TechSupportEval: An Automated Evaluation Framework for Technical Support Question Answering

Bohan Chen¹, Yongqian Sun², Yuhe Liu¹, Longlong Xu¹, Zhe Xie¹, Changhua Pei³, Jing Han⁴, Fan Ni⁴, Xuhui Cai⁵, Ce Yang⁵, and Dan Pei¹

OUTLINE

Background

Framework

Evaluation

Conclusion

OUTLINE

Background

Framework

Evaluation

Conclusion

Technical Support Question Answering

Technical Support¹

Technical support is a service provided to users to diagnose and resolve technical issues to maintain the reliability of IT services.

A common approach: Question Answering (QA)

Question:

Are there ways to capture the IP addresses that are using my storage accounts in Azure portal?

Response:

Once you have enabled logging for your storage account, the information about operations performed against your storage account is saved in **`\$logs` blob container**. It contains a CSV files. The information you're looking for is available in **<requester-ip-address> field**.

Technical Support Question Answering

Technical Support¹

Technical support is a service provided to users to diagnose and resolve technical issues to maintain the reliability of IT services.

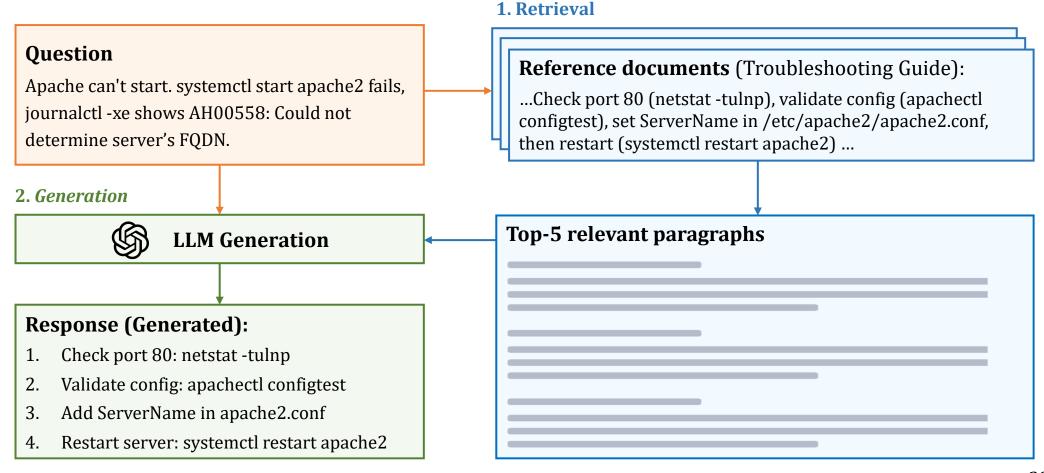
A common approach: Question Answering (QA)

[1] https://en.wikipedia.org/wiki/Technical_support

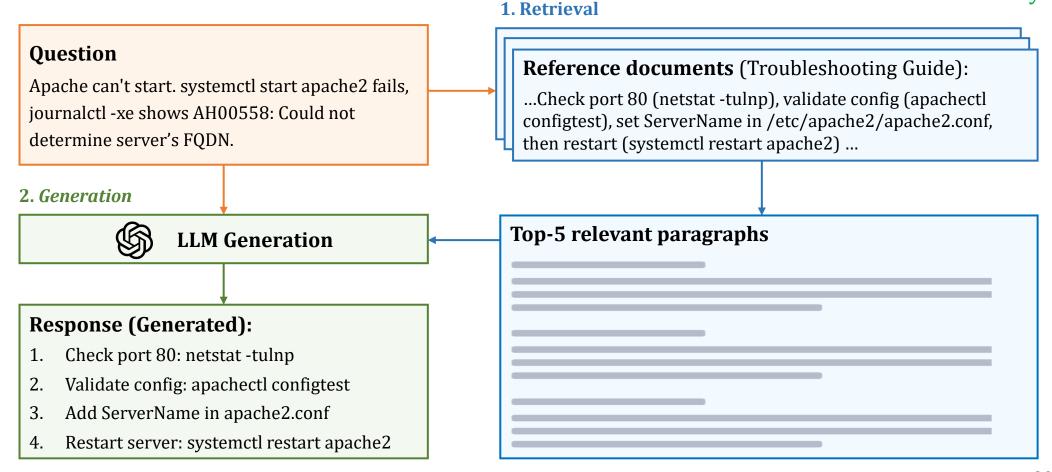
✓ AccuracyX LatencyX Scalability

Example from Microsoft Forum

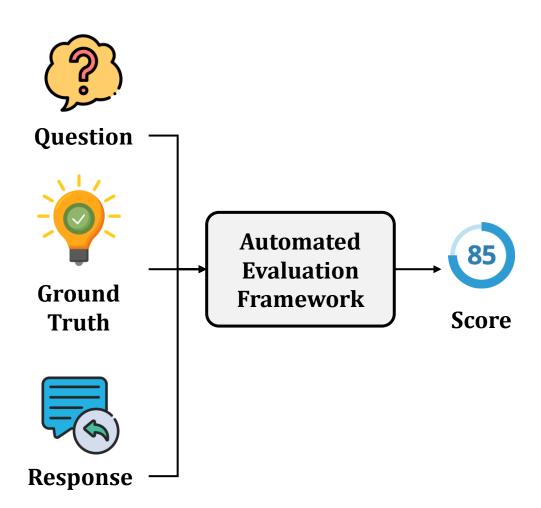
Question:


Are there ways to capture the IP addresses that are using my storage accounts in Azure portal?

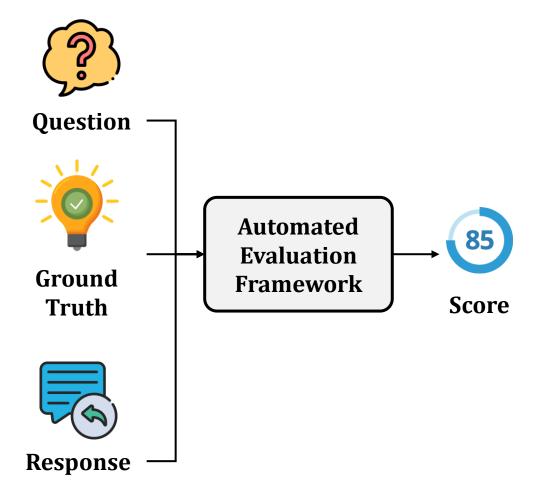
Response:


Once you have enabled logging for your storage account, the information about operations performed against your storage account is saved in **`\$logs` blob container**. It contains a CSV files. The information you're looking for is available in **<requester-ip-address> field**.

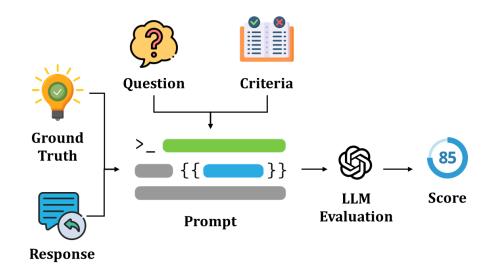
From Manual Responses to LLM-RAG Powered QA



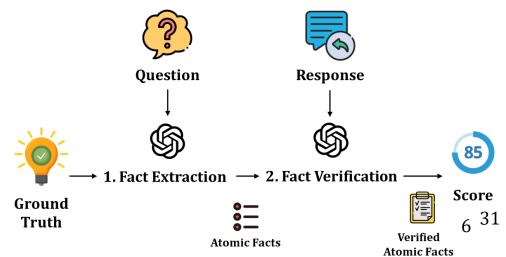
From Manual Responses to LLM-RAG Powered QA


? Accuracy✓ Latency✓ Scalability

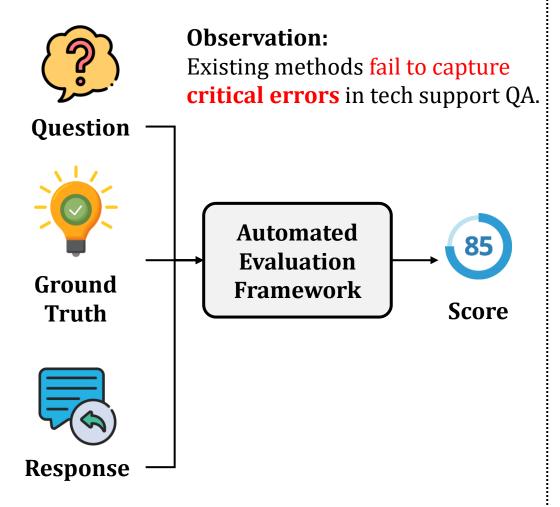
Automated Evaluation of QA



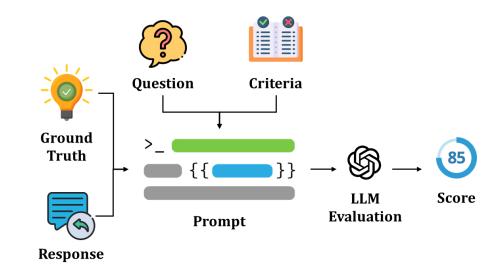
Automated Evaluation of QA



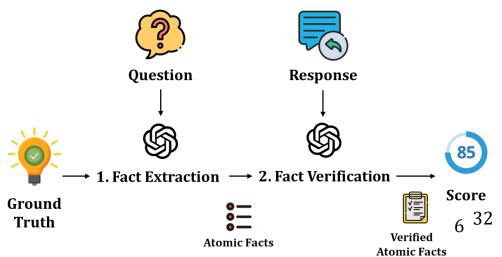
Existing evaluation methods:


1. Criteria-Guided Evaluation (e.g. G-Eval)

2. Factual Consistency Evaluation (e.g. RAGAS)



Automated Evaluation of QA



Existing evaluation methods:

1. Criteria-Guided Evaluation (e.g. G-Eval)

2. Factual Consistency Evaluation (e.g. RAGAS)

Error Typology of Technical Support QA

Question Q

My Apache server fails to start. Running systemctl start apache2 shows an error. How can I fix this?

Ground Truth *GT*

- 1. Identify the process using port 80 with netstat -tulnp.
- 2. Stop the process.
- 3. Restart the server.

Error Type	Response A
Key Term Mismatch	 Identify the process with netstat -anp. Stop the process. Restart the server.
Step Missing	 Identify the process with netstat -tulnp. Restart the server. (Missing step 2 in ground truth)
Step Reversal	 Restart the server. (This should be the last step) Identify the process with netstat -tulnp. Stop the process.

Challenge: Detecting the Critical Errors

Key Term Matching

- LLMs may hallucinate or omit key terms such as commands and file paths.
- These mistakes can mislead users and result in faulty or harmful operations.

Step Order Verification

- LLMs often fail to preserve the correct order in multi-step solutions.
- Incorrect step order may lead to configuration failures or system errors.

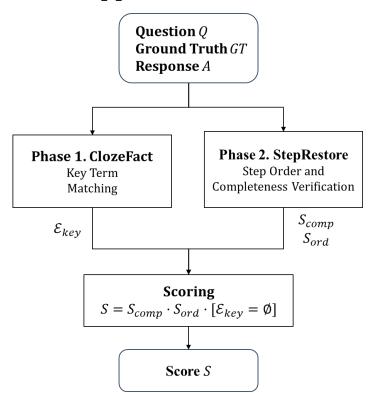
Step Completeness Verification

- RAG-based QA system tend to skip steps during retrieval.
- Missing steps result in incomplete guidance, leaving users unable to resolve the issue.

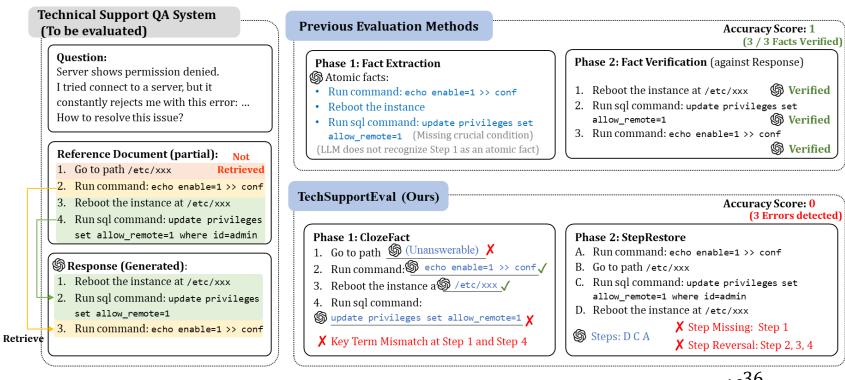
OUTLINE

Background

Framework


Evaluation

Conclusion


TechSupportEval: Overview

An automated evaluation framework for technical support QA

TechSupportEval Workflow:

Comparison of TechSupportEval with previous evaluation methods:

Phase 1: ClozeFact

Question:

Server shows permission denied.

I tried connect to a server, but it constantly rejects me with this error: ...

How to resolve this issue?

Reference Document (partial):

- 1. Go to path /etc/xxx
- 2. Run command: echo enable=1 >> conf
- 3. Reboot the instance at /etc/xxx
- 4. Run sql command: update privileges set allow_remote=1 where id=admin

Phase 1: ClozeFact

Question:

Server shows permission denied.

I tried connect to a server, but it constantly rejects me with this error: ...

How to resolve this issue?

Reference Document (partial): Not

- 1. Go to path /etc/xxx
- Retrieved
- -2. Run command: echo enable=1 >> conf
- 3. Reboot the instance at /etc/xxx
- -4. Run sql command: update privileges set allow_remote=1 where id=admin

Solution Response (Generated):

- 1. Reboot the instance at /etc/xxx
- 2. Run sql command: update privileges set allow_remote=1
- 3. Run command: echo enable=1 >> conf

Retrieve

Phase 1: ClozeFact

Evaluation Procedure: Question: Server shows permission denied. 1. Mask Key Terms I tried connect to a server, but it constantly rejects me with this error: ... How to resolve this issue? Reference Document (partial): Not **Phase 1: ClozeFact** Retrieved 1. Go to path /etc/xxx 1. Go to path ① 2. Run command: echo enable=1 >> conf 2. Run command: ② 3. Reboot the instance at /etc/xxx 3. Reboot the instance at ③ -4. Run sql command: update privileges 4. Run sql command: set allow_remote=1 where id=admin **Solution** Response (Generated): 1. Reboot the instance at /etc/xxx 2. Run sql command: update privileges set allow_remote=1 3. Run command: echo enable=1 >> conf Retrieve

Phase 1: ClozeFact

Retrieve

Question:

Server shows permission denied. I tried connect to a server, but it constantly rejects me with this error: ... How to resolve this issue?

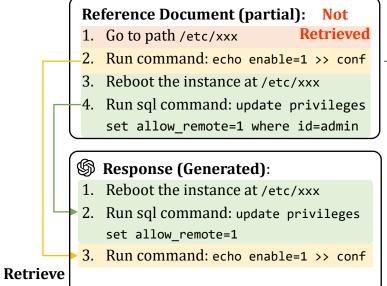
Reference Document (partial): Not

- 1. Go to path /etc/xxx
- Retrieved
- 2. Run command: echo enable=1 >> conf
- 3. Reboot the instance at /etc/xxx
- -4. Run sql command: update privileges set allow_remote=1 where id=admin

Solution Response (Generated):

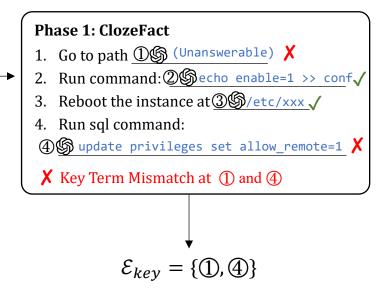
- 1. Reboot the instance at /etc/xxx
- 2. Run sql command: update privileges set allow_remote=1
- 3. Run command: echo enable=1 >> conf

Evaluation Procedure:


- 1. Mask Key Terms
- 2. Fill Blanks (using LLM_{eval})

Phase 1: ClozeFact

- 1. Go to path (Unanswerable)
- 2. Run command: 2 secho enable=1 >> conf
- 3. Reboot the instance at **3 6**/etc/xxx
- 4. Run sql command:


Phase 1: ClozeFact

Question: Server shows permission denied. I tried connect to a server, but it constantly rejects me with this error: ... How to resolve this issue? Reference Document (partial): Not

Evaluation Procedure:

- 1. Mask Key Terms
- 2. Fill Blanks (using LLM_{eval})
- 3. Match Key Terms

Phase 2: StepRestore

Question:

Server shows permission denied.

I tried connect to a server, but it constantly rejects me with this error: ...

How to resolve this issue?

Reference Document (partial): Not

- 1. Go to path /etc/xxx
- Retrieved
- 2. Run command: echo enable=1 >> conf
- 3. Reboot the instance at /etc/xxx
- -4. Run sql command: update privileges set allow_remote=1 where id=admin

Solution Response (Generated):

- 1. Reboot the instance at /etc/xxx
- 2. Run sql command: update privileges set allow_remote=1
- 3. Run command: echo enable=1 >> conf

Retrieve

Phase 2: StepRestore

Question:

Server shows permission denied.

I tried connect to a server, but it constantly rejects me with this error: ...

How to resolve this issue?

Reference Document (partial): Not

- 1. Go to path /etc/xxx Retrieved
- 2. Run command: echo enable=1 >> conf
- 3. Reboot the instance at /etc/xxx
- -4. Run sql command: update privileges set allow_remote=1 where id=admin

Solution Response (Generated):

Retrieve

- 1. Reboot the instance at /etc/xxx
- 2. Run sql command: update privileges set allow_remote=1
- 3. Run command: echo enable=1 >> conf

Evaluation Procedure:

1. Shuffle Steps

Phase 2: StepRestore

- A. Run command: echo enable=1 >> conf
- B. Go to path /etc/xxx
- C. Run sql command: update privileges set allow remote=1 where id=admin
- D. Reboot the instance at /etc/xxx

Phase 2: StepRestore

Question:

Server shows permission denied.

I tried connect to a server, but it constantly rejects me with this error: ...

How to resolve this issue?

Reference Document (partial): Not

- 1. Go to path /etc/xxx
- Retrieved
- 2. Run command: echo enable=1 >> conf
- 3. Reboot the instance at /etc/xxx
- -4. Run sql command: update privileges set allow_remote=1 where id=admin

Solution Response (Generated):

Retrieve

- 1. Reboot the instance at /etc/xxx
- Run sql command: update privileges set allow remote=1
- 3. Run command: echo enable=1 >> conf

Evaluation Procedure:

- 1. Shuffle Steps
- 2. Reorder Steps(using LLM_{eval})

Phase 2: StepRestore

- A. Run command: echo enable=1 >> conf
- B. Go to path /etc/xxx
- C. Run sql command: update privileges set allow remote=1 where id=admin
- D. Reboot the instance at /etc/xxx

Phase 2: StepRestore

Question:

Server shows permission denied.

I tried connect to a server, but it constantly rejects me with this error: ...

How to resolve this issue?

Reference Document (partial): Not

- 1. Go to path /etc/xxx
- Retrieved
- 2. Run command: echo enable=1 >> conf
- 3. Reboot the instance at /etc/xxx
- -4. Run sql command: update privileges set allow remote=1 where id=admin
- **Solution Response (Generated)**:

Retrieve

- 1. Reboot the instance at /etc/xxx
- Run sql command: update privileges set allow remote=1
- 3. Run command: echo enable=1 >> conf

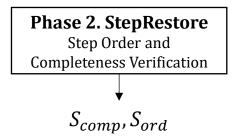
Evaluation Procedure:

- 1. Shuffle Steps
- 2. Reorder Steps(using LLM_{eval})
- 3. Check Order and Completeness

Phase 2: StepRestore

- A. Run command: echo enable=1 >> conf
- B. Go to path /etc/xxx
- C. Run sql command: update privileges set allow remote=1 where id=admin
- D. Reboot the instance at /etc/xxx
- Steps: D C A

X Step Missing: Step 1


X Step Reversal: Step 2, 3, 4

 $S_{comp} = 0$

$$S_{ord} = 0$$

Scoring Strategy

Phase 1.ClozeFact Key Term Matching \mathcal{E}_{key}

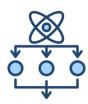
- Strict Scoring (Default in TechSupportEval)
 - Reflects the strict requirement in technical support.
 - Any critical error—including incorrect key terms, missing steps, or wrong step order— would result in a failing score.

$$S = S_{comp} \cdot S_{ord} \cdot [\mathcal{E}_{kev} = \emptyset]$$

- Weighted Scoring (Flexible Alternative)
 - Designed for scenarios with higher tolerance for minor issues.
 - A parameter α balances the impact of different error types.
 - Allows partial score when step order is correct, even if some steps are missing, aligning better with real-world user expectations.

$$S = \alpha \cdot S_{CF} + (1 - \alpha) \cdot S_{SR}$$

$$S_{CF} = 1 - \frac{|\mathcal{E}_{key}|}{|K|}$$


$$S_{SR} = \frac{1}{2}(S_{comp} + S_{ord})$$

Implementation

Evaluation Workflow Management

- Automatically evaluates QA samples using a modular pipeline.
- Standardized process for generating and scoring answers.

Parallel Execution Strategy

- Runs two evaluation phases in parallel per sample.
- Supports sample-level parallelism for faster evaluation.

Unified LLM Interface

- Unified interface for both API-based and local LLMs.
- Built-in adaptive rate control for stable evaluation.

${\bf EvaluateOneSample}(Q,GT,{\bf LLM}_{QA},{\bf LLM}_{eval})$

- 1: $A \leftarrow \text{GenerateAnswer}(Q, \text{LLM}_{QA})$
- 2: in parallel do
- 3: $\mathcal{E}_{kev} \leftarrow \text{ClozeFact}(A, GT, \text{LLM}_{eval})$
- 4: $(S_{comp}, S_{ord}) \leftarrow \text{StepRestore}(A, GT, \text{LLM}_{eval})$
- 5: wait until both modules complete
- 6: $S \leftarrow \text{Scoring}(\mathcal{E}_{kev}, S_{comp}, S_{ord})$
- 7: return S
- 8: **function** ClozeFact(A, GT, LLM_{eval})
- 9: $K \leftarrow \text{ExtractKeyTerms}(GT)$
- 10: $GT' \leftarrow \text{MaskKeyTerms}(GT, K)$
- 11: $A' \leftarrow \text{FillBlanks}(GT', A, \text{LLM}_{eval})$
- 12: $\mathcal{E}_{kev} \leftarrow \text{MatchKeyTerms}(A', K)$
- 13: **return** \mathcal{E}_{kev}
- 14: end function
- 15: **function** StepRestore(A, GT, LLM_{eval})
- 16: $GT'' \leftarrow \text{ShuffleSteps}(GT)$
- 17: $A_{rec} \leftarrow \text{ReorderSteps}(GT'', A, \text{LLM}_{eval})$
- 18: $S_{comp} \leftarrow \text{CheckCompleteness}(A_{rec}, GT)$
- 19: $S_{ord} \leftarrow \text{CheckOrder}(A_{rec}, GT)$
- 20: **return** (S_{comp}, S_{ord})
- 21: end function

OUTLINE

Background

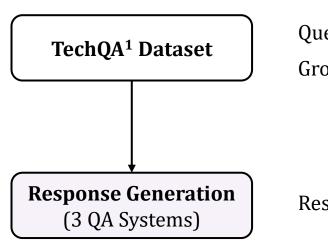
Framework

Evaluation

Conclusion

Dataset

TechQA¹ Dataset


Our Dataset

Question *Q*Ground Truth *GT*

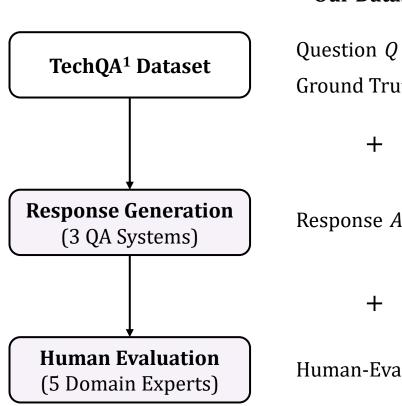
Metric	Value
Number of Questions	282
Avg. Length of Questions	366.48
Avg. Length of Ground Truths	220.87
Avg. Length of Reference Documents	4844.93
Avg. Steps in Ground Truths	2.04
Max. Steps in Ground Truths	14

Stats of the filtered TechQA Dataset

Dataset

Our Dataset

Question *Q*Ground Truth *GT*


+

Response A

Metric	Value
Number of Questions	282
Avg. Length of Questions	366.48
Avg. Length of Ground Truths	220.87
Avg. Length of Reference Documents	4844.93
Avg. Steps in Ground Truths	2.04
Max. Steps in Ground Truths	14

Stats of the filtered TechQA Dataset

Dataset

Our Dataset

Ground Truth GT

+

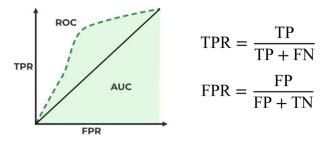
Response *A*

+

Human-Evaluated Score S*

Metric	Value
Number of Questions	282
Avg. Length of Questions	366.48
Avg. Length of Ground Truths	220.87
Avg. Length of Reference Documents	4844.93
Avg. Steps in Ground Truths	2.04
Max. Steps in Ground Truths	14

Stats of the filtered TechQA Dataset


QA System (LLM_{QA})	Accuracy
GPT 40 Mini	0.8440
LLaMA 3 (70B)	0.7092
LLaMA 3 (8B)	0.5284

Human-Evaluated Accuracy $\overline{S^*}$ (of 3 QA Systems)

Effectiveness & Ablation Study

		LLM of Evaluated QA Systems						
Type	Method	GPT 40 Mini		LLaMA 3 (70B)		LLaMA 3 (8B)		
		AUC	Pearson r	AUC	Pearson r	AUC	Pearson r	
	ROUGE-1	0.5321	0.0311	0.5420	0.0648	0.5288	0.0484	
Lexical-based	ROUGE-L	0.5631	0.0872	0.5932	0.1615	0.5752	0.1554	
	BLEU	0.6061	0.1138	0.6252	0.1940	0.6158	0.1959	
Semantic-based	BERTScore	0.6584	0.2243	0.6793	0.2892	0.6894	0.3095	
	LangChain Eval.	0.6608	0.4034	0.6310	0.3525	0.7015	0.4431	
	LlamaIndex Eval.	0.6651	0.3061	0.6849	0.4117	0.7899	0.5131	
LLM-based	RAGAS	0.6728	0.1934	0.6894	0.2730	0.6544	0.2531	
LLWI-based	RAGQuestEval	0.7416	0.3546	0.7205	0.3768	0.6899	0.3380	
	G-Eval	0.8233	0.5192	0.8169	0.5419	0.8532	0.6109	
	RefChecker	0.8348	0.4627	0.8313	0.5493	0.8309	0.5862	
	TECHSUPPORTEVAL	0.9109	0.6616	0.8876	0.7430	0.8970	0.7938	
LLM-based	w/o ClozeFact	0.8486	0.4641	0.8463	0.5752	0.8323	0.5914	
	w/o StepRestore	0.9129	0.5669	0.8517	0.5884	0.8693	0.6635	

AUC (Area Under the ROC Curve)

Pearson r

$$r = \frac{\sum_{i=1}^{N} (s_i - \bar{s})(s_i^* - \bar{s^*})}{\sqrt{\sum_{i=1}^{N} (s_i - \bar{s})^2} \cdot \sqrt{\sum_{i=1}^{N} (s_i^* - \bar{s^*})^2}}$$

Effectiveness & Ablation Study

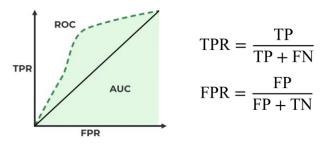
		LLM of Evaluated QA Systems						
Type	Method	GPT 40 Mini		LLaMA 3 (70B)		LLaMA 3 (8B)		
		AUC	Pearson r	AUC	Pearson r	AUC	Pearson r	
	ROUGE-1	0.5321	0.0311	0.5420	0.0648	0.5288	0.0484	
Lexical-based	ROUGE-L	0.5631	0.0872	0.5932	0.1615	0.5752	0.1554	
	BLEU	0.6061	0.1138	0.6252	0.1940	0.6158	0.1959	
Semantic-based	BERTScore	0.6584	0.2243	0.6793	0.2892	0.6894	0.3095	
	LangChain Eval.	0.6608	0.4034	0.6310	0.3525	0.7015	0.4431	
	LlamaIndex Eval.	0.6651	0.3061	0.6849	0.4117	0.7899	0.5131	
LLM-based	RAGAS	0.6728	0.1934	0.6894	0.2730	0.6544	0.2531	
LLIVI-based	RAGQuestEval	0.7416	0.3546	0.7205	0.3768	0.6899	0.3380	
	G-Eval	0.8233	0.5192	0.8169	0.5419	0.8532	0.6109	
	RefChecker	0.8348	0.4627	0.8313	0.5493	0.8309	0.5862	
	TECHSUPPORTEVAL	0.9109	0.6616	0.8876	0.7430	0.8970	0.7938	
LLM-based	w/o ClozeFact	0.8486	0.4641	0.8463	0.5752	0.8323	0.5914	
/	w/o StepRestore	0.9129	0.5669	0.8517	0.5884	0.8693	0.6635	

TPR /

 $FPR = \frac{FP}{FP + TN}$

AUC (Area Under the ROC Curve)

Pearson r


$$r = \frac{\sum_{i=1}^{N} (s_i - \bar{s})(s_i^* - \bar{s^*})}{\sqrt{\sum_{i=1}^{N} (s_i - \bar{s})^2} \cdot \sqrt{\sum_{i=1}^{N} (s_i^* - \bar{s^*})^2}}$$

TechSupportEval significantly **outperforms** all baseline methods in **evaluation accuracy**.

Effectiveness & Ablation Study

		LLM of Evaluated QA Systems						
Type	Method	GPT 40 Mini		LLaMA 3 (70B)		LLaMA 3 (8B)		
		AUC	Pearson r	AUC	Pearson r	AUC	Pearson r	
	ROUGE-1	0.5321	0.0311	0.5420	0.0648	0.5288	0.0484	
Lexical-based	ROUGE-L	0.5631	0.0872	0.5932	0.1615	0.5752	0.1554	
	BLEU	0.6061	0.1138	0.6252	0.1940	0.6158	0.1959	
Semantic-based	BERTScore	0.6584	0.2243	0.6793	0.2892	0.6894	0.3095	
	LangChain Eval.	0.6608	0.4034	0.6310	0.3525	0.7015	0.4431	
	LlamaIndex Eval.	0.6651	0.3061	0.6849	0.4117	0.7899	0.5131	
LLM-based	RAGAS	0.6728	0.1934	0.6894	0.2730	0.6544	0.2531	
LLWI-based	RAGQuestEval	0.7416	0.3546	0.7205	0.3768	0.6899	0.3380	
	G-Eval	0.8233	0.5192	0.8169	0.5419	0.8532	0.6109	
	RefChecker	0.8348	0.4627	0.8313	0.5493	0.8309	0.5862	
	TECHSUPPORTEVAL	0.9109	0.6616	0.8876	0.7430	0.8970	0.7938	
LLM-based	w/o ClozeFact	0.8486	0.4641	0.8463	0.5752	0.8323	0.5914	
/	w/o StepRestore	0.9129	0.5669	0.8517	0.5884	0.8693	0.6635	

AUC (Area Under the ROC Curve)

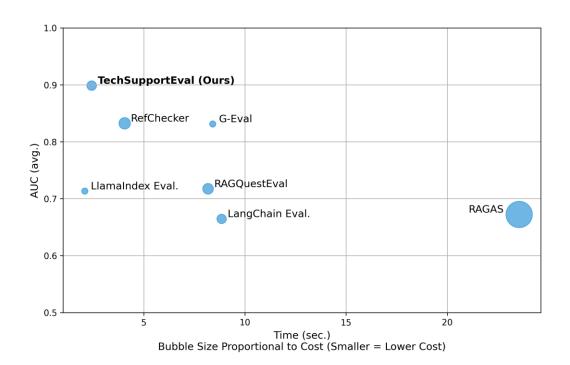
Pearson r

$$r = \frac{\sum_{i=1}^{N} (s_i - \bar{s})(s_i^* - \bar{s^*})}{\sqrt{\sum_{i=1}^{N} (s_i - \bar{s})^2} \cdot \sqrt{\sum_{i=1}^{N} (s_i^* - \bar{s^*})^2}}$$

TechSupportEval significantly **outperforms** all baseline methods in **evaluation accuracy**.

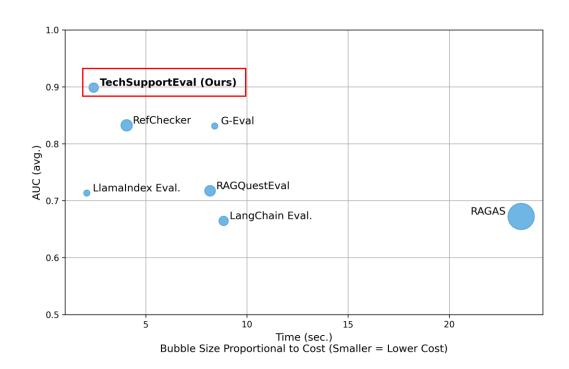
Both ClozeFact and StepRestore **contribute to the overall performance**.

Impact of LLM_{eval}


		LLM of Evaluated QA Systems						
LLM_{eval}	Method	GPT 40 Mini		LLaMA 3 (70B)		LLaMA 3 (8B)		
		AUC	Pearson r	AUC	Pearson r	AUC	Pearson r	
	RAGAS	0.6728	0.1934	0.6544	0.2531	0.6894	0.2730	
GPT 40 Mini	RAGQuestEval	0.7416	0.3546	0.6899	0.3380	0.7205	0.3768	
GFT 40 WIIII	RefChecker	0.8348	0.4627	0.8309	0.5862	0.8313	0.5493	
	TECHSUPPORTEVAL	0.9109	0.6616	0.8970	0.7938	0.8876	0.7430	
	RAGAS	0.7548	0.3489	0.7495	0.4285	0.7301	0.3767	
Claude 3.5 Haiku	RAGQuestEval	0.7368	0.3337	0.7483	0.4319	0.7287	0.4197	
Claude 3.3 Haiku	RefChecker	0.8132	0.4826	0.7704	0.4956	0.7681	0.5391	
	TECHSUPPORTEVAL	0.8651	0.5701	0.8029	0.6083	0.7737	0.5332	
	RAGAS	0.7705	0.3240	0.7579	0.4387	0.7066	0.3303	
LLaMA 3.3 70B	RAGQuestEval	0.7807	0.3881	0.7056	0.3680	0.7394	0.4198	
LLaWA 5.5 /UD	RefChecker	0.8094	0.4533	0.7426	0.4256	0.7471	0.4492	
	TECHSUPPORTEVAL	0.8395	0.5021	0.8237	0.6464	0.7859	0.5538	
	RAGAS	0.5199	0.0146	0.6919	0.3283	0.6017	0.1628	
Owen 2.5 72B	RAGQuestEval	0.7342	0.3193	0.7481	0.4300	0.6746	0.2885	
QWEII 2.3 /2D	RefChecker	0.7951	0.4041	0.7800	0.5033	0.7894	0.5339	
	TECHSUPPORTEVAL	0.8234	0.4954	0.8004	0.6013	0.8080	0.6002	

Impact of LLM_{eval}

LLM_{eval}	Method	GPT 40 Mini		LLaMA 3 (70B)		LLaMA 3 (8B)	
		AUC	Pearson r	AUC	Pearson r	AUC	Pearson r
	RAGAS	0.6728	0.1934	0.6544	0.2531	0.6894	0.2730
GPT 40 Mini	RAGQuestEval	0.7416	0.3546	0.6899	0.3380	0.7205	0.3768
OF 1 40 Milli	RefChecker	0.8348	0.4627	0.8309	0.5862	0.8313	0.5493
	TECHSUPPORTEVAL	0.9109	0.6616	0.8970	0.7938	0.8876	0.7430
	RAGAS	0.7548	0.3489	0.7495	0.4285	0.7301	0.3767
Claude 3.5 Haiku	RAGQuestEval	0.7368	0.3337	0.7483	0.4319	0.7287	0.4197
Claude 3.3 Haiku	RefChecker	0.8132	0.4826	0.7704	0.4956	0.7681	0.5391
	TECHSUPPORTEVAL	0.8651	0.5701	0.8029	0.6083	0.7737	0.5332
	RAGAS	0.7705	0.3240	0.7579	0.4387	0.7066	0.3303
LLaMA 3.3 70B	RAGQuestEval	0.7807	0.3881	0.7056	0.3680	0.7394	0.4198
LLaWA 5.5 /UD	RefChecker	0.8094	0.4533	0.7426	0.4256	0.7471	0.4492
	TECHSUPPORTEVAL	0.8395	0.5021	0.8237	0.6464	0.7859	0.5538
	RAGAS	0.5199	0.0146	0.6919	0.3283	0.6017	0.1628
Owen 2.5.72D	RAGQuestEval	0.7342	0.3193	0.7481	0.4300	0.6746	0.2885
Qwen 2.5 72B	RefChecker	0.7951	0.4041	0.7800	0.5033	0.7894	0.5339
	TECHSUPPORTEVAL	0.8234	0.4954	0.8004	0.6013	0.8080	0.6002


Robust across different backbone LLMs

Efficiency and Cost

Method	AUC (avg.)	Time (sec.)	Cost $(10^{-3}\$)$
LangChain Eval.	0.6644	8.85	0.30
RAGAS	0.6722	23.55	2.37
LlamaIndex Eval.	0.7133	2.09	0.13
RAGQuestEval	0.7173	8.18	0.39
G-Eval	0.8311	8.41	0.13
RefChecker	0.8323	4.06	0.45
TECHSUPPORTEVAL	0.8985	2.43	0.31

Efficiency and Cost

Method	AUC (avg.)	Time (sec.)	Cost $(10^{-3}\$)$
LangChain Eval.	0.6644	8.85	0.30
RAGAS	0.6722	23.55	2.37
LlamaIndex Eval.	0.7133	2.09	0.13
RAGQuestEval	0.7173	8.18	0.39
G-Eval	0.8311	8.41	0.13
RefChecker	0.8323	4.06	0.45
TECHSUPPORTEVAL	0.8985	2.43	0.31

Efficient and **scalable** for large-scale evaluation

OUTLINE

Background

Framework

Evaluation

Conclusion

Conclusion

- We investigate the evaluation of technical support QA and pinpoint three key challenges it presents.
- We propose an LLM-based automated evaluation framework TechSupportEval for technical support QA with two novel techniques, ClozeFact and StepRestore, to address the challenges effectively.
- We **introduce a benchmark dataset** based on the publicly available TechQA dataset. Our approach achieves an **AUC of 0.91**, outperforming the previous state-of-the-art method by **7.6%**. The code and dataset are available at **https://github.com/NetManAIOps/TechSupportEval**.

Conclusion

- We investigate the evaluation of technical support QA and pinpoint three key challenges it presents.
- We propose an LLM-based automated evaluation framework TechSupportEval for technical support QA with two novel techniques, ClozeFact and StepRestore, to address the challenges effectively.
- We **introduce a benchmark dataset** based on the publicly available TechQA dataset. Our approach achieves an **AUC of 0.91**, outperforming the previous state-of-the-art method by **7.6%**. The code and dataset are available at **https://github.com/NetManAIOps/TechSupportEval**.

Conclusion

- We investigate the evaluation of technical support QA and pinpoint three key challenges it presents.
- We propose an LLM-based automated evaluation framework TechSupportEval for technical support QA with two novel techniques, ClozeFact and StepRestore, to address the challenges effectively.
- We **introduce a benchmark dataset** based on the publicly available TechQA dataset. Our approach achieves an **AUC of 0.91**, outperforming the previous state-of-the-art method by **7.6%**. The code and dataset are available at **https://github.com/NetManAIOps/TechSupportEval**.

Thank you!

Presenter: Bohan Chen

IJCNN 2025