] introduced
a dataset based on user queries from the IBM Developer
Forum, while MSQA [29] collected QA pairs from Microsoft
Forums, both reflecting authentic technical support scenarios.

Various techniques have been proposed for technical support
QA. Before the LLM era, retrieval-based methods dominated,
often combined with learning-based models. For instance,
TransTQA [6] integrated retrieval with transfer learning, and
[7] explored retrieval with seq2seq models. With the rise
of LLMs, the field has shifted towards LLM-enhanced ap-
proaches, e.g., RAG-based methods [11] and LLM-integrated
methods based on knowledge graph reasoning [10]. The
progress in technical support QA highlights the need for a
reliable evaluation method.

B. Automated Evaluation of QA Systems

Automated evaluation of QA systems has traditionally relied
on lexical-based and semantic-based methods. Lexical-based
methods, like ROUGE [15] and BLEU [16], compare n-grams
between responses and ground truths, while semantic-based
methods, such as BERTScore [17], use contextual embeddings
to assess semantic similarity. However, both struggle to capture
the step-by-step structure in the text.

With the rise of LLMs, evaluation methods such as G-
Eval [19] and the evaluation modules in LangChain [20] and
LlamaIndex [21] use few-shot prompting to let LLMs assign
scores. However, these approaches are black-box, prompt-
sensitive, and lack consistency in their evaluations.

Fact extraction and verification approaches validate re-
sponses at the atomic fact level, where each atomic fact
aligns with a step in the actionable instructions defined in
this study. FActScore [22] extracts facts from the response
and verifies them against knowledge sources. RAGAS [23]
extends this with multiple evaluation metrics, while ARES
[24] fine-tunes LLMeval and automates test data generation.
RAGQuestEval [25] generates fact-based questions from the
ground truth and validates the response through LLMeval.
RefChecker [27] refines fact representation into triplets, and
L-Face4RAG [28] further incorporates logical consistency
checks. However, these evaluation methods remain inadequate
for technical support QA due to three key issues:

1) Key Term Matching – LLMeval may hallucinate, alter-
ing or omitting key terms, leading to incorrect validation.

2) Step Order Verification – Extracted facts are treated as
an unordered set, making it difficult to verify the correct
order of the steps in the actionable instructions.

3) Step Completeness Verification – LLMeval may fail to
recognize all necessary steps as atomic facts, resulting in
incomplete verification.

Figure 2 illustrates the above issues. It shows the process
of these evaluation methods and explains why they lead to
incorrect assessments.

III. METHODOLOGY

In this section, we first formulate the problem in Section
III-A. Next, we introduce an error typology to categorize
evaluation errors in technical support QA, as presented in
Section III-B. We then describe the detailed evaluation pipeline
of our framework, TECHSUPPORTEVAL, in Section III-C.
Finally, we illustrate our scoring strategy in Section III-D.

A. Problem Formulation

Given a technical support question Q and a set of reference
documents D, a QA system based on LLMQA retrieves
relevant paragraphs and generates a response:

A = Generate(D′, Q; LLMQA), (1)

where D′ = RetrieveK(Q,D) represents the top-K relevant
paragraphs retrieved from D. Here, RetrieveK(·) identifies the
most relevant paragraphs based on Q, and Generate(·) uses
LLMQA to synthesize the final response A from Q and D′.

The ground truth GT represents the actionable instructions
required to resolve the underlying issues of the question Q.
GT can be formulated as an ordered list of steps:

GT = [g1, g2, ..., gn], gi is an intermediate step. (2)

The LLM-based evaluation method Evaluate(·), which is
the main focus of our study, assigns an accuracy score S ∈
[0, 1] to the response A generated by the QA system:

S = Evaluate(A,GT, Q; LLMeval). (3)

Our goal is to design Evaluate(·) such that S serves as
a reliable predictor of the true accuracy S∗ ∈ {0, 1} of
A, maximizing AUC(S, S∗), which measures how well S
distinguishes between accurate and inaccurate responses. A
detailed discussion of AUC is provided in Section IV-A(3).

B. Error Typology

A technical support QA system may generate responses
that contain three types of errors: (1) Key Term Mismatch,
(2) Step Reversal, and (3) Step Missing. Table I provides
an example illustrating these errors. Such errors often arise
due to LLM hallucinations and retrieval inconsistencies in
RAG-based QA systems, where the retrieved information
may not match the original reference documents, resulting in
incomplete or misordered steps in the response A.

1) Key Term Mismatch occurs when the generated re-
sponse contains key terms that do not match those in the
reference documents, such as mismatched commands, file
paths, or configuration parameters. This typically results
from LLM hallucinations or retrieval errors, leading users
to perform erroneous operations.

2) Step Reversal refers to cases where the response presents
necessary steps in the wrong order. This can be caused by
retrieval misalignment in RAG-based systems. Executing
steps in the correct order is crucial, as performing certain



TABLE I
EXAMPLES OF ERRORS IN TECHNICAL SUPPORT QA

Question (Q):
My Apache server fails to start. Running systemctl start
apache2 shows an error. How can I fix this?
Ground Truth (GT ):
1. Identify the process using port 80 with netstat -tulnp.
2. Stop the process.
3. Restart the server.

Error Type Response (A)

Key Term
Mismatch

1. Identify the process with netstat -anp.
2. Stop the process.
3. Restart the server.

Step Missing
1. Identify the process with netstat -tulnp.
2. Restart the server.
(Missing step 2 in ground truth)

Step Reversal
1. Restart the server. (This should be the last step)
2. Identify the process with netstat -tulnp.
3. Stop the process.

actions too early may render later steps ineffective, then
failing to resolve the issue.

3) Step Missing occurs when the response omits the nec-
essary steps required to resolve the issue. This often
happens when relevant paragraphs are not retrieved or
when LLMQA fails to recognize implicit but necessary
steps. A missing step can disrupt the resolution process,
making it difficult for users to reach a successful outcome.

These errors significantly impact the reliability of technical
support QA systems by causing misleading guidance, failed
troubleshooting attempts, and increased resolution time.

C. Evaluation Pipeline

Our evaluation pipeline consists of two phases, ClozeFact
and StepRestore, designed to detect the three types of er-
rors previously discussed in the generated response A. Each
phase assesses A from a specific perspective of accuracy and
identifies corresponding errors. The final accuracy score S is
computed using our scoring strategy based on the detected
errors. In this section, we detail the design and implementation
of these two phases.

Phase 1. ClozeFact
To ensure precise verification of key terms in the response

A, we introduce an evaluation method inspired by the cloze
test. First, key terms are extracted from the ground truth GT
using predefined rules. These terms include critical elements
such as commands, file paths, and URLs, which are essential
for correctly executing each step. Misidentifying or omitting
these terms could lead to erroneous operations, such as mod-
ifying the wrong file or executing an invalid command.

Next, each extracted key term is replaced with a placeholder
of the form ⟨BLANK [ID]⟩, producing a masked version of
GT. This ensures that the evaluation does not rely on direct
string matching but instead requires semantic understanding.
The masked GT is then presented to LLMeval, which is
prompted to fill in the blanks based on A or return “Unanswer-
able” if the key term is missing. This design forces LLMeval

to explicitly extract key terms from A rather than relying on
prior knowledge.

We use the following prompt to instruct LLMeval:
Given the provided text, replace each placeholder
⟨BLANK ∗⟩ with the corresponding key term based
on the given response. If the required information
is not explicitly mentioned, return “Unanswerable”.
Ensure that the filled terms exactly match those in
the reference.

This approach enforces precise fact verification by requiring
LLMeval to reconstruct key terms rather than simply checking
for their presence. Unlike direct boolean matching, which may
overlook subtle errors or fail to detect minor discrepancies,
this cloze-style verification method forces LLMeval to extract
key terms directly from A, ensuring alignment with GT. By
actively reconstructing key terms, LLMeval minimizes reliance
on prior knowledge, reducing hallucinations and improving
reliability in technical support QA evaluation.

Phase 2. StepRestore
To ensure that the response A follows the correct logical

order of steps, we introduce an approach inspired by ordering
tasks. The ordered steps in GT are first shuffled to create
a randomized step list, with each step assigned a unique
uppercase letter as an identifier. The shuffled steps are then
presented to LLMeval, which must reconstruct the correct
execution order by selecting and arranging only the steps
explicitly mentioned in A. This prevents the model from
inferring missing steps based on prior knowledge and ensures
that only the steps present in A contribute to the evaluation.

We use the following prompt to accomplish this task:
Based on the provided text, identify and arrange
the mentioned steps in the correct logical execution
order. Only include steps explicitly stated in the text,
and ignore any steps not mentioned, as they are
misleading options. Only use the steps listed in the
given options.

By requiring LLMeval to reconstruct the step sequence
rather than merely verifying individual steps, this approach
ensures that LLMeval captures logical dependencies within
the response. Unlike treating the response as an unordered set
of atomic facts, which may overlook misordered steps, this
approach ensures that steps are presented in the correct order
and remain complete, preventing potential issues when users
follow the steps to resolve the issue. As a result, this phase
reliably verifies both the step order and the step completeness
of the response.

D. Scoring

After both evaluation phases are completed, the detected
errors are aggregated into an error set, which is then converted
into a final score reflecting the accuracy of the response
generated by the QA system.

By default, we employ a strict binary scoring strategy: if any
error is detected, the response receives a score of 0; otherwise,



it is assigned 1. This approach reflects the critical nature of
technical support QA, where even a single mistake—such
as an incorrect command, a missing step, or a misordered
step—can cause troubleshooting failures or unintended system
behavior. Given the importance of accuracy in this domain, this
conservative strategy ensures that only fully reliable responses
are considered valid.

Beyond this strict mode, our evaluation framework supports
customization based on detected errors. For instance, alterna-
tive strategies can penalize step omissions or reversals with
a score of 0 while proportionally scoring responses based on
precisely matched key terms. This flexibility allows adaptation
to different evaluation needs while maintaining reliability.

IV. EXPERIMENTS

This section evaluates our proposed evaluation framework,
TECHSUPPORTEVAL, with the following research questions:

1) RQ1: How effective is our evaluation framework, and
what is the impact of its design choices?

2) RQ2: How does our evaluation framework perform across
different LLMevals?

3) RQ3: How efficient is our evaluation method, and how
much does it cost to run?

We first describe the experimental setup in Section IV-A,
including datasets, baselines, and evaluation metrics. Section
IV-B presents results demonstrating the effectiveness of our
evaluation framework, followed by an ablation study in Section
IV-C. In Section IV-D, we analyze the impact of different
LLMevals on performance, while Section IV-E evaluates the
efficiency and computational cost. Finally, Section IV-F dis-
cusses lessons learned and known limitations.

A. Experimental Setup

1) Dataset: To comprehensively evaluate our proposed
evaluation framework, we first examined existing technical
support QA datasets [1], [29]. However, we found no dataset
specifically designed for benchmarking evaluation methods. To
address this gap, we constructed a benchmark dataset based on
TechQA, the most comprehensive publicly available technical
support QA dataset. We generated responses using multiple
QA systems with varying capability levels and obtained human
expert annotations for their true accuracy.

TechQA is a domain-adaptation QA dataset tailored for
the technical support domain. It contains a total of 910
question-answer pairs collected from the IBM Developer Fo-
rum. Among these, 610 questions are labeled as answerable.
We filtered questions that requested actionable instructions
and obtained 282 valid questions. To ensure consistency, we
manually standardized the ground truths into step-by-step
instructions. Table II shows the statistics of the filtered dataset.

To evaluate the performance of our evaluation method
across QA systems with varying capability levels, we im-
plemented three RAG-based QA systems using LangChain
[20], each leveraging a different foundation model: (1) GPT-
4o Mini, (2) LLaMA 3 (70B), and (3) LLaMA 3 (8B). All
three QA systems utilize RecursiveTextSplitter for

TABLE II
STATISTICS OF THE FILTERED TECHQA DATASET

Metric Value
Number of Questions 282
Avg. Length of Questions 366.48
Avg. Length of Ground Truths 220.87
Avg. Length of Reference Documents 4844.93
Avg. Steps in Ground Truths 2.04
Max. Steps in Ground Truths 14

document chunking and FAISS as the vector database for
retrieval. Each QA system was used to generate responses for
all 282 filtered questions. We then conducted a human eval-
uation with 5 domain experts, who annotated each response
for accuracy. Table III presents the accuracy results based on
human evaluation, showing a clear correlation between model
size and QA performance. This benchmark provides a solid
foundation to benchmark our proposed evaluation framework.

TABLE III
ACCURACY OF DIFFERENT RAG-BASED QA SYSTEMS

QA System (LLMQA) Accuracy
GPT 4o Mini 0.8440

LLaMA 3 (70B) 0.7092
LLaMA 3 (8B) 0.5284

2) Baselines: We evaluate our approach against 10 base-
lines, including lexical-based, semantic-based, and LLM-based
methods. These methods include all available approaches that
align with our problem setting and can be implemented.

Lexical methods, such as ROUGE [15] and BLEU [16],
and the semantic-based BERTScore [17], primarily measure
text similarity but cannot capture step structures.

LLM-based methods can be categorized into two groups.
The first group (G-Eval [19], LangChain Eval. [20], LlamaIn-
dex Eval. [21]) relies on few-shot prompting but is sensitive to
prompt variations and lacks interpretability. The second group
consists of fact extraction and verification methods (RAGAS
[23], RAGQuestEval [23], RefChecker [27]), which validate
extracted facts against the ground truth.

To ensure fairness, all LLM-based evaluation methods de-
fault to using GPT-4o-mini-2024-07-18 in experiments
unless explicitly specified, as it is OpenAI’s latest model that
balances cost and performance.

In our implementation, we normalize the output scores
of all baselines to [0, 1] scale. For RefChecker [27], since
it only provides the number of Entailment, Neutral, and
Contradictory triplets without a default scoring strategy, we
adopt a scoring strategy tailored for the technical support QA
setting. Specifically, we compute the proportion of Entailment
and Neutral triplets among all extracted triplets.

3) Metrics: To evaluate the performance of TECHSUP-
PORTEVAL and baselines, we employ the following metrics:

AUC (Area Under the ROC Curve): AUC measures a
model’s ability to distinguish between accurate and inaccurate
responses. It represents the area under the Receiver Operating



TABLE IV
COMPARISON OF RESULTS ON DIFFERENT EVALUATION METHODS

Type Method
LLM of Evaluated QA Systems

GPT 4o Mini LLaMA 3 (70B) LLaMA 3 (8B)
AUC Pearson r AUC Pearson r AUC Pearson r

Lexical-based
ROUGE-1 0.5321 0.0311 0.5420 0.0648 0.5288 0.0484
ROUGE-L 0.5631 0.0872 0.5932 0.1615 0.5752 0.1554
BLEU 0.6061 0.1138 0.6252 0.1940 0.6158 0.1959

Semantic-based BERTScore 0.6584 0.2243 0.6793 0.2892 0.6894 0.3095

LLM-based

LangChain Eval. 0.6608 0.4034 0.6310 0.3525 0.7015 0.4431
LlamaIndex Eval. 0.6651 0.3061 0.6849 0.4117 0.7899 0.5131
RAGAS 0.6728 0.1934 0.6894 0.2730 0.6544 0.2531
RAGQuestEval 0.7416 0.3546 0.7205 0.3768 0.6899 0.3380
G-Eval 0.8233 0.5192 0.8169 0.5419 0.8532 0.6109
RefChecker 0.8348 0.4627 0.8313 0.5493 0.8309 0.5862

LLM-based
TECHSUPPORTEVAL 0.9109 0.6616 0.8876 0.7430 0.8970 0.7938

w/o ClozeFact 0.8486 0.4641 0.8463 0.5752 0.8323 0.5914
w/o StepRestore 0.9129 0.5669 0.8517 0.5884 0.8693 0.6635

Characteristic (ROC) curve, which plots the true positive rate
(TPR) against the false positive rate (FPR):

TPR =
TP

TP + FN
, FPR =

FP
FP + TN

.

Pearson Correlation Coefficient (r): Pearson’s r quantifies
the correlation between model-assigned and human-annotated
scores. A value closer to 1 indicates stronger alignment with
human judgments.

These metrics offer a comprehensive evaluation that does
not depend on a fixed threshold. AUC ranges from 0 to 1,
while Pearson’s r ranges from -1 to 1, with higher values
indicating better performance.

B. Effectiveness

We evaluate the effectiveness of TECHSUPPORTEVAL by
comparing it with existing evaluation methods. Table IV shows
that TECHSUPPORTEVAL consistently outperforms all base-
lines in identifying inaccurate responses for technical support
QA. It achieves the highest AUC and Pearson correlation,
surpassing the previous state-of-the-art, RefChecker [27], by
7.6% on a benchmark dataset for evaluating GPT 4o Mini,
demonstrating its superior evaluation performance.

Our analysis reveals key limitations in existing methods.
Lexical-based approaches perform poorly as they rely on
shallow similarity and fail to capture step-by-step structures,
making them ineffective for technical support QA evaluation.

Evaluation methods based on LLM-generated judgments,
such as G-Eval, LangChain Eval, and LlamaIndex Eval, rely
entirely on the model’s inherent reasoning capabilities. While
sometimes effective, these methods lack interpretability and
offer limited control over the evaluation process.

Fact extraction and verification approaches, including RA-
GAS and RAGQuestEval, assess accuracy by extracting and
verifying key facts but struggle with fact granularity, making
it difficult to determine relevant facts. RefChecker improves

granularity with triplet-based verification but still faces chal-
lenges in verifying step order and completeness.

These findings highlight the advantages of TECHSUPPORT-
EVAL in technical support QA evaluation.

C. Ablation Study

To assess the contribution of each phase in our evaluation
framework, we implement two ablated variants: one without
ClozeFact and one without StepRestore. In these settings, if
the output contains only errors related to the disabled phase,
the evaluation simplifies to fact extraction and verification.

Table IV shows that while both ablated versions outper-
form previous methods, they are less effective than the full
approach. This confirms that ClozeFact and StepRestore both
contribute significantly to performance.

Notably, on the dataset where GPT 4o Mini serves as the QA
system, the variant without StepRestore achieves a slightly
higher AUC. This is because GPT 4o Mini performs the best
among the three models and exhibits fewer Step Missing or
Step Reversal errors. As a result, disabling StepRestore has
minimal impact on evaluation performance for this dataset.

D. Impact of LLMeval

We evaluate TECHSUPPORTEVAL against the top three eval-
uation methods among the baselines across four foundation
models as LLMeval to analyze the impact of LLMeval choice
on overall effectiveness.

Table V (on the next page) shows that TECHSUPPORT-
EVAL consistently outperforms all baselines, demonstrating
robustness to variations in LLMeval and indicating that our
framework is less constrained by model selection.

Evaluation effectiveness depends on LLMeval capability.
Weaker LLMs lack the reasoning and factual verification
needed for reliable evaluation, causing a significant perfor-
mance drop in methods with loosely defined fact granularity,
such as RAGAS. While TECHSUPPORTEVAL also declines,
the drop is smaller.



TABLE V
IMPACT OF LLMeval ON LLM-BASED EVALUATION METHODS

LLMeval Method
LLM of Evaluated QA Systems

GPT 4o Mini LLaMA 3 (70B) LLaMA 3 (8B)
AUC Pearson r AUC Pearson r AUC Pearson r

GPT 4o Mini

RAGAS 0.6728 0.1934 0.6544 0.2531 0.6894 0.2730
RAGQuestEval 0.7416 0.3546 0.6899 0.3380 0.7205 0.3768
RefChecker 0.8348 0.4627 0.8309 0.5862 0.8313 0.5493
TECHSUPPORTEVAL 0.9109 0.6616 0.8970 0.7938 0.8876 0.7430

Claude 3.5 Haiku

RAGAS 0.7548 0.3489 0.7495 0.4285 0.7301 0.3767
RAGQuestEval 0.7368 0.3337 0.7483 0.4319 0.7287 0.4197
RefChecker 0.8132 0.4826 0.7704 0.4956 0.7681 0.5391
TECHSUPPORTEVAL 0.8651 0.5701 0.8029 0.6083 0.7737 0.5332

LLaMA 3.3 70B

RAGAS 0.7705 0.3240 0.7579 0.4387 0.7066 0.3303
RAGQuestEval 0.7807 0.3881 0.7056 0.3680 0.7394 0.4198
RefChecker 0.8094 0.4533 0.7426 0.4256 0.7471 0.4492
TECHSUPPORTEVAL 0.8395 0.5021 0.8237 0.6464 0.7859 0.5538

Qwen 2.5 72B

RAGAS 0.5199 0.0146 0.6919 0.3283 0.6017 0.1628
RAGQuestEval 0.7342 0.3193 0.7481 0.4300 0.6746 0.2885
RefChecker 0.7951 0.4041 0.7800 0.5033 0.7894 0.5339
TECHSUPPORTEVAL 0.8234 0.4954 0.8004 0.6013 0.8080 0.6002

These findings confirm that TECHSUPPORTEVAL adapts
well across different LLMeval, though stronger models yield
better performance, ensuring more accurate assessment in
technical support QA.

E. Efficiency and Cost Analysis

LLM-based evaluation methods typically involve notable
computation time and cost. To assess the trade-offs between
effectiveness, cost, and time, we measure the elapsed time
and the total cost for each LLM-based evaluation method. The
results are visualized in a 2D plot, with the X-axis representing
the mean elapsed time (in seconds), the Y-axis representing the
performance (AUC), and the circle radius indicating the cost.

TABLE VI
COMPARISON OF EFFICIENCY AND COST ON LLM-BASED METHODS

Method AUC (avg.) Time (sec.) Cost (10−3$)

LangChain Eval. 0.6644 8.85 0.30
RAGAS 0.6722 23.55 2.37
LlamaIndex Eval. 0.7133 2.09 0.13
RAGQuestEval 0.7173 8.18 0.39
G-Eval 0.8311 8.41 0.13
RefChecker 0.8323 4.06 0.45
TECHSUPPORTEVAL 0.8985 2.43 0.31

Table VI and Figure 3 show that TECHSUPPORTEVAL not
only outperforms other methods in evaluation effectiveness
but also strikes a balanced trade-off between time and cost.
Compared to other LLM-based evaluation methods, it offers
an efficient and economical approach.

These findings demonstrate the practicality of our evaluation
framework as a cost-effective and time-efficient solution for
large-scale evaluation tasks in technical support QA.
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Fig. 3. Comparison of AUC, time, and cost on LLM-based evaluation
methods. Smaller bubbles indicate lower costs. TECHSUPPORTEVAL achieves
strong performance with competitive efficiency and cost.

F. Discussion

1) Lessons Learned: Our results highlight key differences
between LLM-based evaluation methods and demonstrate why
our approach performs better. Methods such as G-Eval rely on
LLMs’ implicit reasoning capabilities but lack interpretability
and are sensitive to prompt variations. In contrast, works like
RefChecker improve transparency by verifying atomic facts,
but they struggle with the granularity of facts and ensuring
the correct order of steps. Our approach, which formulates
evaluation as fact-based answering, ensures consistency in
key terms, step order, and completeness, leading to reliable
evaluation in technical support QA.

2) Known Limitations: Our evaluation framework primarily
focuses on questions that seek actionable instructions, but
technical support responses often contain valuable informative
content as well. Future work will explore how to evaluate the
completeness and helpfulness of such content.



Additionally, RAG-based QA systems involve many design
choices, making it challenging to cover all possible variations.
We evaluate three representative solutions with different levels
of QA system capabilities, but future research could assess the
effectiveness of TECHSUPPORTEVAL across a broader range
of system designs and configurations.

V. CONCLUSION

We propose TECHSUPPORTEVAL, an automated evaluation
framework for technical support QA, designed to systemati-
cally improve the reliability of QA systems in this domain.
TECHSUPPORTEVAL addresses three key challenges: (1) Key
Term Matching, (2) Step Order Verification, and (3) Step
Completeness Verification, using two novel techniques: (1)
ClozeFact, which formulates fact verification as a cloze test,
leveraging an LLM to fill in key terms for accurate key term
matching, and (2) StepRestore, which shuffles ground truth
steps and uses an LLM to reconstruct actionable instructions
in the correct order, ensuring step order and completeness.

For a comprehensive evaluation, we introduce a benchmark
dataset based on the publicly available TechQA dataset, featur-
ing responses generated by QA systems of varying capabilities.
Our results show that TECHSUPPORTEVAL achieves an AUC
of 0.91, outperforming the previous state-of-the-art by 7.6%,
while remaining competitive in terms of efficiency and cost.
Additionally, TECHSUPPORTEVAL demonstrates stable per-
formance across different choices of LLMeval, maintaining its
superiority over other methods regardless of model selection.
To support future research, we release our code and dataset at
https://github.com/NetManAIOps/TechSupportEval.
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