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Abstract—Cellular networks are critical infrastructure for user
equipment to access the Internet. Given the spatio-temporal dy-
namics of user distribution and traffic demand, operators adjust
parameters such as transmission power (TP) and cell individual
offset (CIO) to enhance network stability and service quality,
However, predicting the impact of such adjustments is chal-
lenging due to limited historical adjustment data and complex
metric dependencies. We propose PIPCell, a two-phase predictive
framework. In phase one, PIPCell uses a closed-form multiplier
from TP and CIO domain knowledge to calibrate adjustment-
free Workload predictions from pre-trained Transformers. In
phase two, a causal graphical model organizes multiple pre-
trained Transformers to capture inter-metric dependencies and
propagate adjustment effects. Experiments on real-world dataset
from China Mobile show that PIPCell outperforms the best
baseline by up to 25.8% in RMSE and 59.0% in sMAPE,
demonstrating PIPCell’s potential for proactive and data-efficient
cellular network optimization.

Index Terms—cellular network, parameter adjustment, time
series forecasting, causal inference

I. INTRODUCTION

With the ongoing deployment of 5G, cellular networks
have become the fundamental infrastructure for user access
to the Internet, extensively implemented in next-generation
NodeBs (gNBs). Given the spatio-temporal dynamics of user
distribution and traffic demand, ensuring network stability
and service quality is critical to maintaining a satisfactory
user experience. To optimize network performance, operators
typically adjust two key parameters: Transmission Power (TP)
and Cell Individual Offset (CIO) [1]. However, this process
heavily relies on manual expertise and often requires multiple
iterative adjustments to achieve the desired outcomes [2].
Since operators usually do not directly control gNBs, there ex-
ists a feedback delay on the order of hours following parameter
changes, resulting in prolonged intervals between consecutive
adjustments. This significantly increases the overall time cost
of optimization and delays improvements in service qual-
ity, thereby negatively impacting user experience. Therefore,
accurately predicting the impact of parameter adjustments
prior to deployment can effectively reduce the number of

*Mingjie Li is the corresponding author.
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Fig. 1. Time series of the maximum number of RRC connections around an

adjustment from a real-world cell. The dashed vertical line indicates the first
data point with the new transmission power.

required tuning iterations, leading to more efficient network
optimization and improved user satisfaction.

In this work, we develop a predictive framework to estimate
the impact of parameter adjustments (i.e., TP and CIO) on cell
status metrics, with the goal of enabling operators to make
informed decisions prior to real-world deployment. The cell
status metrics, collected from a nationwide cellular network,
are organized into three primary clusters encompassing 17
representative indicators, as summarized in Table I. Notably,
Workload and Quality of Service (QoS) are the most critical for
assessing overall network performance [3], [4]. Interference is
out of a gNB’s control and can also worsen QoS, measured as
the noise level. Specifically, Fig. 1 illustrates an example of
cell parameter adjustment, where the cell’s maximum number
of Radio Resource Control (RRC) connections—a key metric
of Workload—experiences a significant decline after the TP is
reduced by 6dBm. Accurately predicting such metric changes
following parameter adjustments (i.e., the right side of the
vertical line in Fig. 1) is the interest of this work. Although
prior work on traffic prediction [5], [6] and time-series fore-
casting [7] offers valuable insights into network trends, these
methods typically assume static configurations and thus fail to
capture the impact of dynamic cell parameter adjustments—an
essential aspect of our scenario. As illustrated in Fig. 1,
such adjustments can cause abrupt shifts in key metrics,
making standard forecasting ineffective. Moreover, existing
concept drift adaptation techniques [8], [9] mainly focus on
updating models after a shift occurs, neglecting the challenge
of predicting the impact of changes before they happen. These
limitations highlight the need for a novel approach that directly



TABLE I
CLUSTERS OF MONITORING METRICS

Cluster Description Monitoring Metrics

‘Workload The number and behaviors of served UEs. #(RRC connection established), #(E-RAB connection established), PRB downlink /
uplink utilization, maximum #(RRC connection), average #(RRC connection), CCE
utilization in PDCCH

Interference  The strength of irrelevant electromagnetic waves.  average noise level of the uplink PRBs

QoS Quality of Service measurements. drop rate, connection success rate, RRC connection success rate, E-RAB connection

success rate, E-RAB drop rate (QCI=1), E-RAB connection success rate (QCI=1),
handover success rate, VOLTE handover success rate, paging congestion rate

* Abbreviations: RRC (Radio Resource Control), E-RAB (Evolved Radio Access Bearer), PRB (Physical Resource Block), CCE (Control Channel Element),
PDCCH (Physical Downlink Control Channel), QCI (QoS Class Identifier), VOLTE (Voice over LTE).

models the impact of parameter adjustments prior to their
deployment.

Designing such a predictive framework, however, presents
two key challenges due to the unique characteristics of param-
eter adjustment scenarios.

1) Challenge 1: Insufficient data for parameter adjustment
scenarios. Historical data on parameter changes is lim-
ited, hindering the learning of generalizable patterns
for impact prediction. Even when considering only two
common parameters, TP from 0 to 60 dBm with 0.1
dB steps and CIO from minus 24 to 24 dB with
31 options [10], this results in over 18,000 unique
combinations. This vast space far exceeds available
data coverage, not to mention the over 2,000 tunable
parameters per site in 5G networks [1].

2) Challenge 2: Modeling the complex dependencies
among multiple metrics under cell parameter adjust-
ments poses substantial challenges. In real-world scenar-
ios, these dependencies are often dynamic and nonlinear,
and highly sensitive to the system context. Under such
conditions, building accurate and generalizable models
becomes particularly difficult, especially when capturing
the joint behavior of multiple metrics.

To tackle the aforementioned challenges, we propose PIP-
Cell, a two-phase predictive framework that models the effect
of cell parameter adjustments on key metrics. In the first phase,
we generate adjustment-free predictions for Workload and
Interference, followed by calibrating the Workload prediction
through an multiplier that incorporates the effects of parameter
adjustments. In the second phase, we employ a graphical
model to organize multiple Transformers for explicitly mod-
eling inter-metric dependencies, facilitating the propagation
of parameter adjustment effects across other metrics. The
contributions of this work are summarized as follows:

1) To the best of our knowledge, we are the first to
propose a predictive framework that models the impact
of cell parameter adjustments on cellular network time
series. PIPCell enables proactive network optimization
by forecasting how changes to parameters, i.e., TP and
CI0, influence key metrics.

2) To tackle limited parameter adjustment data, PIPCell
derives a closed-form multiplier based on TP and CIO,
to calibrate adjustment-free predictions, reducing depen-
dence on scarce samples. To capture complex dependen-

cies among metrics, PIPCell employs multiple Trans-
formers organized by a graphical model, here causal
parent predictions are embedded into the inputs of each
Transformer to enable effective propagation of parameter
effects.

3) We conduct extensive experiments on real-world dataset
from China Mobile. Results show that PIPCell achieves
notable improvements over competitive baselines—up
to 25.8% and 59.0% gains in RMSE and sMAPE,
respectively.

II. RELATED WORKS

Cellular Traffic Prediction. Early approaches like AB-
SENCE [11] and TOIP [12] model traffic using historical
distributions within fixed time windows, ignoring temporal
dependencies across time steps. Later works focus on near-
future traffic prediction to enable proactive optimization such
as load balancing [13]. Graph-based models [14]-[16] have
become popular for capturing spatial-temporal correlations.
We refer readers to [5] for a comprehensive survey. However,
these methods generally assume a stable system configuration
and fail to account for the impact of parameter adjustments
on cellular traffic.

Time Series Forecasting. Traditional models such as
ARIMA [17] and Prophet [18] rely on decomposition or
linear modeling of recent history. Recent Transformer-based
models [19]-[21] have shown strong performance by learn-
ing long-range dependencies. Similarly, these methods often
assume a stable data generation process without external
interventions [22], which limits their applicability in dynamic
environments involving configuration changes.

Causal Inference. Estimating causal effects from observa-
tional data is challenging, as a single unit cannot undergo
multiple interventions [23]. Tree-based methods like Causal
Forest [24] approximate randomized trials by sample parti-
tioning, but require large datasets and generalize poorly to
unseen cases. Deep learning approaches attempt to model
interventions [25] or latent variables [26], [27], yet often fail
to capture the true data generation process [27]. To mitigate
this issue, PIPCell incorporates domain knowledge to alleviate
the model’s dependence on observational patterns alone.



III. HOMOGENEOUS CELL MODELING
A. Modeling Workload by Area

A gNB typically equips multiple antennas, each covering a
service area referred to as a cell. TP is a fundamental parame-
ter of a cell, with higher power resulting in stronger Reference
Signal Received Power (RSRP). The 3GPP-introduced CIO
adjusts the effective RSRP in handover decisions by offsetting
RSRP values to achieve load balancing [10]. According to the
3GPP standard, a UE tends to select cell ¢ if:

RSRP; + CIO;s > RSRP; + CIOs_: + Hys (1)

where Hys is a hysteresis parameter designed to reduce
frequent handovers at cell edges. Consequently, TP and CIO
jointly influence UEs handover behavior and define cell bound-
ary dynamics.

Due to the non-uniform distribution of UEs and the un-
availability of detailed trajectory data for privacy reasons, we
propose a trajectory-free model with a trade-off in accuracy.
We assume that the average usage density of UEs at the
cell edge is consistent with that of the entire cell. Based on
this, we approximate Workload changes using Fhe ratio of
service area before and after adjustment, i.e., % enabling
adjustment-free time series forecasting to infer the impact on
other performance metrics.

B. Cell Boundary Determination

To compute the cell area, it is necessary to define its
boundary. Due to the hysteresis parameter Hys in (1), the
boundary becomes a band with width. To achieve a precise
boundary definition, we introduce a virtual boundary where the
number of UEs connected to other cells inside the band equals
those connected to the target cell outside, thereby factoring out
the influence of Hys. This virtual boundary satisfies (2).

RSRP;, + CIO;s = RSRP; + CIO;_; 2)

Since neighboring cells collectively affect the boundary,
we fix their parameters to be identical, allowing controlled
analysis of the target cell’s influence. When TP increases from
7 to 7+ 6§ dBm and CIO changes from o to o + §, dB,
the received RSRP at the UE becomes le?, = [BPgr, where
B = 100-1(0+%) Here, 5 denotes the TP ratio between the tar-
get cell and its neighbors. Since electromagnetic wave power
decays quadratically with distance, the coordinates (z,y)
of a UE on the virtual boundary between two neighboring
omnidirectional cells satisfy (3) based on (2), where P denotes
the initial 7P and R the inter-site distance. When (§ # 1, the
boundary corresponds to an arc on the Apollonius circle [28].
Fig. 2 illustrates the boundary between two omnidirectional
cells under 8 < 1. As for sectored cells, we treat the border
between two neighboring cells of the same gNB as a ray
starting from the gNB.
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Fig. 2. Two omnidirectional cells. As A’s TP changes from 7 dBm to 7+ §
dBm and its CIO changes from o dB to o + d, dB, a UE connected to A
will observe a change in the offset RSRP from Pg to P, = BPg, where
B = 100-1(5+%) With 3 < 1, A’s boundary shrinks to the dotted circle.

C. Parameters Change as a Multiplier

Let v denote the central angle of the shaded circular arc,
satisfying (4). The shaded area is then computed using (5):
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The angle 6 depends on gNB deployment, while 5 is de-
rived from parameter adjustments. We calculate the ratio
of areas after and before the adjustment: «(8 | 0) =
Sshaded/ (3R*tan ). For 8 > 1, we use symmetry: a(f |
) = 2 -« %\9) The complete expression is shown

in (6), and we use a(f | 0) to scale the predicted Workload:
W~ Wa(3]0).
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IV. PIPCELL

A. Overview

We propose PIPCell, a framework built on a homogeneous
cell model to capture the effects of parameter adjustments on
multiple performance metrics in cellular networks. As shown
in Fig. 3, PIPCell is first pretrained on adjustment-free data
to learn fundamental time-series forecasting. During inference,
it operates in two stages: adjusting and propagating. In the
adjusting stage, PIPCell predicts adjustment-free Workload
and Interference, and then refines the Workload prediction
via the Homogeneous Cell Parameter Effect Predictor (HC-
PEP), alleviating the scarcity of adjustment data. In the
propagating stage, PIPCell leverages Graphical Transformers
(GT), where multiple Transformers are organized according
to a dependency graph. Each Transformer conditions on par-
ent predictions, enabling parameter-effect propagation across
metrics and modeling the intricate dependencies introduced by
parameter adjustments.
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B. Pretraining

We adopt the Transformer architecture as the core predic-
tion module, given its effectiveness in modeling long-range
dependencies and complex temporal patterns in multivariate
time series [19], [20], [29]. Multiple Transformers, each as-
sociated with a cluster of monitoring metrics, are pretrained
on adjustment-free data to acquire fundamental forecasting
capabilities. To enhance generalization, we leverage multi-
task learning [30] by jointly optimizing time series forecasting
and masked reconstruction. For forecasting, each Transformer
predicts future values from historical inputs x*=1, ... x!~1!
with mean squared error (MSE) loss. For reconstruction,
inspired by masked autoencoders [31], [32], we randomly
mask parts of the input sequence and train the model to recover
the masked values using MSE. The final objective sums both
losses ((7)), where N, S, and d denote sample size, sequence
length, and number of metrics, and w; ;j indicates missing
values (0 if missing, 1 otherwise).
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C. Adjusting

Based on Section III, we integrate the closed-form func-
tion a(B | 6) into the Homogeneous Cell Parameter Effect
Predictor (HC-PEP) module to explicitly model the impact
of TP and CIO adjustments on Workload. As depicted in
Fig. 3, following the Transformer’s generation of adjustment-
free Workload and Interference predictions, HC-PEP serves
as a multiplier that scales the Workload prediction, thereby
effectively incorporating the impact of parameter adjustments.

D. Propagating

We argue that parameter adjustments also indirectly af-
fect metrics in other clusters beyond the Workload cluster,
as shown in Fig. 4. To enable structured propagation of
these effects, PIPCell employs a graphical model to organize
multiple Transformers, referred to as Graphical Transformers
(GT). After HC-PEP calibrates the Workload prediction to
capture the direct effects of parameter changes, the metrics
in each remaining cluster are predicted using a dedicated
Transformer, which takes as input the historical data of the
cluster and the prediction of its parent cluster—defined as the
most causally relevant upstream component in the dependency
graph. This design allows parameter effects to flow through
the graph, influencing downstream metrics in a controlled
and interpretable manner. Furthermore, the explicit graphical
structure helps the GT avoid attending to spuriously correlated
variables, thus improving learning efficiency. For example,
Interference prediction is correctly modeled as independent
of Workload, a constraint directly encoded in the graph.

V. EXPERIMENTS

In this section, we evaluate the performance of PIPCell
using a dataset collected by China Mobile, a nationwide
cellular service provider. We aim to answer the following
research questions (RQs):

RQ1: How does the performance of PIPCell compare to the
baseline methods?

RQ2: Does each component of PIPCell contribute to its
performance?

RQ3: How well does PIPCell generalize to cells in a different
geographical region?

A. Experimental Setup

1) Datasets: We use a real-world dataset from China Mo-
bile to evaluate different methods, denoted as D. This dataset
was collected from August 11th to 30th in 2022, including
1,045 times of cell parameter adjustments with distinct cells in
the same geographical region. There are, on average, 628 data
points per case before an adjustment. The sampling interval is
15 minutes. We select 17 monitoring metrics from 3 clusters
shown in Table 1.

2) Baseline methods and evaluation metrics: We employ
a well-known machine learning model, GBRT [33], and two
causal effect estimation methods, VCNet [25] and S-Intact-
VAE [27], as baselines. The historical sequence serves as co-
variates, while the future time series represents causal effects.
Prediction quality is evaluated for each monitoring metric
individually using the original values prior to preprocessing,
with root mean squared error (RMSE) and symmetric mean
absolute percentage error (SMAPE) as evaluation metrics [5].
We randomly split the data into 50% for testing and 50% for
training, repeating the process 10 times for robustness. The
prediction horizon is one day (96 time steps), and we use
the preceding 96 time steps as input to capture daily periodic
patterns. Metrics are averaged over test cases within each trial,
and the final results are reported as the mean across all trials.



TABLE II
PERFORMANCE EVALUATION OF PIPCELL AND BASELINE
METHODS ON D, AVERAGED AMONG MONITORING METRICS.

Relative RMSE Relative SMAPE

Method mean (std)  p-value mean (std)  p-value
GBRT 1.347(0.80)  0.007°  2.440(2.69)  0.000"
VCNet 6.739(9.53)  0.000°  5.220(11.5)  0.000"
B-Intact-VAE ~ 4.996(10.3)  0.002"  11.693(37.5)  0.000"
PIPCell 1.000(0.00) / 1.000(0.00) /

* statistically significant as p < 0.05
B. PIPCell vs. Baseline Methods (RQI)

Table II presents a comprehensive comparison between
PIPCell and three baseline methods: GBRT [33], VCNet [25],
and (-Intact-VAE [27]. The results demonstrate that PIPCell
consistently outperforms all baselines in terms of both RMSE
and sMAPE, achieving improvements of 25.8% and 59.0%,
respectively. Notably, although GBRT is a traditional machine
learning approach, it surpasses the two deep learning-based
methods, a phenomenon also observed in prior studies [7],
[33]. PIPCell further advances performance beyond GBRT,
primarily benefiting from the fine-grained modeling enabled
by GT and HC-PEP.

To assess the statistical significance of the observed im-
provements, we conduct Wilcoxon signed-rank tests on the
hypotheses that the relative RMSE (or sMAPE) is greater than
1, i.e., that PIPCell achieves lower RMSE (or SMAPE) than
a given baseline. The corresponding p-values are reported in
Table II. Overall, the results confirm that PIPCell achieves
statistically improvements over GBRT, VCNet, and (-Intact-
VAE on both evaluation metrics, demonstrating its robustness
and effectiveness across diverse monitoring scenarios.

C. Contribution of Key Components (RQ2)

We perform ablation studies to quantify the contributions
of key components in PIPCell. As HC-PEP is specifically
designed for Workload prediction, the graph-based model is
essential for propagating the effect of parameter adjustments
from the Workload to other metrics. Therefore, we keep the
graph structure in all variants. Based on this design constraint,
we focus our evaluation on two core components: (1) the HC-
PEP multiplier and (2) the Transformer-based predictor. To
this end, we construct five ablated variants of PIPCell: Al:
Replace HC-PEP with the Multiplier module, which learns
Workload adjustment ratios in a data-driven manner using
GRU [34]-extracted historical features to model unobserved
usage density. A2: Replace HC-PEP with VCNet. To assess
the effect of the Transformer, we further substitute it with three
architectures: B1: Replace the Transformer with GBRT. B2:
Replace the Transformer with NLinear [7]. B3: Replace the
Transformer with Autoformer [19].

1) Effect of HC-PEP: As shown in Table III, our method
outperforms both the Multiplier-based (A1) and VCNet-based
(A2) variants, demonstrating the effectiveness of HC-PEP.
Compared to VCNet, HC-PEP improves RMSE and sMAPE
by 38.3% and 50.1%, respectively. While Multiplier adopts a
similar core idea as HC-PEP, it relies solely on data-driven

TABLE III
PERFORMANCE EVALUATION OF PIPCELL’S VARIANTS ON D,
AVERAGED AMONG MONITORING METRICS.

Relative RMSE Relative SMAPE

Variant mean (std)  p-value mean (std)  p-value

PIPCell 1.000(0.00) / 1.000(0.00) /
Al 0.973(0.26)  0.189 1.409(0.89)  0.001"
A2 1.621(0.99)  0.003"  2.005(1.34)  0.000"
Bl 1.458(1.33)  0.013°  2.007(1.80)  0.000°
B2 5219(13.7)  0.004"  13.400(44.9)  0.000"
B3 16.179(49.8)  0.001"  36.496(133.)  0.000"

* statistically significant as p < 0.05
TABLE IV

PERFORMANCE EVALUATION OF PIPCELL AND BASELINE METHODS
IN ANOTHER REGION, AVERAGED AMONG MONITORING METRICS.

Relative RMSE Relative SMAPE

Method

mean (std)  p-value mean (std)  p-value
GBRT 1.665(0.76) 0.001" 3.294(7.88) 0.002"
VCNet 7.523(14.5) 0.000"  10.313(19.7) 0.000"
B-Intact-VAE  7.259(10.7) 0.000"  14.127(27.6) 0.000"
PIPCell 1.000(0.00) / 1.000(0.00) /

* statistically significant as p < 0.05

learning. In contrast, HC-PEP integrates domain knowledge,
achieving a lower SMAPE and competitive RMSE, thereby
highlighting the benefit of domain-informed design.

2) Effect of Transformer: To evaluate the effect of the
Transformer in PIPCell, we compare it against three alter-
native variants: B1, B2, and B3. As shown in Table III,
replacing the Transformer with GBRT (B1) and NLinear
(B2) leads to performance degradation, demonstrating the
superiority of the Transformer in time series forecasting within
PIPCell. Although Autoformer [19] enhances the Transformer
by incorporating time series decomposition, the variant using
Autoformer (B3) still underperforms the original PIPCell. This
can be attributed to the poor smoothness and weak periodicity
inherent in cellular traffic data, as illustrated in Fig. 1. More-
over, for series that remain near zero for extended periods
(e.g., packet loss and congestion rates in D), decomposition
may introduce biased trend components, further impairing
forecasting accuracy.

D. Generalization for Cells in Another Region (RQ3)

Due to variations in deployment scale and user density
across regions, gNB performance metrics exhibit distinct
temporal dynamics. To evaluate PIPCell ’s cross-region gen-
eralization, we collected 60 test cases from a geographical
area different from dataset D. All models were trained solely
on D and tested on these cases. As shown in Table 1V,
PIPCell consistently outperforms baselines in RMSE and
SMAPE, demonstrating strong robustness and generalizability.
We further illustrate a representative case on predicting the
maximum number of RRC connections (Fig. 5). After TP
decreased from 18.2 dBm to 12.2 dBm (vertical dashed line),
the GT model, pretrained only on adjustment-free data, failed
to capture the parameter change and persistently overesti-
mated. In contrast, by applying the HC-PEP multiplier for
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Fig. 5. The maximum number of RRC connections in a real-world case

dynamic correction, PIPCell adapts effectively to parameter
adjustments and significantly improves accuracy. Compared
with the strongest baseline (GBRT), PIPCell more faithfully
tracks post-adjustment metric variations.

VI. CONCLUSION

We propose PIPCell, a two-phase framework for predicting
the impact of cell parameter changes on time series of key
performance metrics. In the first phase, PIPCell produces
adjustment-free predictions of Workload and Interference, then
refines Workload via the Homogeneous Cell Parameter Effect
Predictor. In the second phase, a causal graphical model
organizes multiple Transformers to capture inter-metric de-
pendencies and propagate adjustment effects. Experiments on
real-world datasets demonstrate that PIPCell reduces RMSE
by up to 25.8% over the strongest baseline. Ablation studies
highlight the contribution of each component, and cross-region
evaluations confirm its generalization ability.
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