
Lindorm-UWC: An Ultra-Wide-Column Database for Internet of
Vehicles

Qianyu Ouyang†‡
Chunhui Shen‡§
Wenlong Yang‡

{ouyangqianyu.oyqy,tianwu.sch,zhengyan.ywl,tianyu.yp,xiaoqiang.xiao,leijianhui.ljh,yadong.cyd,qilu.zql,wangxiang}
{linyong.ly,qingyi.mqy,jizhicheng.jzc,mw371030,mingyan.zc,sh.wang,zwei,lifeifei,jingren.zhou}@alibaba-inc.com

Peng Yu‡
Qiang Xiao‡
Jianhui Lei‡

Yadong Chen‡
Tsinghua University†

Qilu Zhong‡
Xiang Wang‡
Yong Lin‡

Qingyi Meng‡
Zhejiang University§

Zhicheng Ji†‡
Wei Meng‡
Cen Zheng‡
Sheng Wang‡
Alibaba Cloud‡

Dan Pei†
Wei Zhang‡
Feifei Li‡

Jingren Zhou‡

ABSTRACT
In the Internet of Vehicle (IoV) systems, intelligent vehicles generate
huge amounts of data that supports diverse services and applica-
tions. In practice, database systems are deployed in the cloud to
manage data uploaded from the vehicle side and provide real-time
query capacities. However, existing database systems are ill-suited
because IoV data contains a large number of metrics and is writ-
ten at an extremely high throughput. To better understand IoV
data and corresponding challenges to underlying database systems,
we conduct the first extensive empirical study of real-world IoV
workloads. According to our findings from the study, we design
Lindorm-UWC as a superior database for IoV systems. It imple-
ments a distributed architecture and a cold/hot data separation
mechanism to accommodate massive amounts of IoV data. In each
data partition, it deploys an ultra-wide-column storage engine to
efficiently handle the query and ingestion of multi-metric data. We
evaluate Lindorm-UWC under different data scales and various
types of query. Our experimental results show that it can always
achieve higher write throughput (over 79% increase) and competi-
tive query performance compared to various alternative solutions.
Lindorm-UWC has been serving IoV enterprise customers on Al-
ibaba Cloud since 2019, managing tens of petabytes of IoV data.

PVLDB Reference Format:
Qianyu Ouyang, Chunhui Shen, Wenlong Yang, Peng Yu, Qiang Xiao,
Jianhui Lei, Yadong Chen, Qilu Zhong, Xiang Wang, Yong Lin, Qingyi
Meng, Zhicheng Ji, Wei Meng, Cen Zheng, Sheng Wang, Dan Pei, Wei
Zhang, Feifei Li, Jingren Zhou. Lindorm-UWC: An Ultra-Wide-Column
Database for Internet of Vehicles. PVLDB, 17(12): 4117 - 4129, 2024.
doi:10.14778/3685800.3685831

1 INTRODUCTION
With the development of information and communication technol-
ogy (ICT) as well as in-vehicle sensing technology, the automotive
industry is undergoing a significant transformation—intelligence

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685831

and digitalization have become the new standards for modern auto-
mobiles [32, 37], where the number of intelligent vehicles is rapidly
increasing [1]. Vehicles now are equipped with numerous sensors
that continuously collect data on vehicle operations, driving be-
haviors, and road conditions [20, 21, 23]. Through the network,
vehicles can timely upload data to the gateways in the cloud, pro-
viding data-driven services and applications and connecting the
vehicles to the external world.

The above trend facilitates the emerging system of the so-called
Internet of Vehicles (IoV) [47]. Within the IoV system, the data is
collected and utilized by multiple stakeholders, including vehicle
manufacturers, telematics service providers (TSP), autonomous
driving vendors, government regulation platforms, etc. They extract
valuable information and insights from vast amounts of data to
provide various services. For instance, when a vehicle encounters a
malfunction, a TSP can remotely diagnose the issue by examining
the vehicle’s operational data [21]. As the scale of an IoV system (i.e.,
the number of vehicles, sensors, services) expands, the efficiency
of managing and utilizing IoV data is of great importance.

In practice, the IoV data is naturally time-series data in a form
that is consistent with the Internet of Things (IoT) data and DevOps
metric data [26]. The data is generated on a per-vehicle basis. A
single vehicle is equipped with a multitude of sensors, constantly
generating a vast number of metrics that form multi-dimensional
time series. There are many time-series database systems in the
market that are good at handling IoT and DevOps scenarios, such
as IoTDB [44], InfluxDB [13] and Prometheus [15]. These data-
base systems are employed to support high-rate data ingestion and
low-latency real-time queries. However, due to the uniqueness of
IoV scenario, these time-series databases are ill-suited for handling
IoV data. One major difference arises from the scale of the met-
rics. In DevOps systems, a single server or compute node typically
generates no more than dozens or hundreds of monitoring met-
rics [16, 19] (e.g., CPU usage, disk IO time, Free Memory); in IoT
systems, a single device contains no more than several hundreds of
sensors [25, 40, 44]. In contrast, in an IoV system, a vehicle can eas-
ily generate thousands of metrics [31, 44], since it consists of many
complex subcomponents, e.g., Advanced Driver Assistance Systems
(ADAS), Battery Management System (BMS), Domain Control Unit
(DCU). Note that such a large number of metrics are collected and
retrieved on a per-vehicle basis, which poses significant challenges
for existing time-series databases that manage data on a per-metric
basis. This inspires us to explore a comprehensive understanding

https://doi.org/10.14778/3685800.3685831
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685831
欧阳前宇



of IoV workload patterns, which can guide us to design well-suited
database systems for IoV scenarios.

To the best of our knowledge, no prior work extensively studies
IoV workloads. In this paper, we provide the first empirical study of
IoV workloads to investigate their unique requirements to underly-
ing database systems. We explore both data read and write patterns
from three major automakers and TSPs in China (detailed in §2),
and summarize three key challenges for IoV data management:

C1. Extremely high data ingestion rate. IoV systems are write-
intensive, where the data traffic can easily reach over 1GB per
second and 80TB per day. This demands the underlying data-
base to sustain extremely high write throughput. In addition,
the huge volumes of data resulting from the high ingestion
rate further put enormous pressure on storage costs.

C2. A huge number of metrics per vehicle with update-style
writing. A single vehicle can generate over 2500 distinct time-
series metrics simultaneously, which is nearly an order of
magnitude more than what a traditional time-series database
can handle.Moreover, different components in a vehicle upload
their own metrics data independently, which means that a
write request to the database will not involve all metrics of the
vehicle. Hence, the underlying database has to handle many
small writes with an incomplete metric format.

C3. Diverse patterns for querying a small or large number
of metrics. To support numerous downstream services, the
database has to be capable of handling different query types
with high concurrency and low latency. Different queries may
involve different metrics from the massive dataset. Some of
them retrieve a large number of metrics (e.g., applications that
fetch data for comprehensive analysis), while others need only
a small subset (e.g., engineers that query related metrics for
remote failure diagnosis).

We note that existing time-series databases and any other databases
are unable to fully address above three IoV workload challenges.
Wide-column databases, e.g., HBase [8], and column-oriented time-
series databases, e.g., InfluxDB [13], have to consume unaffordable
amounts of computation and space resources to index massive met-
rics, resulting in unacceptably poor write throughputs (challenge
C1&C2). When querying massive metrics, time-series databases
need to perform independent retrievals for each metric, introducing
a vast amount of I/Os; HBase, which treats each data point as a
key-value entry, has to spend a lot of CPU time on performing key
comparisons (challenge C3). To address the issues of writing and
querying massive metrics, document-oriented databases like Mon-
goDB [14], which models all metric values from a vehicle generated
at the same timestamp as a flexible schema-free document, seem
to be a suitable solution. However, due to their document-oriented
storage layout, for those queries involving a small subset of metrics,
they have to fetch all metrics (i.e., the entire document), leading to
prohibitive read amplification (challenge C3). Moreover, they also
struggle when metric values in one document arrive in multiple
rounds (challenge C2), as each round is treated as an extra update
that has to read the target document out first.

After spotting the gap between IoV workload challenges and
existing database solutions, we propose Lindorm-UWC (ultra-wide-
column) for data management in IoV systems. To accommodate

massive amounts of IoV data, Lindorm-UWC has a distributed ar-
chitecture that partitions data by vehicles and time and supports au-
tomated load balancing. In order to efficiently handle multi-metric
IoV data, we design an ultra-wide-column storage engine based on
the Log Structured Merge tree (LSM-tree) [38], where each partition
in Lindorm-UWC employs an independent one. The storage engine
implements two mechanisms to accelerate the ingesting of multi-
metric data: first, multiple metric values contained in one write
request are consolidated into a single column to eliminate indexing
and grouping of different metrics on the write path; second, each
write request is processed in an append-only way instead of in-
place updating on existing data of that vehicle. To efficiently handle
various query patterns, Lindorm-UWC organizes on-disk data in
both row-oriented and column-oriented storage formats, allowing
it to choose and read from a suitable file format that can reduce read
amplification. To lower storage cost, we employ a tiered cold-hot
data storage layout, offloading less-frequently accessed cold data to
poor-performing but cheap storage media. Lindorm-UWC has been
serving IoV enterprise customers on Alibaba Cloud since 2019. It
manages tens of petabytes of IoV data and handles more than 10
million requests per second.

Our major contributions are summarized as follows:
• We conduct the first empirical study to highlight the workload

characteristics in real-world IoV systems. By analyzing data in-
gestion and query patterns, we obtain a series of valuable findings
that can drive the database design for IoV workloads.

• We propose Lindorm-UWC, a database designed for IoV systems.
To manage the vast amount of IoV data, Lindorm-UWC employs
a tailored distributed architecture and a cold-hot data separation
mechanism. To efficiently handle the writing and querying of
multi-metric data, we innovatively design an ultra-wide-column
storage engine, which supports high write throughput and pro-
vides efficient queries of diverse patterns.

• To evaluate the effectiveness of Lindorm-UWC’s design, we de-
velop a benchmark suite based on the characteristics of real-
world IoV workloads, and then conduct comprehensive exper-
iments with it. We compare Lindorm-UWC with three typical
databases as baselines: MongoDB, HBase, and InfluxDB. The
experimental results indicate that Lindorm-UWC significantly
outperforms our baselines. In a variety of workloads, Lindorm-
UWC’s write performance is from 79% to an order of magnitude
higher. For query efficiency, Lindorm-UWC can always sustain
high concurrency for any queries retrieving either a small or a
large number of metrics.

2 EMPIRICAL STUDY
2.1 IoV System Background
We first introduce how vehicles generate data in the IoV system,
and how the data is used by different application services. The IoV
system is typically a three-tier structure [20, 32], consisting of the
physical layer, the connectivity layer, and the cloud layer.

The physical layer refers to vehicles equipped with network
devices and a large number of sensors. The running vehicles contin-
uously collect and process information about the road environment,
vehicle components, and vehicle running status through the sen-
sors, and then upload them to the connectivity layer through the



network devices at regular intervals. The connectivity layer con-
tains various network elements (gateways, base stations, switches,
etc.), different levels of networks, and the links between them. With
the help of wireless access technologies, such as 5G, vehicles are
able to establish secure, fast, and highly-available network con-
nections with central systems in the cloud. The cloud layer is the
central area where various business applications and underlying
data management systems are hosted. Specifically, after the data
are uploaded to the cloud layer through the connectivity layer, it
first enters queueing systems, such as Kafka. Different applications
will pull the required data from the queue into their own data man-
agement systems. Database [8, 13, 14, 42] plays a main role in these
data management systems, responsible for storing massive amounts
of IoV data and supporting low-latency queries.

Here we mainly focus on the database part in the cloud layer.
In the following, we will study the workloads of data write and
query from several real-world IoV systems. We aim to figure out the
characteristics and challenges of storing IoV data in the database.

2.2 Real-world IoV Workload Analysis
IoV data format. A running vehicle in the IoV system constantly
uploads data collected by sensors to the cloud layer. These data are
naturally in the form of multi-dimensional time-series data, where
a dimension (denoted later by column ormetric) refers to a metric
collected on a certain sensor. The data sent to the database contains
the following three parts: a vehicle ID, a timestamp, and multiple
metrics and corresponding values. Table 1 shows three sampled
rows of multi-metric IoV data. It is worth noting that the metric
set to be collected is dynamically determined on the vehicle side,
which is difficult to synchronize on the database side. Thus it is
impractical to preset the metric-related settings in the database.

Table 1: IoV data samples.

Vehicle ID Timestamp Metrics

v001 1699255800 BMS_volt=11.5, BMS_batt=60,
BMS_svdb=10, BMS_ncell=130, ...

v002 1699255800 STATE_bcm=3, STATE_run=2,
STATE_abs=0, STATE_epb=1, ...

v003 1699255800 DCU_temp=65, DCU_cool=10,
DCU_rots=4000, DCU_idc=1, ...

Recall that each write operation issued from a vehicle only con-
tains a subset of metrics. This is because that each sub-component
from the vehicle has its own sensors to collect and upload data,
where data from different sub-components may have unaligned
timestamps. When data from different requests are written to the
database, their timestamps will be aligned to a certain precision (e.g.,
a second or a minute) as required by the specific application. From
the database’s logical perspective, when the aligned timestamp
already exists in previous write operations, the current request
does not insert a new row, but instead “update” an existing row
by adding new metrics. We refer to this as “update-style writing”,
which will be discussed in detail in the following analysis.

Data source. Our study is based on month-long sets of data
writing records and week-long sets of data query logs provided

Table 2: Metric scales from different companies.

Company #Total metrics #Metrics per write

A 2999 223
B 2083 2083
C 260 43

by three IoV companies, which are referred to as A, B, and C in
this paper. Specifically, A and B are vehicle manufacturers who
not only produce the vehicles but also manage vehicle-generated
data and offer related online services. C is a third-party telematics
service provider (TSP), providing data management services for
some old-model, small-scale, or technologically constrained vehicle
manufacturers. From public information, A manages about 40,000
vehicles, while B has more than 200,000 vehicles. Since C provides
services for othermanufacturers, we are unable to obtain the precise
number of vehicles under their management.

Write workload. Table 2 lists the metric scales of data from the
three companies. It is clear that a vehicle is equipped with numerous
sensors that collect and upload a wide range of metrics. As shown
in the second column of Table 2, A and B have more than 2,000
metrics, while the vehicles managed by C are older models and
therefore the number of metrics is significantly lower, totaling 260.
The third column of the table shows the average number of metrics
included in each write operation. In A, a write operation contains
an average of 223 metrics, which is 7.4% of the total metrics (i.e.,
2999) meaning that one row is written into the database via 14
write operations on average. For C, a vehicle divides a row into
six parts for uploading on average. It is noteworthy that data in
B does not exhibit update-style writing. Therefore, the number of
metrics written each time is equal to the total number of metrics.
This is because writes belonging to the same row are merged before
entering the queue for ease of subsequent processing. However,
this preprocessing requires additional computational resources and
places external development demands on its system, which will be
discussed in §5.

The remarkably high data write throughput in IoV systems is
attributed to two major factors: 1) a large number of vehicles con-
stantly upload data; 2) each single vehicle generates numerous met-
rics values. Figure 1 shows the write operation and data throughput
for the three companies. Over the month, the system in B aver-
ages 21K/s to 27K/s write operation throughput per day (Figure 1b),
where a single write operation contains all metrics from a vehicle.
Compared to B, A is different in that it performs update-style writ-
ing, so that its write operation throughput is an order of magnitude
higher, averaging over 110K/s for a month (Figure 1a). The data
in C is uploaded in update-style writing way as well. Its average
write operation throughput is relatively lower and below 20K/s on
most days (Figure 1c), probably because of fewer vehicles. From
Figure 1, we can observe that the data throughput in IoV systems
is immensely large. A has very high data throughput at 560MB/s
to 950MB/s, averaging 721MB/s over a month (Figure 1a). In B, the
data throughput exceeds 800MB/s almost every day with an average
of 907MB/s (Figure 1b), and can sometimes reach 1GB/s. Data in C
has fewer metrics, so its data throughput is not particularly high



0

200

400

600

800

1000

1200

1400

0

20

40

60

80

100

120

140

11.1 11.8 11.15 11.22 11.29
D

at
a 

Th
ro

ug
hp

ut
(M

B/
s)

W
rit

e
O

pe
ra

tio
ns

(K
 W

rit
es

/s
)

Write Operations Data Throughput

(a) Company A

0

200

400

600

800

1000

1200

1400

0

4

8

12

16

20

24

28

11.1 11.8 11.15 11.22 11.29

D
at

a 
Th

ro
ug

hp
ut

 (M
B/

s)

W
rit

e 
O

pe
ra

tio
ns

 (K
 W

rit
es

/s
)

Write Operations Data Throughput

(b) Company B

0

20

40

60

80

100

120

140

0

4

8

12

16

20

24

28

11.1 11.8 11.15 11.22 11.29

D
at

a 
Th

ro
ug

hp
ut

(M
B/

s)

W
rit

e
O

pe
ra

tio
ns

(K
W

rit
es

/s
)

Write Operations Data Throughput

(c) Company C

Figure 1: The average write throughput for each day of a month. The blue line indicates the number of write operations per
second (K/s). The orange line indicates the data throughput (MB/s).

compared to A and B, around 55MB/s (Figure 1c). It should be noted
that at certain peak times, such as in the morning, a large number
of vehicles are in intensive use. Consequently, the data throughput
at the peak periods is even higher than the values shown in Figure 1.
For example, the data throughput of B reaches 1.68 GB/s at certain
times on Nov. 18.

Based on the analysis above, we can summarize the characteris-
tics of IoV write workload as follows: 1) a large number of metrics;
2) extremely high write throughput; 3) update-style writing.

Query workload. To understand how IoV data is queried, we
use query logs from the three companies over oneweek and conduct
a statistical analysis of the filter conditions used in these queries.
The general query pattern can be summarized as follows: given
several filter conditions for vehicles, a time range, and a set of met-
rics, the database returns all data of the specified metrics from the
qualified vehicles for the given period. We observe that the majority
of queries are single-vehicle queries, where a specific vehicle ID is
given. Only a small proportion of queries use vehicle attributes as
filters to retrieve data from multiple vehicles. An example of the
single-vehicle query using data in Table 1 is as follows:

Select BMS_volt, DCU_temp, VehicleID, timestamp
from IOV_Table where VehicleID = v001
and timestamp between 1699254000 and 1699257600

BMS_volt and DCU_temp are the two metrics being queried.

Table 3: Overview of queries from different companies.

Company #Query Ratio of single-vehicle queries

A 1062 100%
B 496377 100%
C 470888 99.79%

First, Table 3 shows the overview of queries from the three
companies. During one week, B and C both have over 470,000
queries, while A only performs about 1,000 queries. This is because
the queries in A are from the handling of user inquiry tickets. Only
when a vehicle experiences a fault, the vehicle owner submits a
ticket. After receiving the ticket, experts and engineers inA examine
the data from the vehicle during the fault period to perform a

diagnosis. In the case of B and C, a large number of queries come
from scheduled tasks that export IoV data to various downstream
data-driven applications, such as driving behavior analysis. As
shown in the third column in Table 3, almost all queries are single-
vehicle queries, with only about 0.2% of queries from C involving
multiple-vehicle data. This is because applications that provide
online services typically collect data on a per-vehicle basis to render
customized, precise information [23].

0 10 20 30 40 50 60 70 80 90 100 110 120 130
number of metrics

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
um

ul
at

iv
e 

ra
tio

Figure 2: Cumulative distribution of the number of target
metrics in A’s queries.

Second, we investigate the number of metrics involved in these
queries. Queries from B and C involve all metrics, i.e., they query
all metrics from a vehicle over a period. This type of query allows
downstream applications to perform a variety of flexible and com-
plex computations on the queried data. Different from B andC, each
query in A is only interested in a few metrics, no more than 130, as
shown in Figure 2. Compared to the total number of metrics in A,
namely 2999, the percentage of metrics required per query is less
than 4.4%. However, the diversity of components and applications
in IoV systems can generate a large number of query metric combi-
nations, even if the number of metrics per query is relatively small.
Recall that the queries in A are used to process user tickets. For
different types of tickets, the engineers determine which metrics are
needed based on their experience. Therefore, instead of retrieving
the entire row of data, they query the values of certain metrics. For
example, when an electric vehicle (EV) has experienced a power



supply problem, the on-call engineers usually look into some of the
metrics in the Drive System, Battery Management System (BMS),
and Thermal Management System (TMS).

0 200 400 600 800 1000 1200
t− ts (hour)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cu
m

ul
at

iv
e 

ra
tio

(168, 0.936)

(a) Company A

0 2 4 6 8 10 12 14 16 18 >20
t− ts (hour)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Cu
m

ul
at

iv
e 

ra
tio

B
C

(b) Company B and C

Figure 3: Cumulative distribution of 𝑡 − 𝑡𝑠 in query from
different companies

Third, for a query at time 𝑡 , which retrieves data within the time
range [𝑡𝑠 , 𝑡𝑒 ], we investigate its temporal characteristics in terms
of the following two measurements: 1) the interval between the
data start time and the query time, 𝑡 − 𝑡𝑠 ; and 2) the length of the
interested time range, 𝑡𝑒 − 𝑡𝑠 . As shown in Figure 3, the majority
of queries focused on recently uploaded data. Specifically, 93.6%
of queries in A (Figure 3a) concern data uploaded within 1 week,
i.e., 168 hours. It is more evident in B and C, where more than 94%
of queries (Figure 3b) retrieve data within 1 hour. It indicates that
newly generated data is of much higher value in IoV system and
obsolete data is less frequently queried. For the length of time range
in a query, Figure 4a shows that in A, 44.4% of queries retrieve data
for no more than 1 hour and that all queries demand time ranges
of less than 12 hours. Table 4b presents the quantiles of 𝑡𝑒 − 𝑡𝑠 of
queries for B and C. Almost all (over 99.5%) of the queries in B have
a time range of a few seconds, and the rest retrieve data for minutes.
Queries in C require no more than 24 hours, 95% of which query
one-minute-long data.

0 2 4 6 8 10 12
te − ts (hour)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cu
m

ul
at

iv
e 

ra
tio

(1, 0.444)

(a) Company A

Quartile(%) B C

50 4s 45s
90 9s 45s
95 9s 65s
99 9s 309s
99.5 11s 1.07h
99.9 163s 24h

(b) Company B and C

Figure 4: Cumulative distribution of 𝑡𝑒 − 𝑡𝑠 in query from
different companies.

In conclusion, query workloads in the IoV system are dominated
by queries for short time ranges of newly generated data. Depend-
ing on various purposes, some queries demand entire data rows,
while others touch only a small number of metrics. Therefore, the
underlying database needs to be able to: 1) retrieve recent data

Table 4: Write throughput (the number of write operations
per second) of different databases.

#Metrics MongoDB HBase InfluxDB

100 85400 199468 156500
200 75700 111102 69100
500 62550 73205 31500
1000 21200 20295 8740

2000 (similar to B) 7752 9651 4230
3000 (similar to A) 4595 6416 3150

quickly; and 2) handle queries requiring either a small or a large
number of metrics efficiently.

2.3 Motivation for IoV Database Designs
In summary, data ingestion and query in the IoV system mainly
bring three challenges to the database as follows: 1) extremely high
data ingestion rate; 2) a huge number of metrics per vehicle with
update-style writing; 3) diverse patterns for querying a small or
large number of metrics.

To motivate the design of a tailored database for IoV system,
we conduct two experiments on three widely used databases to
evaluate their performance on IoV write and query workloads.
As IoV data contains massive metrics that are unknown to the
database before they are written, we choose MongoDB [14] and
HBase [8] as baselines, which can handle schema-free multi-metric
data and are widely used for IoV data management in practice.
Besides, InfluxDB [13] is also covered as a popular time-series
database [12], which is good at serving queries with a few metrics.
To have a fair comparison, we deploy the three databases with the
same configuration of 3 nodes, each of which has 8 cores and 64GB
RAM.

IoV write workload. Table 4 shows the write throughput of
these databases when writing data with different scales. We gener-
ate different numbers of metrics to simulate the metric scale from
hundreds to thousands in the IoV system. Besides, we load the data
using update-style writing: splitting metrics values of the same
vehicle with the same timestamp into ten write operations.

As shown in the table, when the number of metrics reaches the
scale of B and A (i.e., 2000 and 3000, respectively), these databases
struggle to achieve satisfactory performance. The best-performing
HBase achieves a throughput of 9.6K when writing data with 2000
metrics, which is 960 rows per second. This is significantly lower
than the throughput of B, which is 24K on average (see in Figure 1b).
Due to update-style writing, when MongoDB writes data, it must
first retrieve the target document and then update with newmetrics,
leading to poor performance. InfluxDB organizes compressed data
chunks in memory for each metric, while HBase treats each metric
in every row as an individual entry. These impose prohibitive over-
heads for massive metrics. As a result, their performance degrades
significantly as the number of metrics increases.

IoV query workload. Here we investigate the query perfor-
mance. We first load the data of 2000 metrics into these databases,
with each vehicle containing 3 hours of data. During the testing
phase, we evaluate the query throughput (i.e., executed queries per
second) of these databases under single-vehicle query conditions.



Table 5: Query throughput (QPS) of different databases.

#Metrics selected MongoDB HBase InfluxDB

2000 104 9.8 10.3
100 232 21.5 109
20 249 25.7 553
1 315 39.6 7030

We run queries that retrieve different numbers of metrics, namely
1, 20, 200, and 2000. Each query retrieves 10 minutes of data for a
single vehicle, where the metrics are randomly selected. Table 5
shows the results. As a row-oriented database, MongoDB reads an
entire row each time. This allows MongoDB to efficiently handle
queries that involve a large number of metrics, but incurs significant
read amplification when querying only a few metrics. As can be
seen, MongoDB performs well when querying 2000 metrics, but
even when the number of metrics is reduced to 1, the throughput
gain is still marginal. In contrast, InfluxDB is a column-oriented
database that can read contiguous data from a given metric with
few I/Os. However, as the number of required metrics increases,
the overhead will multiply. As a result, InfluxDB has higher query
throughput when querying 1 or 20 metrics, but performance drops
dramatically as the number of metrics increases. For HBase, each
metric value is treated as a key-value item, where both metric name
and timestamp are part of the key. This means that querying with
specific metrics and time range requires a large number of key
comparisons, leading to unacceptable performance.

Summary. The following findings can be drawn from the above
experiments and challenges. First, existing typical database systems
are unable to meet the high data ingestion throughput for multi-
metric data. Second, queries retrieving either a small number or a
large a large number of metrics cannot be both efficiently handled
by a single system. To fill the gap, we design Lindorm-UWC (§3), an
ultra-wide-column distributed database tailored for the IoV system.
It provides high-throughput writing and querying formassivemulti-
metric IoV data. To be specific, we propose an ultra-wide-column
storage engine that combines the advantages of both row-oriented
and column-oriented storage to handle different requests (§3.3). We
also employ a cold-hot separation mechanism to reduce the cost of
managing massive amounts of data (§3.4).

3 SYSTEM DESIGN
In this section, we first give an overview of Lindorm-UWC. After
that, we discuss its major components in detail.

3.1 System Overview
Lindorm-UWC is a distributed database serving the IoV system.
Similar to our previous work Lindorm-TSDB [42], Lindorm-UWC
is also an engine for Lindorm [6]. It shares some common com-
ponents, e.g., the underlying file system, with other engines. As
illustrated in Figure 5, Lindorm-UWC consists of three major com-
ponents: LDServer, LDMaster, and a shared distributed file system.
The LDServer is the main computation node that manages data
and processes read and write requests. As a distributed database,
Lindorm-UWC can handle data of different scales by horizontally
scaling out LDServers. The LDMaster is the management node that

LDServer

Region

Region

Region

LDServer Region

LDServer Region

······

Distribute File System

LDMaster

Figure 5: Lindorm-UWC system overview. Each LDServer
manages data frommultiple regions. LDMaster is responsible
for load balancing and failover recovery of LDServers.

is responsible for load balancing and failover recovery in the cluster.
The LDMaster itself is deployed in an active-standby configuration,
relying on Zookeeper [11] to achieve high availability. The data
in Lindorm-UWC is physically stored in the shared file system,
which can be accessed by all LDServers. This architecture avoids
the migration of large volumes of data between LDServers, while
also ensuring system resilience and high availability.

Table 6: Data model of Lindorm-UWC.

Primary keys Non-primary keys
VID time metric1 metric2 metric3 · · · metricN
v1 t1 60 11.5

. . .
1

v2 t2 70 60 0
v3 t3 45 55 2

Table 6 describes the data model of Lindorm-UWC. Multi-metric
data is organized by rows, each of which contains primary keys
serving as an identifier for that row and other non-primary key
attributes. Lindorm-UWC supports dynamic columns. While in-
serting data, users only need to specify the primary keys without
having to explicitly pre-define non-primary key schema. Clients
can write any non-primary key columns, or metrics, to Lindorm-
UWC. The blank cells in Table 6 show the case that some metrics
are not contained in a write. This is important in IoV systems to
support update-style writing and non-fixed metrics. As discussed
in §2.2, the majority of queries in IoV systems retrieve data from a
single vehicle over a certain period. Therefore, the vehicle ID and
the data timestamp are usually set as the primary keys.

Lindorm-UWC distributes data across regions based on the con-
catenation of the primary keys (use “primary key” later in the paper
for simplicity). Each LDServer manages a disjoint subset of regions
and handles read and write requests accordingly. The LDMasters
balance loads across the LDServers by scheduling the distribution
of regions among nodes and automatically split the region with
extremely high loads into smaller regions. Thanks to the partitioned
data management and load balancing, Lindorm-UWC can handle
massive and rapidly growing data seen in IoV systems.

To handle the writing and querying of multi-metric IoV data, we
propose an ultra-wide-column storage engine based on the LSM
(Log-Structured Merge-tree) model. Each region deploys an inde-
pendent storage engine. In this storage engine, data is first written



to the Memtables residing in memory. During this process, values
of all non-primary keys in one write operation are merged into
a flattened JSON data structure, thereby avoiding the need to in-
sert into each column individually. For update-style writing, We
extend the update semantics of LSM-tree for data from different
metrics but with the same primary key. With these optimizations,
the write throughput of multi-metric data can be significantly im-
proved. When flushing a Memtable to disk as an SSTable where data
is organized in rows by the primary key, we maintain an additional
data copy of that SSTable in a columnar storage format. Similarly,
the compaction process also exports a columnar-storage-format file
for the newly compacted SSTable. The coexistence of row-based and
column-based storage files facilitates efficient querying of either a
small or a large number of metrics.

Due to the massive amounts of data in IoV systems, it is critical
to reduce storage costs. We design a mechanism for separating
cold and hot data based on our findings that most queries in IoV
systems prioritize more recent data. Specifically, newly written data
is considered hot and is stored on high-performance storage media.
Data that has been in the system for a certain time is considered
cold and is moved to less expensive media. To retain the processing
efficiency of cold data, we design a time-window compaction strategy
to reduce the number of compaction operations involving cold files.
Besides, to accelerate queries, we maintain additional metadata and
index data in hot storage for cold data, which are always accessed
first to determine the necessity to read cold data.

3.2 Distributed Architecture
To handle the vast amounts of data generated in IoV systems,
Lindorm-UWC leverages a distributed architecture, where data
are partitioned into multiple regions for parallel data ingestion and
query. However, unlike DevOps systems that run consistently and
steadily, different vehicles produce non-uniform data ingestion rates
due to differences in their models, running time, etc., and are prone
to creating traffic bursts due to unstable network connectivity. This
diversity poses a challenge to achieve good load balancing between
regions and to handle the emergence of unexpected hotspots.

Data partition. Lindorm-UWC partitions data based on the
primary key, which in IoV systems is concatenated from the vehicle
ID and timestamp. Each region is responsible for a continuous range
of primary keys. When a write request or a query request reaches
an LDServer, it will be forwarded to the corresponding regions
whose ranges intersect with that of the request. In Lindorm-UWC,
compute and storage are disaggregated. To be specific, A region
is logically managed by a single LDServer, and physically, its data
is stored in a shared distributed file system. When balancing the
system load, it becomes convenient to redistribute regions across
LDServers without having to migrate massive data [25, 42].

Region swap. Some regions may turn into hotspots when they
experience a high volume ofwrite and query requests. These hotspots
can cause a backlog of requests on some LDServers, while other
LDServers’ resources remain underutilized. In such cases, the LD-
Master rebalances the load across LDServers by reallocating the
ownership of regions.

Firstly, the LDMaster assesses the workload of all regions to
identify the hotspots. In particular, the LDMaster keeps real-time

statistics of the consumed CPU time of each region as a metric,
which reflects the overall load of writing data, querying data, and
data persistence in a region. At regular intervals, the LDMaster
performs region swap. First, the LDMaster calculates the total CPU
consumption of all regions on each LDServer as a load indicator for
that LDServer. It then sorts the LDServers in descending order based
on this value. According to the sorted result, the LDMaster swaps
the regions of the first-ranked (i.e., the highest loaded) LDServer
and the last-ranked LDServer. The regions for exchange are selected
by the following rules, as shown in Figure 6:
1. Calculate the difference in loads, 𝛿 , between the two LDServers.
2. Find the region with the smallest CPU use, 𝑅𝑠 , from the last-

ranked LDServer.
3. Find the maximum CPU usage region, 𝑅𝑏 , whose CPU use is

no more than 𝛿
2 higher than that of 𝑅𝑠 from the first-ranked

LDServer.
4. If the CPU use of 𝑅𝑏 is higher than that of 𝑅𝑠 , then swap the

ownerships of 𝑅𝑏 and 𝑅𝑠 .
5. Repeat step 1∼4 until 𝛿 is higher than a pre-defined threshold.

A C D E H

LDServer1 LDServer2

B F G I J

BA C D E

LDServer1 LDServer2

F G H I J

Swap Regions

Figure 6: LDServer1 and LDServer2 swap their regions. The
length of a region represents its CPU consumption.

Region split. Typically, region swaps based on CPU consump-
tion can accomplish load balancing in most cases. However, if there
are very few regions (e.g., inappropriate initial configuration) or
if some particular regions are extremely hot, the load balancing
cannot be achieved by simply swapping regions. To deal with such
situations, the LDMaster splits regions with very high CPU usage.
For a region to be split, the LDMaster uses request sampling to find
a split point within its primary key range. In detail, the LDMaster
tracks a small portion of the recent request traffic for the region
and then selects a split point to ensure that the traffic in the two
sub-ranges is as equal as possible. After the region is split into
two subregions from the split point, the LDMaster transfers these
subregions to LDServers with lower loads.

During this process, to quickly complete the region split and
minimize interruption of normal data read and write operations,
we propose the cascaded split strategy based on the reference split
strategy [8]. The key idea of the reference split strategy is to create
a reference to ensure the usage of the original data during data file
migration. When a parent region is split into two subregions, each
file is divided into a top-half part and a bottom-half part. These
parts are then moved to the corresponding subregions. Physically
moving the files costs a significant amount of time, during which
the subregions cannot process query requests. To solve this issue,



the reference split strategy creates references for the new files as
long as the split process begins. The reference points to the file
being split and records the positional information (whether it is the
top or bottom part). In this way, subregions can locate files through
references to handle read requests. Writing new data in subregions
remains unaffected due to the LSM’s append-write mode. Once the
data migration is complete, these references are deleted.

We extend the reference split strategy to allow subregions to
create references to existing references in the parent region, named
cascaded split strategy. This is used to handle the case where the
hotspot occurs in a subregion before the split process is complete.
Figure 7 describes the process of undergoing cascaded splits involv-
ing 5 regions, O and A to D. O is initially split into two regions A
and B. Before the data migration is complete, A contains references
to the files in O and is split into regions C and D soon. At this
point, C and D both have references to the references in A. When a
query arrives in C or D, it can use the positional information on the
multi-level references to quickly locate a precise starting scan point
in each file to be retrieved in O. As a result, regions B, C, and D are
all able to execute queries. Moreover, the cascaded split strategy
can reduce the cost of data migration. Since A is split again, data
transfer from O to A can be immediately halted, and data in O can
be moved directly to C and D instead.

Region O

File

Split Point

Split Point

Top half Bottom half

Top half Bottom half

Region A

Ref

Region B

Ref

Region C

Ref’

Region D

Ref’

Figure 7: Cascaded split on a hot region O. O splits into A and
B, soon A begins to split into C and D.

3.3 Ultra-wide-column Storage Engine
To address the challenges of rapid ingestion of multi-metric data,
as well as queries accessing varying numbers of metrics, we pro-
pose an ultra-wide-column storage engine (UWCSE) based on LSM-
tree. UWCSE integrates the advantages of both row-oriented and
column-oriented storage systems with low additional overhead. In
each region, there is an independent UWCSE responsible for effi-
ciently executing read and write operations routed to that region.

Merged key-value item. As demonstrated in Figure 8, data
is first written to an append-only Write-Ahead Log (WAL) in the
shared storage to ensure data durability. Subsequently, the data is
written into a Memtable. Recall that IoV data comprises a vast array
of metrics. Separating data by metrics can introduce an excessive

optional

WAL

MemTable
write

flush

parquetparquetParquet

compactNew 
SSTable

Parquet

SSTable

Local DRAM
Distribute File System

TimestampVID

0x00···Value2Metric2Value1Metric1

key

value

Figure 8: The overview of UWCSE. Data is organized in row-
based format in memory and SSTable files. An additional
columnar storage file is generated for each SSTable.

amount of key-value (KV) items and associated overhead, such as
organizing data chunks for each metric in time-series databases.
To address this issue, we design a merged key-value item format.
Specifically, UWCSE merges data of multiple metrics in a single
write operation into one KV item, as shown at the top of Figure 8.
Specifically, we use the primary keys of data, i.e., the vehicle ID
and timestamp, as the key. This sorted order of keys aids in quickly
filtering the time-series data for a specific vehicle (single-vehicle
query in §2.2). For the value part, we encode the data of metrics
into a serialized byte sequence similar to a flattened JSON string
without nested structures. The part of each metric contains its type,
name, and value. This encoding allows multiple metrics generated
by a vehicle at the same time to be stored in a contiguous space.
Therefore, UWCSE can quickly read the required data when faced
with queries that retrieve entire rows or a large number of metrics.

Index 
Block 1

Data
Block 1

Bloom 
Block 1

Data
Blocks …

Data
Blocks …

Blocks
……

Data
Block 2

Index 
Block 2

Index 
Block 3

Root
Blocks …

Start Primary Key Offset

Figure 9: The Structure of SSTable. Each entry in an index
block (root block) records the start primary key and the offset
of a data block (index block or bloom block).

SSTable. When a Memtable’s size exceeds a certain threshold, a
flush operation is triggered to persist the Memtable to disk storage,
forming an SSTable. As shown in Figure 9, an SSTable consists of
many fixed-size (e.g., 32KB) blocks, which are divided into four
types: Data Block, Index Block, Bloom Block, and Root Block. A
Data Block stores sorted key-value items that are compressed (e.g.,
with ZSTD, LZ4, etc.) to save space. In an Index Block, each entry
records the starting primary key and offset of the corresponding
Data Block. It indexes a sequence of Data Blocks, helping to filter
out those Data Blocks that do not contain the queried key. The
Bloom Blocks store a partitioned Bloom Filter for the SSTable, each
of which is a Bloom Filter for a range of primary keys. The final part
of the SSTable are Root Blocks, which store the starting primary
key and offset for each Index Block and Bloom Block, forming a
multi-level index structure. When retrieving a certain key within



an SSTable, UWCSE can locate the Bloom Block and Index Block
that may contain the key, by first looking into Root Blocks. In
addition, Root Blocks contain the SSTable’s metadata, including file
information, time range, and column (metric) set. The column set
will be used when generating the columnar storage files.

SSTables are regularly merged to avoid a very large number
of small files, known as the compaction process. As mentioned
in §2.2, update-style writing is common in IoV systems, where
data that share the same primary keys but differ in non-primary
key attributes are written to the database and stored in different
files. Faced with update-style writing, UWCSE extends the update
semantics of LSM-tree with the following mechanisms: during
compaction and read requests, two KV items with the same key
will be merged into a new item by concatenating the two values.
This is referred to as themerge-on-read strategy. It is effective in IoV
systems characterized by high-rate writes, infrequent reads, and
the absence of deletion or modification. It ensures that query results
are correct, without significantly impacting write throughput.

Columnar storage file. During the flush and compaction pro-
cesses, in addition to forming a new SSTable, a corresponding colum-
nar storage file containing the same data is also generated. The
columnar storage file stores data in an open data format, Apache
Parquet [10], and is used to reduce the read amplification for data
extraction from a small subset of columns, i.e., metrics. In detail,
users can specify the access to the columnar storage files for certain
queries that target a small number of metrics. When such a query
arrives, the target SSTables are first filtered based on the vehicle
ID and time range predicates of that query. Then, the associated
columnar storage files are used to retrieve the target columns with
fewer I/O operations compared to accessing the SSTable.

Generating a columnar storage file for a new SSTable has two
steps: 1) Obtaining the columnar schema; 2) Parsing merged key-
value items. First, the metadata in SSTable’s Root Blocks records
the set of metrics, i.e., columns, of the data in the SSTable. For a
compaction operation, the union of the column sets of the involved
SSTables can be obtained, serving as the metadata for the new
SSTable as well as the schema for the corresponding Parquet file.
Second, key-value items from the SSTables are traversed in primary
key order through a merge sort. For an item, we de-serialize the
value part into structured multi-metric data as a row. It is then
written into the columnar storage file using Parquet’s interface.
In the flush process, the columnar storage file is generated from
the Memtable. Since data is originally written in the multi-metrics
form, UWCSE directly maintains the column set and raw data for
each Memtable to quickly generate the SSTable and Parquet file.

When generating new SSTables and columnar storage files, LD-
Server failure may interrupt the process. To ensure that an SSTable
and its corresponding columnar storage file are always consistent
on the disk. We perform consistency checks during crash recovery.
Specifically, a new SStable and its columnar storage file are first
generated as temporary files. Then, these two files are renamed
atomically to final files in turn. When the LDServer breaks down,
there will be two cases. The first is that no final files are generated,
which indicates that data in the temporary files may be incomplete.
Therefore, UWCSE will use the WAL or the original SSTables in-
volved in the compaction to restart the generation process. The
second is that the final SSTable file has been generated but the

columnar storage file does not exist. This means that the temporary
files are successfully generated, thus UWCSE can try to rename the
columnar storage file again.

3.4 Cold-Hot Data Separation
We implement a cold-hot data separation mechanism on Lindorm-
UWC to reduce the cost of storing massive volumes of IoV data.
Similar to TSDBs [46], Data is classified as hot or cold based on the
time when the data is written. Newly written data is considered hot
and is stored on high-efficiency, high-cost storage mediums such as
SSD. When the time since the data has been written exceeds a pre-
defined threshold, such as 7 days, the hot data becomes cold data.
Cold data is then stored on more cost-effective storage mediums
like HDD and OSS [2]. This is because, in IoV systems, queries are
more focused on the most recent data. Additionally, UWCSE, based
on LSM, creates new files for newly written data, which inherently
orders files by time and makes it straightforward and convenient
to divide them into hot and cold tiers.

MemTable

flush

Cold Window

SSTable

compact

······

Cold Boundary

Cold Hot

compact

Window T - 1

SSTable

New Window TWindow T - 2

SSTable

Window T - N

SSTable

Figure 10: UWCSE periodically generates a new hot time
window. After a pre-defined period, the hot window turns to
cold, and all its SStables are merged into one.

Time-window compaction. Compaction is used to control
the number of SSTable files in UWCSE. A compaction operation
involves reading several small SSTables and merge-sorting them to
create a new SSTable, which is then written to the storage medium.
During this process, if there is data read from or written to the
cold storage medium, the cost of compaction can be very high. To
address this issue, we employ a time-window compaction strategy
to avoid accessing the cold storage medium too frequently. As
shown in Figure 10, we divide SSTables into non-overlapping time
windows, typically one day per window. Windows are classified
into cold and hot windows based on chronological order. In the time-
window compaction strategy, compaction only merges SSTables
in the same window. In a time window, a universal compaction
strategy [36] is used to determine when to perform compaction and
which SSTables to involve. When a hot window turns to cold, all of
its SSTables are merged into a single SSTable and then transferred
to the cold storage. Cold SSTables compact at a very low frequency,
simply to keep the number of files under a reasonable level. In IoV
systems, most queries do not require time ranges that span multiple
cold windows. Therefore, Cold files that are not merged do not
significantly affect query performance.

Cold data filtering acceleration. When dealing with a query,
Lindorm-UWC first identifies all SSTables that may contain the
query results using filters (e.g., bloom filters and time range fil-
ters), and then it scans each file. To facilitate the filter process,
Lindorm-UWC redundantly stores the Bloom Blocks and metadata



100 200 500 1000 2000 3000
Metric Scale

102

103

104

105

106

W
rit

e 
Th

ro
ug

hp
ut

Lindorm
MongoDB
HBase
Influx

(a) split = 1

100 200 500 1000 2000 3000
Metric Scale

102

103

104

105

106

W
rit

e 
Th

ro
ug

hp
ut

Lindorm
MongoDB
HBase
Influx

(b) split = 3

100 200 500 1000 2000 3000
Metric Scale

103

104

105

106

W
rit

e 
Th

ro
ug

hp
ut

Lindorm
MongoDB
HBase
Influx

(c) split = 10

Figure 11: Write throughput at different split andmetric_scale.

for filtration in Root Blocks of cold SSTables in the hot storage.
This mechanism is referred to as cold meta cache. As a result, the
target SSTables can be filtered by only accessing the hot storage. In
case the query results are indeed in cold files, most Data Blocks in
these files will not contain the required data. Therefore, UWCSE
also caches Index Blocks of cold files. These indexes in hot storage
are searched first to locate data blocks that satisfy the primary key
requirements in the query. The cold storage is the last to be accessed
to get to the concrete data.

4 EVALUATION
We evaluate Lindorm-UWC in three aspects. First, we comprehen-
sively evaluate Lindorm-UWC’s performance on data ingestion
(§4.2) and query (§4.3), by comparing it to baseline systems in §2.3
(i.e., MongoDB, InfluxDB, and HBase). We then validate that though
UWCSE deploys the columnar storage replica for query accelera-
tion, the additional overhead introduced during data ingestion is
acceptable (§4.4).

4.1 Experiment Setup
We deploy the databases and clients required for the experiments on
Alibaba Cloud. For each database system, we directly purchase cor-
responding Alibaba Cloud products [4–7] with consistent hardware
configurations (3 servers, each with 8 cores and 64GB of RAM). We
deploy an Alibaba Cloud Elastic Compute Service (ECS) [3] server
as a client to generate write and query requests, which has 128
cores and 512 GB of RAM.

Data generation. We develop a benchmark suite in Java to
generate data of different scales as well as single-vehicle query
requests, based on the workload characteristics summarized in §2.2.
Specifically, the benchmark generates multi-metric time-series data
for each vehicle, where the number of metrics, metric_scale, can
be adjusted as needed. The amount of data generated for each
vehicle is consistent and is determined by pre-set parameters: the
number of days, the time span per day that each vehicle generates
data. To simulate update-style writing, the benchmark divides a
row containing all metric values of a single timestamp into split
rows with the same timestamp, where split is also an adjustable
parameter as metric_scale. We generate datasets of 10,000 vehicles
with differentmetric_scale and split for the subsequent experiments.

4.2 Write Performance
We first evaluate the write throughput of each database, i.e., the
number of write operations processed per second. We use Java API
to write data for all systems, through their respective batch-write
interfaces. We fix the batch size, so that each batch contains forty
write operations. Then, we tune the number of client concurrency
to achieve the best performance for each database. Figure 11 shows
the results of the writing performance.

In Figure 11a, we write data to databases without update-style
writing. The write throughput of Lindorm-UWC is 79% higher than
MongoDB on average. It is more than an order of magnitude higher
than HBase and InfluxDB. This is because Lindorm-UWC and Mon-
goDB treat multiple metric values in a single write operation as one
row, without processing each metric value individually as InfluxDB
and HBase do. Compared to MongoDB’s B+tree storage, our ultra-
wide-column storage as a LSM-tree is more conducive to writing
massive data, resulting in better performance in Lindorm-UWC. In-
fluxDB has the worst performance, as it organizes multi-metric data
into time series, introducing extra overhead of maintaining indexes
and data chunk structures for each metric. When following update-
style writing in data ingestion (e.g., Figure 11b and Figure 11c, split
> 1), the write throughput of MongoDB drops severely, leading to an
order-of-magnitude gap with Lindorm-UWC. This is because when
dealing with multiple writes on the same primary key (i.e., vehicle
and timestamp), MongoDB needs to fetch the existing document
for that key and then apply updates.

4.3 Query Performance
In query evaluation, we first write data to each database with 2000
metrics and a total period of 24 hours, where each vehicle contains
3 hours of data. Then, we send single-vehicle query requests with
different filter conditions to the databases. To be specific, for a query,
it has 2 values for the length of its time range filter (i.e., 10 and 60
minutes), and 4 values for the number of metrics required (i.e., 1, 20,
100, and 2000). Combining these two filters can produce 8 types of
query. We measure the query throughput of each query type, which
is the number of queries completed per second. During the test, we
minimize the data overlapping among different queries’ results as
well as randomize the sequence of query requests to reduce the
impact of caches in these databases.



Table 7: Query throughput of different filter conditions.

System 10-minute query 60-minute query

2000 100 20 1 2000 100 20 1

Lindorm 173 217 (74)∗ (421) (7524) 27.0 31.3 (51.2) (219) (1474)
MongoDB 108 222 243 244 16.9 33.3 35.9 36.3
HBase 9.84 21.5 25.7 39.6 1.73 3.76 4.39 7.00

InfluxDB 11.5 109 544 7093 2.57 50.5 240 1716

∗ The values in brackets are results obtained by searching columnar
storage files in the UWCSE.

Table 7 presents the results for the 10-minute query (the left
side) and the 60-minute query (the right side). For the 10-minute
query, the results for databases other than Lindorm-UWC have been
discussed in §2.3. In short, row-oriented storage, e.g., MongoDB,
is more advantageous for querying massive metrics (e.g., 2000);
while column-oriented storage time-series database, e.g., InfluxDB,
is better suited for querying a few metrics (e.g., 20 and 1). Lindorm-
UWC stores two SSTables whose data are organized as both row
and column oriented files. As a result, the throughput of 2000-
metric queries in Lindorm-UWC is 1.6× as high as that of MongoDB.
The document structure in MongoDB (BSON) is more complex
and leads to high network traffic when returning query results.
When the number of queried metrics becomes fewer, Lindorm-
UWC can improve performance as linearly as InfluxDB. Therefore,
for queries retrieving no more than 20 metrics, Lindorm-UWC and
InfluxDB show similar performance. Note that Lindorm-UWC can
achieve 30.8 times the throughput of MongoDB for 1-metric queries.
When processing 100-metric queries, Lindorm-UWC can complete
217 queries per second by searching SSTables, greater than the
throughput (i.e., 74, the value in the bracket) of reading columnar
storage files. MongoDB has the best performance in this case (i.e.,
222), indicating that row-based storage is more advantageous here.

In the case of the 60-minute query, the results for querying 1,
20, and 2000 metrics show a similar trend as the 10-minute query.
It is worth noting that InfluxDB outperforms MongoDB for 100-
metric queries. The query throughput obtained by reading columnar
storage files is also higher in Lindorm-UWC (51.2 > 31.3). This is
because long time-range queries will hit more rows, incurring more
I/Os in row-oriented databases. In contrast, in column-oriented
databases, query I/Os mainly depends on the number of queried
metrics, and is therefore less affected by the number of hit rows.
However, quantifying the overhead of these two storage types under
a certain query is difficult. Currently, Lindorm-UWC requires the
user to manually specify the storage type for a query.

4.4 Columnar Storage Overhead
Now we evaluate the system load of the UWCSE during data inges-
tion. With this engine, generating corresponding columnar storage
file for an SSTable file incurs additional computation overhead and
disk I/O overhead. We measure these overheads by monitoring the
system loadmetrics of Lindorm-UWCwith a fixed write throughput
under the following two configurations: 1) generating no columnar
storage file; 2) generating columnar storage files. In this evalua-
tion, we write data to databases with metric_scale of 2000 and split
of 1. During the process, we fix the write throughput to 15,000

(slightly higher than the MongoDB’s performance, see Figure 11a).
We record the values of CPU usage, disk write throughput (MB/s),
and the number of disk I/Os per second (IOPS) for both systems, as
shown in Table 8.

Table 8: System load when writing data with 2000 metrics.

System CPU usage Disk throughput Disk IOPS

w/o columnar store 67% 322 MB/s 3066
with columnar store 88% 373 MB/s 3365

As can be seen, generating columnar storage files increases the
CPU usage by 21%/67% = 31.3%. The CPU resources are mainly
utilized to reorganize the multi-metric data stored in rows into the
columnar format. Disk resource consumption increases by 15.8%
and 9.8% in throughput and IOPS, respectively, which is mainly
from writing columnar storage files. Compared to WALs and SSTa-
bles that are composed of rows of various metrics, the columnar
storage files store values from the same metric in a contiguous
space and apply effective compressions. This reduces the disk over-
head to some extent. As shown in §4.3, accessing files in suitable
storage formats for different queries can greatly improve the query
performance. It introduces acceptable overhead when maintaining
columnar storage files and still sustains high write performance.

5 LESSONS LEARNED
The discussed features of Lindorm-UWC that are optimized for IoV
scenarios were not conceived all at once, but emerged gradually
through an iterative development during the process of business
support. This section provides lessons we have learned and insights
we have gained during this journey.

Where to solve update-stylewriting.Aswementioned in §2.2,
different components on a vehicle may generate time-unaligned
data. Their timestamps will be aligned to a certain precision only
when written to the database. Hence, the metrics cannot be com-
pacted on vehicle side. Lindorm-UWC adopts a JSON-like encoding
way to cope with a large number of metrics in a write operation,
and uses a merge-on-read strategy to deal with update-style writ-
ing. Some users, e.g., B,merge multiple data from the same vehicle
and the same timestamp before they are written to the database.
However, this puts certain barriers on the technical capabilities of
the users. It often requires the maintenance of additional compo-
nents (such as Flink) to align the data in terms of the time window
dimension, which also delays the data persistence. Therefore, we
choose to optimize the database to simplify the users’ workflows.

Time-window compaction. Before adopting the time-window
compaction, each region’s files had towait for themajor compaction
cycle (usually 14∼20 days) to be moved to cold storage. In IoV sce-
narios where massive new data is generated daily, this cannot meet
users’ expectation for total storage cost reduction. Moreover, the
major compaction strategy involves merging all files. This means
that files already in cold storage have to be repeatedly read and
written, which is time-consuming. To address this issue, we have
proposed a strategy that only compacts hot files and we shortened
the execution interval. alleviating the costs of compaction. Finally,
the time-window compaction is developed to further reduce the
number of compaction operations among the hot files.



Out-of-order data processing. Another common issue in IoV
scenarios is the existence of out-of-order data. Vehicles in those
areas that lack network access may buffer data locally. Once con-
nectivity is restored, the buffered data becomes out-of-order data in-
sertion. Beside, other out-of-order cases also occur commonly, such
as historical data importation. Conventional time-series databases
usually require special handling of these data (e.g., using separated
storage areas or time windows) to resolve their negative impacts
on write and query performance [34, 44]. Fortunately, in Lindorm-
UWC, out-of-order data is not an issue. The primary reason is that
Lindorm-UWC’s regions are usually small (not exceeding 8GB),
allowing the total number of files within a region to be maintained
at a low level. Even if queries for out-of-order data require merg-
ing or sorting multiple files, the impact on query performance is
marginal. Besides, out-of-order data in Lindorm-UWC does not im-
mediately enter cold storage and impact write throughput, because
the division of windows is based solely on the time data is written.

Pre-splitting vs. Cascaded split strategy. Hotspot issues are
common in the early stages of a business, where there are only a few
available regions. This can be mitigated by having users implement
a pre-splitting strategy in advance to create more regions. However,
this approach is not convenient for users, as it is difficult to deter-
mine a reasonable pre-splitting value that suits different business
scales. The feature of cascaded split strategy enables Lindorm-UWC
to automatically and quickly disperse hotspots when they arise in
the business, reducing the need for user intervention.

6 RELATEDWORK
Time-series databases. Apart from IoV applications, there exist
many other time-series databases (TSDBs) oriented toward IoT
and monitoring scenarios. TDEngine [18] and IoTDB [44] are for
IoT systems. They organize metrics in a column-oriented storage.
TDEngine requires users to manually define a schema for each table,
which makes it more difficult to optimize when the set of metrics
from write operations is uncertain. IoTDB supports deployment
in standalone, edge computing, and cloud environments, which
improves computation and data storage efficiency at all levels of
the IoT system and simplifies data transfer. For DevOps monitoring
scenarios, Gorilla [39] and ByteSeries [43] compress time-series
data structures to reduce space consumption. InfluxDB [13, 29, 30]
proposes TSM based on LSM according to the characteristics of
time-series data, including the optimizations of WAL writing, file
format, and compaction policy. Lindorm-TSDB [42] designs an
advanced execution engine to support low-latency responses to
those queries that hit multiple timeseries in monitoring systems.

Overall, an important feature of TSDBs is that their data organi-
zation is on a per timeseries basis. However, this feature introduces
non-negligible overhead and decreases write throughput in IoV
systems that always contain a large number of metrics and vehicles.
In addition, the column-oriented storage in TSDBs may consume
a high amount of I/Os when a query retrieves many metrics. For
other systems like MySQL and KV-store, it also requires heavy
system modifications to support time-series data management.

Hybrid systems. Some hybrid systems combine the advantages
of row-oriented and column-oriented storage to handle the diverse
needs of data analysis and writing. The combination of HBase [8]

and Hive [9] is a traditional hybrid system solution. The data is
first written to a Hbase system and then exported to a Hive system
for more complicated analysis. Besides, HTAP (Hybrid Transac-
tional/Analytical Processing) system is also a widely-used approach,
e.g., Hologres [33], TiDB [27], PolarDB [45]. Hologres writes data to
both row-oriented and column-oriented storage files. TiDB copies
data to columnar storage by adding an observer to the Raft group.
PolarDB implements an IMCI (In-Memory Column Index) feature
to reorganize an in-memory data copy in a column-based format to
accelerate analytical requests. These hybrid systems are designed
for those queries with more complex filter conditions than the on-
line queries in IoV workload (i.e., only targeting different numbers
of metrics from a certain time range and a single vehicle). Hence,
higher overheads can be expected in existing hybrid systems. For in-
stance in HTAP systems, AP engines usually have different partition
strategies from TPs engines, introducing data transfer overheads.
In comparison, Lindorm-UWC takes the same partition strategy
for row-based and columnar data by maintaining the one-to-one
relationship between an SSTable and a Parquet file.

Hot/cold data separation. When a huge amount of data is
managed, how to reduce the storage cost must be seriously con-
sidered. In conventional KV database systems, frequently accessed
items are regarded as hot data and the others are cold. In order
to store both hot and cold data on appropriate storage media,
many works focus on hot data identification (e.g., SA-LSM [50],
Mutant [49], Leaper [48], PrismDB [41]), hot/cold data migration
(e.g., RocksDB [17], Cassandra [35]), hot storage data structure de-
sign (e.g., SpanDB [22], PrismDB [41], X-Engine [28]), and cold
data query optimization (e.g., Monkey [24]). In the cases that these
systems work for, data with different keys exhibit different levels of
hotness. However, in IoV systems (or time-series data management
systems), the hotness is usually time-dependent. Therefore, time-
series databases separate hot and cold data by time. TimeUnion [46]
groups data into different types of time windows (hot, cold, and
out-of-order) and merges multiple windows to optimize the query
for historical data. Lindorm-UWC tries to avoid compacting files
from different windows for better hot data processing performance,
since queries for old data are rare in IoV systems.

7 CONCLUSION
In this paper, we conduct the first empirical study on IoV workloads
of data read and write using real-world IoV records and queries, and
spot three key challenges to underlying database systems. Based on
the valuable findings obtained from this study, we propose Lindorm-
UWC for managing multi-metric IoV data, which is a distributed
database with a cold-hot data separation mechanism. Lindorm-
UWC partitions data into different regions and supports automated
load balancing. In each region, Lindorm-UWC adopts an ultra-
wide-column storage engine that stores data in both row-oriented
and column-oriented storage formats to efficiently deal with mas-
sive arrives and diverse queries. We evaluate the performance of
Lindorm-UWC, and the results show that Lindorm-UWC is effec-
tive in high-throughput multi-metric data ingestion and diverse
multi-metric queries.



REFERENCES
[1] 2023. 2023 Global Automotive Connectivity Executive Survey. https:

//www.mckinsey.com/industries/automotive-and-assembly/our-insights/
corporate-business-building-to-unlock-value-in-automotive-connectivity. Last
accessed: 2024-07-14.

[2] 2024. Alibaba Cloud OSS. https://www.alibabacloud.com/product/
object-storage-service. Last accessed: 2024-07-14.

[3] 2024. Alibaba ECS. https://www.alibabacloud.com/product/ecs. Last accessed:
2024-07-14.

[4] 2024. AlibabaCloud HBase. https://www.alibabacloud.com/product/hbase. Last
accessed: 2024-07-14.

[5] 2024. AlibabaCloud InfluxDB. https://www.alibabacloud.com/product/hitsdb_
influxdb. Last accessed: 2024-07-14.

[6] 2024. AlibabaCloud Lindorm. https://www.alibabacloud.com/product/lindorm.
Last accessed: 2024-07-14.

[7] 2024. AlibabaCloud MongoDB. https://www.alibabacloud.com/product/
apsaradb-for-mongodb. Last accessed: 2024-07-14.

[8] 2024. Apache HBase. https://hbase.apache.org/. Last accessed: 2024-07-14.
[9] 2024. Apache Hive. https://hive.apache.org/. Last accessed: 2024-07-14.
[10] 2024. Apache Parquet. https://parquet.apache.org/. Last accessed: 2024-07-14.
[11] 2024. Apache ZooKeeper. https://zookeeper.apache.org/. Last accessed: 2024-07-

14.
[12] 2024. DB-Engines Ranking of Time Series DBMS. https://db-engines.com/en/

ranking/time+series+dbms. Last accessed: 2024-07-14.
[13] 2024. InfluxDB. https://docs.influxdata.com/influxdb/v2.6/. Last accessed:

2024-07-14.
[14] 2024. MongoDB. https://www.mongodb.com/. Last accessed: 2024-07-14.
[15] 2024. Prometheus. https://prometheus.io/. Last accessed: 2024-07-14.
[16] 2024. Prometheus Node exporter. https://github.com/prometheus/node_exporter.

Last accessed: 2024-07-14.
[17] 2024. RocksDB. https://rocksdb.org. Last accessed: 2024-07-14.
[18] 2024. TDengine. https://tdengine.com/. Last accessed: 2024-07-14.
[19] 2024. Time Series Benchmark Suite. https://github.com/timescale/tsbs. Last

accessed: 2024-07-14.
[20] Saif Al-Sultan, Moath M Al-Doori, Ali H Al-Bayatti, and Hussien Zedan. 2014.

A comprehensive survey on vehicular ad hoc network. Journal of network and
computer applications 37 (2014), 380–392.

[21] Ansif Arooj, Muhammad Shoaib Farooq, Aftab Akram, Razi Iqbal, Ashutosh
Sharma, and Gaurav Dhiman. 2022. Big data processing and analysis in internet
of vehicles: architecture, taxonomy, and open research challenges. Archives of
Computational Methods in Engineering 29, 2 (2022), 793–829.

[22] Hao Chen, Chaoyi Ruan, Cheng Li, Xiaosong Ma, and Yinlong Xu. 2021.
{SpanDB}: A fast,{Cost-Effective}{LSM-tree} based {KV} store on hybrid
storage. In 19th USENIX Conference on File and Storage Technologies (FAST 21).
17–32.

[23] JiuJun Cheng, JunLu Cheng, MengChu Zhou, FuQiang Liu, ShangCe Gao, and
Cong Liu. 2015. Routing in internet of vehicles: A review. IEEE Transactions on
Intelligent Transportation Systems 16, 5 (2015), 2339–2352.

[24] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2018. Optimal bloom filters
and adaptive merging for LSM-trees. ACM Transactions on Database Systems
(TODS) 43, 4 (2018), 1–48.

[25] Christian Garcia-Arellano, Hamdi Roumani, Richard Sidle, Josh Tiefenbach,
Kostas Rakopoulos, Imran Sayyid, Adam Storm, Ronald Barber, Fatma Ozcan,
Daniel Zilio, et al. 2020. Db2 event store: a purpose-built IoT database engine.
Proceedings of the VLDB Endowment 13, 12 (2020), 3299–3312.

[26] Chaochen Hu, Zihan Sun, Chao Li, Yong Zhang, and Chunxiao Xing. 2023. Survey
of Time Series Data Generation in IoT. Sensors 23, 15 (2023), 6976.

[27] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu
Tang, Yuxing Zhou, Menglong Huang, et al. 2020. TiDB: a Raft-based HTAP
database. Proceedings of the VLDB Endowment 13, 12 (2020), 3072–3084.

[28] Gui Huang, Xuntao Cheng, Jianying Wang, Yujie Wang, Dengcheng He, Tieying
Zhang, Feifei Li, Sheng Wang, Wei Cao, and Qiang Li. 2019. X-Engine: An
optimized storage engine for large-scale E-commerce transaction processing. In
Proceedings of the 2019 International Conference on Management of Data. 651–665.

[29] InfluxData Inc. 2024. InfluxDB TSM. https://docs.influxdata.com/influxdb/v1/
concepts/storage_engine/. Last accessed: 2024-07-14.

[30] InfluxData Inc. 2024. InfluxQL. https://docs.influxdata.com/influxdb/v1/query_
language/. Last accessed: 2024-07-14.

[31] IoTDB. 2024. Application of Apache IoTDB in the Construction of Chang’an
Intelligent Automobile Data Platform. https://www.timecho.com/archives/
2022-iotdb-summit-chang-an-qi-che-huang-li. Last accessed: 2024-03-13.

[32] Baofeng Ji, Xueru Zhang, Shahid Mumtaz, Congzheng Han, Chunguo Li, Hong
Wen, and Dan Wang. 2020. Survey on the internet of vehicles: Network archi-
tectures and applications. IEEE Communications Standards Magazine 4, 1 (2020),
34–41.

[33] Xiaowei Jiang, Yuejun Hu, Yu Xiang, Guangran Jiang, Xiaojun Jin, Chen Xia,
Weihua Jiang, Jun Yu, Haitao Wang, Yuan Jiang, et al. 2020. Alibaba hologres: A
cloud-native service for hybrid serving/analytical processing. Proceedings of the
VLDB Endowment 13, 12 (2020), 3272–3284.

[34] Yuyuan Kang, Xiangdong Huang, Shaoxu Song, Lingzhe Zhang, Jialin Qiao, Chen
Wang, Jianmin Wang, and Julian Feinauer. 2022. Separation or not: On handing
out-of-order time-series data in leveled lsm-tree. In 2022 IEEE 38th International
Conference on Data Engineering (ICDE). IEEE, 3340–3352.

[35] Avinash Lakshman and Prashant Malik. 2010. Cassandra: a decentralized struc-
tured storage system. ACM SIGOPS operating systems review 44, 2 (2010), 35–40.

[36] Qizhong Mao, Steven Jacobs, Waleed Amjad, Vagelis Hristidis, Vassilis J Tsotras,
and Neal E Young. 2021. Comparison and evaluation of state-of-the-art LSM
merge policies. The VLDB Journal 30 (2021), 361–378.

[37] Zhisheng Niu, S Shen, QY Zhang, et al. 2017. Space-air-ground integrated
vehicular network for immersive driving experience. Chinese J. Internet of Things
1, 2 (2017), 17–27.

[38] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The
log-structured merge-tree (LSM-tree). Acta Informatica 33 (1996), 351–385.

[39] Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro, Qi Huang, Justin
Meza, and Kaushik Veeraraghavan. 2015. Gorilla: A fast, scalable, in-memory
time series database. Proceedings of the VLDB Endowment 8, 12 (2015), 1816–1827.

[40] Meikel Poess, Raghunath Nambiar, Karthik Kulkarni, Chinmayi Narasimhade-
vara, Tilmann Rabl, and Hans-Arno Jacobsen. 2018. Analysis of tpcx-iot: The
first industry standard benchmark for iot gateway systems. In 2018 IEEE 34th
International Conference on Data Engineering (ICDE). IEEE, 1519–1530.

[41] Ashwini Raina, Jianan Lu, Asaf Cidon, and Michael J Freedman. 2023. Effi-
cient Compactions between Storage Tiers with PrismDB. In Proceedings of the
28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3. 179–193.

[42] Chunhui Shen, QianyuOuyang, Feibo Li, Zhipeng Liu, Longcheng Zhu, Yujie Zou,
Qing Su, Tianhuan Yu, Yi Yi, Jianhong Hu, et al. 2023. Lindorm TSDB: A Cloud-
Native Time-Series Database for Large-Scale Monitoring Systems. Proceedings
of the VLDB Endowment 16, 12 (2023), 3715–3727.

[43] Xuanhua Shi, Zezhao Feng, Kaixi Li, Yongluan Zhou, Hai Jin, Yan Jiang, Bing-
sheng He, Zhijun Ling, and Xin Li. 2020. ByteSeries: an in-memory time series
database for large-scale monitoring systems. In Proceedings of the 11th ACM
Symposium on Cloud Computing. 60–73.

[44] Chen Wang, Jialin Qiao, Xiangdong Huang, Shaoxu Song, Haonan Hou, Tian
Jiang, Lei Rui, Jianmin Wang, and Jiaguang Sun. 2023. Apache IoTDB: A time
series database for IoT applications. Proceedings of the ACM on Management of
Data 1, 2 (2023), 1–27.

[45] Jianying Wang, Tongliang Li, Haoze Song, Xinjun Yang, Wenchao Zhou, Feifei
Li, Baoyue Yan, Qianqian Wu, Yukun Liang, ChengJun Ying, et al. 2023. PolarDB-
IMCI: A cloud-native HTAP database system at alibaba. Proceedings of the ACM
on Management of Data 1, 2 (2023), 1–25.

[46] Zhiqi Wang and Zili Shao. 2022. TimeUnion: An Efficient Architecture with
Unified Data Model for Timeseries Management Systems on Hybrid Cloud
Storage. In Proceedings of the 2022 International Conference on Management of
Data. 1418–1432.

[47] Fangchun Yang, Shangguang Wang, Jinglin Li, Zhihan Liu, and Qibo Sun. 2014.
An overview of Internet of Vehicles. China Communications 11, 10 (2014), 1–15.
https://doi.org/10.1109/CC.2014.6969789

[48] Lei Yang, Hong Wu, Tieying Zhang, Xuntao Cheng, Feifei Li, Lei Zou, Yujie
Wang, Rongyao Chen, Jianying Wang, and Gui Huang. 2020. Leaper: A learned
prefetcher for cache invalidation in LSM-tree based storage engines. Proceedings
of the VLDB Endowment 13, 12 (2020), 1976–1989.

[49] Hobin Yoon, Juncheng Yang, Sveinn Fannar Kristjansson, Steinn E Sigurdarson,
Ymir Vigfusson, and Ada Gavrilovska. 2018. Mutant: Balancing storage cost and
latency in lsm-tree data stores. In Proceedings of the ACM Symposium on Cloud
Computing. 162–173.

[50] Teng Zhang, Jian Tan, Xin Cai, Jianying Wang, Feifei Li, and Jianling Sun. 2022.
SA-LSM: optimize data layout for LSM-tree based storage using survival analysis.
Proceedings of the VLDB Endowment 15, 10 (2022), 2161–2174.

https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/corporate-business-building-to-unlock-value-in-automotive-connectivity
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/corporate-business-building-to-unlock-value-in-automotive-connectivity
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/corporate-business-building-to-unlock-value-in-automotive-connectivity
https://www.alibabacloud.com/product/object-storage-service
https://www.alibabacloud.com/product/object-storage-service
https://www.alibabacloud.com/product/ecs
https://www.alibabacloud.com/product/hbase
https://www.alibabacloud.com/product/hitsdb_influxdb
https://www.alibabacloud.com/product/hitsdb_influxdb
https://www.alibabacloud.com/product/lindorm
https://www.alibabacloud.com/product/apsaradb-for-mongodb
https://www.alibabacloud.com/product/apsaradb-for-mongodb
https://hbase.apache.org/
https://hive.apache.org/
https://parquet.apache.org/
https://zookeeper.apache.org/
https://db-engines.com/en/ranking/time+series+dbms
https://db-engines.com/en/ranking/time+series+dbms
https://docs.influxdata.com/influxdb/v2.6/
https://www.mongodb.com/
https://prometheus.io/
https://github.com/prometheus/node_exporter
https://rocksdb.org
https://tdengine.com/
https://github.com/timescale/tsbs
https://docs.influxdata.com/influxdb/v1/concepts/storage_engine/
https://docs.influxdata.com/influxdb/v1/concepts/storage_engine/
https://docs.influxdata.com/influxdb/v1/query_language/
https://docs.influxdata.com/influxdb/v1/query_language/
https://www.timecho.com/archives/2022-iotdb-summit-chang-an-qi-che-huang-li
https://www.timecho.com/archives/2022-iotdb-summit-chang-an-qi-che-huang-li
https://doi.org/10.1109/CC.2014.6969789

	Abstract
	1 Introduction
	2 Empirical Study
	2.1 IoV System Background
	2.2 Real-world IoV Workload Analysis
	2.3 Motivation for IoV Database Designs

	3 System design
	3.1 System Overview
	3.2 Distributed Architecture
	3.3 Ultra-wide-column Storage Engine
	3.4 Cold-Hot Data Separation

	4 Evaluation
	4.1 Experiment Setup
	4.2 Write Performance
	4.3 Query Performance
	4.4 Columnar Storage Overhead

	5 Lessons learned
	6 Related Work
	7 Conclusion
	References

