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Abstract—Effective incident management in large-scale mi-
croservice systems demands both accurate anomaly detection
(AD) and precise root cause localization (RCL) across heteroge-
neous data modalities. However, existing approaches often treat
these tasks in isolation, resulting in redundant maintenance,
delayed response, and the absence of shared diagnostic context.
While recent efforts have explored unified frameworks to support
both tasks, these approaches often suffer from high false-
alarm rates due to cross-modal interference. To address these
issues, we propose DeST , an unsupervised decoupled spatio-
temporal framework that jointly performs anomaly detection
and root cause localization. DeST proposes a multi-stage fusion
strategy that decouples temporal and spatial feature learning to
mitigate cross-modal interference and prevent cross-modal inter-
ference. Furthermore, it incorporates task-specific modal routing
to direct learned representations to different tasks, enhancing
both detection and localization accuracy. To ensure robustness
against transient noise, DeST designs a Differential Multi-Scale
Convolutional Network (DMCN) for noise-resistant temporal
feature representation. We evaluate DeST on two real-world
microservice benchmarks, where it achieves a perfect F1-score
of 1.00 for anomaly detection and outperforms existing methods
in root cause localization accuracy. Ablation studies highlight
the effectiveness of key components. Our unified framework
reduces false alarms in anomaly detection and streamlines root
cause localization, providing a robust and practical solution for
microservice incident management.

Index Terms—Microservice System, Anomaly Detection, Root
Cause Localization, Spatio-Temporal Model

I. INTRODUCTION

Microservice architectures have become foundational to
modern digital infrastructures due to their scalability, agility,
and modularity. However, as these systems scale to encompass
thousands of loosely coupled components, failure is inevitable,
leading to significant operational overhead and financial losses.
Recent large-scale service outages at major cloud providers
such as Microsoft [1], Google [2], and Alibaba Cloud [3] high-
light the critical need for efficient incident management for
microservice systems. Figure 1 shows a typical microservice
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Fig. 1: The hierarchical structure of a microservice system: the system
consists of interacting services, deployed on interconnected nodes,
each node containing multi-dimensional metrics

management process, where a microservice system consists
of various interconnected services deployed across multiple
nodes. These components generate vast amounts of operational
data, including metrics [4], [5], logs [6], [7], and traces [8]-
[10], which are utilized by Site Reliability Engineers (SREs)
to support anomaly detection (AD) and root cause localization
(RCL). To ensure system reliability, SREs must continuously
monitor and analyze high-dimensional multimodal data to
detect anomalies in real time. When an anomaly occurs,
operators need to quickly identify the root cause to mitigate
the incident. This process is often time-consuming and labor-
intensive. As a result, there is a growing demand for integrat-
ing Al technologies into microservice incident management.

Current approaches to intelligent microservice incident
management can be broadly categorized into two paradigms.
The first adopts separate models for anomaly detection and
root cause localization. Anomaly detection is typically per-
formed using univariate or multivariate time series anomaly
detection methods [12], [13]. While root cause localization
relies on specialized algorithms, such as [14]. However, this
decoupled architecture suffers from knowledge isolation be-
tween components, redundant maintenance overhead, and de-



layed response with the absence of shared diagnostic context.
The second paradigm focuses on an all-in-one strategy, which
integrates anomaly detection and root cause localization into
a unified framework. Representative works include ART [15]
and Erdao [16]. Although Erdao achieves good performance
via supervised learning, its reliance on labeled fault data
hinders its applicability in real-world production environments,
where such labels are scarce [8]. In contrast, ART adopts an
unsupervised approach that sequentially models channel, tem-
poral dependency, and call dependency, followed by deviation
analysis for anomaly detection and root cause localization.
However, empirical results show that ART suffers from high
false-alarm rates (details in Section II-A). In this context, our
goal is to propose an efficient unsupervised framework that can
Jjointly perform anomaly detection and root cause localization
for microservice incident management. To achieve this goal,
it mainly has the following three challenges:

o How to build an efficient multimodal model with
less cross-modal interference? Microservice systems
generate multimodal data, including metrics, logs, and
traces, as shown in Figure 1. These modalities exhibit
both correlations and specificities. Existing methods, such
as ART [15] and Eadro [16], adopt monolithic fusion
strategies that indiscriminately combine modalities, often
leading to cross-modal interference and elevated false-
alarm rates (Section II-A). Effectively modeling inter-
dependencies among modalities while mitigating cross-
modal interference to reduce cross-modal interference
remains a significant challenge.

« How can task-relevant knowledge be selectively routed
to downstream modules? Current methods propagate
fused knowledge indiscriminately to downstream tasks,
resulting in a task-knowledge mismatch that degrades
both anomaly detection precision and root cause lo-
calization accuracy. Specifically, anomaly detection pri-
marily relies on system-level temporal patterns, and the
inclusion of irrelevant spatial information can hinder its
effectiveness. In contrast, root cause localization depends
on fine-grained spatial relationships across services. This
conflict highlights the need for a principled task-specific
modal routing mechanism, which is absent in current
frameworks.

o How to efficiently model time-series data with tran-
sient noise? Time-series data serve as the primary
input for incident management, encompassing service-
level KPIs and node-level metrics. Logs can also be trans-
formed into time-series representations, enabling effective
multimodal fusion [15]. However, these time-series data
in microservices often contain noise due to workload fluc-
tuations and inherent randomness in distributed systems,
posing major challenges for reliable temporal modeling.
Existing methods lack robustness against such noise,
resulting in frequent false alarms (details in Section
II-C). This highlights the need for temporal representation
techniques that are both expressive and resilient to noise.

In this paper, we propose DeST , an unsupervised DE-
coupled Spatio-Temporal framework that can jointly perform
anomaly detection and root cause localization through three
key innovations. (1) To address challenge one, DeST proposes
a Multi-Stage Fusion Strategy. DeST processes multimodal
data through two dedicated pathways: Temporal Fusion for
noise-resilient temporal pattern learning, and Spatial Fusion
for capturing instance-level dependencies. Specifically, raw
KPIs, logs, and traces are transformed into time-series se-
quences and instance dependency graphs to enable effective
multimodal fusion. (2) To address challenge two, DeST utilizes
a Task-specific Modal Routing mechanism. It routes system-
level temporal patterns to the anomaly detection task, while
directing instance-level spatial relationships to the root cause
localization task, thereby avoiding task-knowledge mismatch
and enhancing performance. (3) To address challenge three,
DeST design a novel Differential Multi-Scale Convolutional
Network (DMCN) for microservice time-series data model-
ing. It combines multiscale differential operators to suppress
observational noise while preserving critical temporal patterns.
Temporal features are aggregated at the system level for
anomaly detection via adaptive thresholding. When anomalies
are detected, the spatial fusion stage activates to analyze
instance-level causality using graph attention networks over
call graphs, with a contrastive aggregation mechanism com-
paring system-level and instance-level embeddings via cosine
similarity to pinpoint root causes. Extensive experiments on
industrial-grade datasets validate the effectiveness of DeST .
It achieves a perfect anomaly detection Fl-score of 1.00 on
both DI (46 instances) and D2 (18 instances), outperforming
the previous state-of-the-art ART by 6.2% on DI (from 0.942
to 1.00) and 9.0% on D2 (from 0.917 to 1.00). Moreover, the
total time cost for DeST ’s AD and RCL also outperforms the
baseline and remains under one minute.

The main contributions of this work are as follows:

o We conducted a comprehensive empirical study on the
performance of existing multimodal models in incident
management, revealing three key limitations: cross-modal
interference, task—knowledge mismatch in downstream
tasks, and sensitivity to transient noise in microservice
time series modeling, each contributing to high false
alarm rates and suboptimal incident management perfor-
mance.

e We are the first to propose an unsupervised decou-
pled spatio-temporal framework for microservice inci-
dent management, achieving state-of-the-art performance
in both anomaly detection (AD) and root cause lo-
calization (RCL) tasks. DeST proposed three novel
techniques: multi-stage fusion strategy and task-specific
modal routing mechanism, noise-resistant time series
modeling(DMCN), significantly enhancing the perfor-
mance of both anomaly detection (AD) and root cause
localization (RCL). To facilitate reproducibility and fur-
ther research, we have released our source codes at
https://github.com/CSTCloudOps/DeST
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o As the novel time-series modeling approach in DeST ,
DMCN is a lightweight, noise-resilient architecture that
employs differential convolution to effectively capture
multi-scale temporal patterns in microservice environ-
ments. It also demonstrates strong generalization and
achieves a new state-of-the-art on the AIOps dataset in
EASYTSAD benchmark [17], which includes widely
used univariate time-series anomaly detection datasets’.

II. MOTIVATION

This section elaborates on the design principles of our
framework by exploring three key topics: 1) How effective
are existing multimodal fusion frameworks in microservice
incident management? 2) How to elegantly fuse and share
multimodal data? 3) How to perform temporal modeling
efficiently in microservice scenarios? The first topic aims to
investigate the limitations of current multimodal fusion frame-
works in modeling microservice multimodal data through an
empirical study. The second topic provides guidance on how
to extract correlations from multimodal data while preserving
the specificity of knowledge, and how to elegantly share this
knowledge after unified modeling. The third topic discusses
time series features in microservice environments and the
consideration for enabling efficient time-series modeling.

A. How effective are existing multimodal fusion frameworks
in microservice incident management?

Modern microservice systems generate heterogeneous op-
erational data streams (metrics, logs, traces), as shown in
Figure 1. Current multimodal fusion frameworks typically
adopt an all-in-one strategy for knowledge sharing (as shown
in Figure 3), where all metrics and dependency graphs are
input into models to generate unified representations. Through
unsupervised contrastive learning, these frameworks attempt
to reconstruct normal temporal-spatial patterns for anomaly
detection and root cause localization. The all-in-one strategy
enables models to learn temporal-spatial feature interactions,
predicting future representations based on historical data.
However, using redundant knowledge for downstream task
modeling not only increases model complexity, leading to
higher computational overhead, but can also cause cross-modal
interference, thereby decreasing model effectiveness. Taking
the ART method ( use all-in-one strategy) as an example, our
analysis of Dataset DI reveals a key issue in this paradigm.
As shown in Figure 3, instances with constant zero values are
still predicted with false fluctuations, learned from neighboring
nodes through the model’s topological connections. These
erroneous fluctuations, induced by the all-in-one strategy,
propagate anomalies through dependency edges, significantly
increasing the model’s false alarms.

The all-in-one strategy forces instances to inherit fluctua-
tions from adjacent nodes through topological feature fusion,
resulting in cascading error propagation during anomaly de-
tection. By fusing metric and topological features of the mi-
croservice system within the model, the graph-based modeling

Uhttps://adeval.cstcloud.cn/

captures explicit inter-instance relationships through channel
dependencies. Our empirical measurements reveal heteroge-
neous correlation distributions of instances across different
channels. We calculated inter-instance correlations across three
channels in dataset DI/ in Figure 4, channel-specific de-
pendency patterns exhibit significant variance across service
channels. High correlation coefficients (p > 0.8) in Channel
1 correspond to low correlations (p < 0.2) in Channels 2-
3. This observation indicates that all-in-one modeling of all
channel dependencies compels the model to learn spurious
correlations, ultimately increasing the false alarm of anomaly
detection.

B. How to elegantly fuse and share multimodal data?

In Section II-A, our empirical analysis reveals that in-
discriminate fusion of multimodal microservice data induces
spurious fluctuation modeling, elevating false alarm rates in
anomaly detection. This phenomenon stems from conflicting
requirements between two fundamental aspects of incident
management. /) Temporal Feature Learning: Focuses on cap-
turing metric-specific evolutionary patterns through normal
operational data. Training on historical temporal sequences
enables models to learn channel-specific fluctuation signatures
(e.g., stable variations in disk usage vs. volatile patterns in
CPU utilization) and intrinsic metric periodicity reflecting
service-specific operational rhythms. 2) Topological Feature
Learning: Encodes spatial dependencies between microservice
instances through structural propagation patterns of anomalies
across service call graphs, where proximal instances exhibit
elevated anomaly scores during failures, while distal nodes
maintain normal operation.

The dilemma in multimodal fusion: Anomaly detection
demands precise temporal modeling to minimize false posi-
tives, yet spatial feature incorporation introduces cross-modal
interference. Conversely, root cause localization requires joint
spatiotemporal modeling to trace anomaly propagation path-
ways. To resolve this dichotomy, we propose a multi-stage
Fusion architecture with Task-Specific Routing (Figure 2).
Stage 1: Temporal Fusion, focuses on metric-specific temporal
pattern learning for anomaly detection while preserving non-
spatial knowledge. The temporal features are utilized for
anomaly detection and serve as input for the spatial fusion
in spatial fusion when an anomaly occurs. Stage 2: Spatial
Fusion, learns call-relationship patterns from invocation data
exclusively for root cause localization. This staged decoupling
prevents spatial feature interference during anomaly detection
while enabling systematic diagnosis through controlled knowl-
edge integration.

C. How to perform temporal modeling efficiently in microser-
vice scenarios?

In a microservice system, time series information reflects
the important operational status of services. However, there
is a large amount of natural noise in the time series of
microservice systems [17]. For example, sudden traffic spikes
from specific user groups or transient resource contention
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Fig. 2: The left side shows the traditional all-in-one fusion strategy, where all multimodal data is combined at once. The right side shows
a multi-stage fusion strategy proposed by us, where data is fused step by step to share useful knowledge for different downstream tasks of

microservice incident management.
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Fig. 3: The false alarm in instance 5, where its modeling time series
is influenced by the surrounding instance under the all-in-one fusion
strategy adopted by ART.

across distributed nodes can induce short-term fluctuations
that resemble anomalies. Current temporal modeling meth-
ods, designed for stationary or periodic patterns, struggle to
distinguish genuine anomalies from noise in such dynamic
environments. Moreover, existing approaches often employ
overly complex architectures to model temporal dependencies
and lack explicit mechanisms to suppress noise, inadvertently
amplifying noise and leading to high false positive rates. For
instance, transformer-based models [18] utilize multi-head at-
tention to model long-range dependencies, yet their sensitivity
to minor metric variations exacerbates overfitting. Similarly,
hybrid architectures [19], [20] often conflate transient noise
with genuine anomalies due to redundant parameterization. As
shown in Figure 5, state-of-the-art models misclassify noise-
induced fluctuations as anomalies, undermining reliability in
real-world deployments.

To address this issue, we propose Differential Temporal
Convolution, a lightweight yet robust architecture tailored
for microservice temporal modeling. Differential Temporal
Convolution addresses these limitations through differential
noise suppression and multi-scale convolution learning. Dif-
ferential noise suppression computes 1st-order temporal dif-
ferences AX; = X; — X;_1 to amplify sustained trends
while attenuating transient noise. Then multi-scale convolution

processes AX through parallel convolution streams including
fine-grained kernels to learn local anomaly detection and
coarse-grained kernels to direct long-term trend modeling. Full
connection fusion of multi-scale features enables robust pattern
recognition while maintaining computational efficiency critical
for large-scale microservice deployments.

III. PRELIMINARY

This section formalizes the mathematical foundation for
joint anomaly detection (AD) and root cause localization
(RCL) in microservice systems, establishing key definitions
and task-specific modal routing principles.

A. Problem Formulation

A microservice system comprises microservice instances -
deployable units executing specific functionalities (e.g., pro-
cessing user requests). These instances communicate through
predefined protocols, forming a dynamic topological structure.
Each instance generates three modalities of observability data:

KPI: Structured multivariate time series Xr(;éfr)ic € R
capturing performance indicators (CPU usage, memory con-
sumption) sampled at fixed intervals, representing real-time
operational states.

Log: Semi-structured textual records aggregated into tem-
poral frequency sequences through sliding window processing,
formally represented as X,((f’t) € R,

Traces: Directed acyclic graphs (DAGs) recording request
execution paths and service dependencies, with each snapshot
Xt(fafg € R% containing latency measurements and parent-
child relationships. The System Behavior Graph (SBG) is
defined as G = (V, E, F) where: V is a set of all microservice
instances, E includes directed edges (v;,v;) representing
actual service invocations and F' represents latent features
derived from multimodal observations. In addition, traces
come with RTT, duration, and other information, represented
as Xffdfg € R% through sliding window.

Given a microservice system with N instances, let X =
{Xmetrics Xiog, Xirace } denote multimodal data collected over T'
timesteps. The joint state of instance ¢ at time ¢ is represented
as: X0 = XD metric | XODlog | X(5Y) € RF, k =
Cy + Cs + C3, with\/ (4, t) denoting its topological neighbor-
hood derived from trace graphs. Our framework addresses two
interdependent tasks:
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Fig. 5: Anomaly detection case study in microservice time series
monitoring. The original time series is the first blue curve, with pink-
shaded regions indicating expert-labeled anomaly intervals. Black
curves represent the anomaly scores generated by different detection
methods using temporal modeling.

Anomaly Detection (AD): Calculate a system-level
anomaly score and judge y; € {0,1} indicating whether the
system is abnormal at time ¢.

Root Cause Localization (RCL): If y; = 1, output a ranked
list P, = [p1,...,pn] € [0,1]N, where p; represents the
likelihood of instance ¢ being the root cause.

B. Design Principles

Our architectural design is governed by two complementary
principles derived from the unique characteristics of microser-
vice multimodal data:

Anomaly Detection Principle: The AD task requires ro-
bust temporal modeling to distinguish normal and abnormal
system states. As established in Section II, microservice time
series exhibit two critical characteristics: (1) inherent noise in
individual instance measurements, and (2) noise amplification

shipping

recommendation

currency

payment

Fig. 6: The architecture of the fault injection system, where red nodes
represent the nodes that inject network anomalies and blue nodes
represent their adjacent nodes.

through spatial message passing in conventional graph neural
networks. This dual noise effect leads to overfitting and
excessive false alarms. Our design addresses these challenges
through two key mechanisms:

e Multi-Stage Fusion: We decouple temporal modeling
from service dependencies during feature extraction, pre-
venting noise propagation through the call graph. This
isolation creates a protected temporal subspace where
instance-level patterns can be learned without cross-
modal interference from neighboring nodes.

o Differential Convolution: Applied exclusively to the tem-
poral domain, this operation enhances noise resilience
through differential operation. This suppresses high-
frequency noise while preserving abrupt anomaly signa-
tures.

Root Cause Localization Principle: While spatial mod-
eling is intentionally suppressed during anomaly detection to
prevent noise propagation, our systematic analysis reveals its
critical role in root cause analysis. To validate this hypoth-
esis, we conduct a controlled experiment on the system?, a
deployed e-commerce platform comprising 10+ interdependent
microservices shown in Figure 6. First and foremost, the
experimental does fault Injection into microservices’ pods by

Zhttps://github.com/GoogleCloudPlatform/microservices-demo
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chaosmesh®. We inject a network attack targeting the currency
service (2025-05-05 18:11:31 to 18:29:31) and monitor latency
metrics across all services during fault propagation. It demon-
strates a key phenomena that direct neighbors (checkout, fron-
tend) exhibit amplified anomaly signals than other services due
to dependency-driven propagation. These findings motivate
us to utilize graph attention networks do spatial modeling,
analyzing anomaly signals amplified by dependency-driven
aggregation.

IV. DESIGN
A. Overview of framework

DeST is an unsupervised framework designed to automat-
ically and accurately detect anomalies and locate root causes
in microservice environments. As shown in Figure 7, our
architecture leverages a multi-stage fusion strategy and task-
specific modal routing to process heterogeneous monitoring
data (KPIs, logs, and traces) through three synergistic mod-
ules: Temporal Fusion Module, Spatial Fusion Module, and
Downstream Task Module.

The workflow begins by preprocessing multi-modal streams
into normalized time windows. The Temporal Fusion Module
employs historical temporal windows to generate predictive
representations for subsequent timesteps. These representa-
tions simultaneously serve two purposes: 1) enabling real-time
anomaly detection through the downstream diagnosis module.
2) feeding into the Spatial Fusion Module for unsupervised
representation learning. When anomalies are detected, the
system activates the root cause localization component, which
analyzes the propagated spatial-temporal patterns from both
modules to perform root cause localization.

B. Temporal Fusion

The goal of this module is to perform time series modeling
for each monitoring data source separately. Referring to [15],
[16], we transform multimodal data (metrics, logs, and traces)
into time series. For metrics, which naturally form time
series, we treat them directly as such. For logs, we count
the frequency of log events per minute to construct a time
series. For traces, we extract latencies and convert them into a
time series. Finally, we concatenate these data to form an in-
tegrated multivariate time seriesM = [Mneuic || Miog || Mirace) -
By performing a z-score normalization, using a sliding history
window on M , a normalized input sequence can be obtained,
X = {XxM X where T is the length of the time
window. The snapshot of the microservice system at time ¢
can be represented as X () € RV*K where N is the number
of instances and K is the number of data channels. zftj) denotes
the normalized value of channel j on instance ¢ at time t.

Our temporal fusion module employs a novel Differential-
Convolutional Architecture (DCA) to capture multi-scale tem-
poral patterns in microservice systems. As shown in Figure 7,
this component consists of three key operations:

3https://github.com/chaos-mesh/chaos-mesh

1) Differential Feature Extraction: To address the chal-
lenges of metric drift and transient anomalies in microservice
systems, for the input sequence X = {XO ... X1},
The module first computes 1-th order temporal differences to
amplify system state transitions:

A(k)mt = A(kil)fﬂt — A(kfl)xt_l (1)

where k£ € 1,2, 3...denotes the difference order. This oper-
ation enhances sensitivity to metric evolution patterns while
suppressing static noise.

2) Multi-Scale Convolutional Learning: In order to capture
time trends for each dimension of the microservice system, We
implement parallel temporal convolutions with complementary
receptive fields:

hl = ReLU(WCOMl * AX + bl) (2)
hg = ReLU(Weonoz * AX + by) 3)

Improving from the classical TCN [21], but breaking
through its single time scale limitation, the two-stream con-
volutional architecture can capture the short and long-term in
microservice system: fine-grained detectors use convolution
kernels with small receptive fields to capture transient fluctua-
tions(such as spikes and drops in requests), and coarse-grained
detectors use convolution kernels with large receptive fields to
capture trend evolution(such as CPU usage consumption).

3) Adaptive Feature Fusion: The final prediction combines
convolutional outputs through dimension-aware transforma-
tion:

§ = Wy, - Flatten([hq & ha]) + by )

where @ denotes channel-wise concatenation.

C. Spatial Fusion

Improving from the previous work [22]-[24], in order
to model the interaction between instances, failure propaga-
tion graph learning module implements a Dynamic Graph
Attention Network to model fault propagation patterns in
microservice systems. The architecture operates through two
fundamental operations:

1) Multi-Head Graph Attention Mechanism: For node v;
and its neighbors N (i), the attention coefficient o;; between
nodes is computed as:

exp(e;;)

= 6
Eke./\f(i) exp(ei) ©

Oéij

where W € R%*d is the learnable weight matrix and
A denotes the attention vector. Our implementation employs
dual attention heads to capture complementary dependency
patterns:
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Fig. 7: Architecture of DeST : (1) Temporal Fusion Module captures multi-scale metric temporal patterns, (2) Spatial Fusion Module models
instance spatial dependencies, (3) Downstream Task Module integrates results for anomaly detection and root cause localization.

2) Hierarchical Graph Encoding: The encoder stack con-
tains L graph attention layers with progressive feature refine-
ment:

HO = ELUWinX + bin) (8)
M
H(l) = ELU M Z Z ag;n7l)W(m,l)H§l—1) (9)
m=1jeN (i)
Z = Dropout(H ")) (10)

where Z € RN > represents the fault propagation scores
across N nodes. Initial node embeddings are projected through
parametric mapping, each layer [ performs neighborhood-
aware feature aggregation and final node representations com-
bine structural patterns.

D. Downstream Task

DeST continues to perform the downstream task of anomaly
detection for the system, and performs the downstream task
of root cause analysis when an exception occurs.

1) Anomaly Detection: As analyzed in Section II-A, tempo-
ral patterns dominate anomaly detection while spatial depen-
dencies introduce noise. We therefore formulate the anomaly
score as:

zk) ‘X(’Lk} t(z7k)|% (11)

where: X, € RN** representative predicted metrics from
temporal fusion, X; € RV ** representative observed metrics,
N is the number of instances, K is the number of channels.
The system-level anomaly score(scores > T) aggregates
anomaly score as:

12)

N K
(i,k)
scoregs = E E s;

i=1 k=1

Following established practices [17], [25], [26], we employ
Extreme Value Theory (EVT) for dynamic thresholding

T=u+~o (13)

where + is derived from the generalized Pareto distribution
fitting historical anomaly extremes.

2) Root Cause Localization: when scoregs > T, root cause
analysis activates, this module uses predicted metrics from
failure propagation graph learning as X, then calculate the
anomaly score for each instance with anomaly score on the
microservice system of cosine similarity.

score; - scoreg

pi= T (14)
|score;||scores]

Instances with higher cosine similarity are considered as
root cause sets.

V. EVALUATION

Our evaluation addresses three critical research questions
through comprehensive experiments on industrial microservice
datasets:

e RQ1: Does DeST achieve state-of-the-art performance in
both anomaly detection (AD) and root cause localization
(RCL) for microservice systems?

¢ RQ2: How does our multi-staged knowledge fusion mit-
igate cross-modal interference compared to conventional
all-in-one fusion strategies?

e RQ3: Does DeST ’s temporal modeling generalize across
diverse time-series datasets?

A. Experiment Setting

1) Datasets: In order to maintain fairness with the existing
methods, our evaluation adopts two industry-standard datasets
representing distinct microservice architectures to ensure com-
prehensive benchmarking:



TABLE I: Experimental results on datasets DI and D2, - means the method does not cover the problem.

\ D1 \ D2
Method \ AD \ RCL \ AD \ RCL

| Precision Recall ~ FI | Topl Top3 AVG@S | Precision Recall ~FI | Topl ~Top3 AVG@S
ART 0.899 0990 0942 | 0.667 0.810  0.776 0877 0960 0917 | 0722 0889  0.870
Eadro 0425 0946 0.586 | 0.137 0315 0302 0767 0935 0.842 | 0157 0315 0310
Hades 0.866  0.863  0.865 - - - 0867  0.868 0.868 - - -
CAD 0.896 0969 0.931 - - - 0770 0832  0.800 - - -
DeST wio graph 1.0 1.0 1.0 | 0655 0714 0738 1.0 1.0 1.0 | 0685 0852 0811
DeST wio msf 0.896 0969 0931 | 0.678 0.774  0.764 0.829 0846 0.837 | 0.759 0907  0.881
DeST 1.0 1.0 1.0 | 0.678 0.810  0.786 1.0 1.0 1.0 | 0741 0907 0878

D1I: A cloud-deployed e-commerce simulation with authen-
tic business traffic patterns and replayed failure scenarios in
May 2022. This dataset originates from a production system
handling lots of users with weekly software updates, where
failed changes will cause substantial economic losses. Key
characteristics include: 46-node architecture (40 microservices
+ 6 VMs), Diverse hardware/software failure modes( Con-
tainer Hardware, Network, CPU, Memory, Disk)

D2: AlOps Challenge 2021 benchmark* from a banking
management system with 18 heterogeneous components. This
dataset is composed of 18 heterogeneous components (mi-
croservices, servers, databases, containers). The failures con-
sist of resource (CPU/Memory/Disk) and JVM-related failures
from Jan-Jun 2021, which are conducted the labeling process
separately and cross-checked the labels by the operator to
ensure consensus.

Following established evaluation [15], [27], [28], we split
each dataset using the first timestamp in the last 40% of failure
cases as the cutoff point to ensure temporal continuity between
training and testing phases.

2) Baselines: We benchmark against four state-of-the-art
approaches covering key methodology paradigms:

o« CAD [12]: Multi-gate Mixture-of-Experts architecture
with metric-specific expert selection and dual gating
mechanisms, optimized for baseline drift scenarios.

« HADES [13]: Semi-supervised cross-modal framework
integrating causal CNNs for metrics and transformers for
logs, enhanced with dynamic attention alignment.

« Eadro [16]: Multi-source framework combining Hawkes
processes (logs), dilated convolutions (KPIs), and graph
attention networks (traces) for joint anomaly-propagation
analysis.

o ART [15]: Unsupervised unified model with transformer-
GRU-GraphSAGE architecture, achieving previous state-
of-the-art performance on both DI/D2 benchmarks.

3) Evaluation Metrics: Anomaly detection is a binary clas-
sification problem, used to determine whether an anomaly
has occurred. In the task of anomaly detection, TP stands
for the detected anomalies correctly, TN represents that the
model did not give a warning during the normal period,
FP represents false alarms, and FN represents the quantity

“https://www.aiops.cn/gitlab/aiops-nankai/data/trace/aiops2021

of missed anomalies. Evaluation metrics consist of stan-
dard precision(precision = TP/(TP + FP)), recall(recall =
TP/(TP + FN)) and F1 metrics(F1-score = %).

For root cause localization, the metric need to quantify the
system’s ability to surface ground truth root causes within
practical investigation budgets. For each failure instance ¢ with
true root cause g; , we compute: TopK, = I (gi S Pi,[HK])
where T is the indicator function and P;[;.x) denotes the
ranked list of TopK predicted candidates. The system-level
accuracy aggregates over [N evaluated failures: TopK
1 N
~ 2_izq TopK;.

AVG @5 Composite Metric: Addresses operational re-
quirements for progressive fault investigation by evaluating
performance across practical diagnostic depths (K from 1 to
5):

5
1
AVG@5 = - > TopK(K 1
G@s 5 2. opK(K) (15)

This compound metric emphasizes consistent ranking per-
formance, reflecting real-world troubleshooting workflows
where engineers progressively inspect top candidates.

B. RQI: Performance on downstream tasks for microservice
incident management

In the context of tasks for microservice incident manage-
ment, a high false positive (FP) rate in AD signifies a substan-
tial number of false alarms, which can result in considerable
resource wastage and diminished confidence in the model
among operations personnel. Besides, A high FN rate indicates
many false negatives, and when anomalies are not detected,
considering the accuracy of RCL becomes meaningless. As
illustrated in Table 1, DeST achieves perfect F1 scores (1.00)
across both datasets, demonstrating improvements of AD
ranging from 5.8% to 41.4% over baseline methods while
maintaining leading RCL accuracy. This achievement sets a
new benchmark for state-of-the-art end-to-end solutions for
microservice incident management.

As shown in Table II, in the joint task involving anomaly
detection and root cause localization, DeST demonstrates
significantly better time efficiency than ART. Specifically,
on the two benchmark datasets D1 and D2, the end-to-
end processing time of DeST was only 59.55 seconds and
42.50 seconds respectively, successfully achieving the minute
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TABLE II: Time Cost Comparison on D1 and D2 (seconds)

Method ‘ D1 D2
\ AD RCL \ AD RCL
ART 40.081 76.002 | 138.166  44.089
DeST 11.681  47.873 15.376 27.119

response goal. In contrast, the joint task time consumption of
ART reached 116.08 seconds and 182.26 seconds respectively,
which verified the help of DeST in terms of architecture
optimization for efficiency.
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Fig. 8: Large-Scale Node Experiment

To further assess model deployability, we scaled the datasets
to thousands of nodes and billions of records. As shown
in Figure 8, large-scale experiments demonstrate that our
anomaly detection and root cause localization methods main-
tain efficiency, confirming the scalability and robustness of
our approach for larger deployments. Furthermore, Dest can
theoretically be accelerated through parallel preprocessing
techniques, such as GPU acceleration for DMCN convolu-
tions in AD, and batched or subgraph strategies for GAT in
RCL.With modest distributed computing resources, achieving
the one-minute processing time for over 1000 microservices
is well within reach.

C. RQ2: Effective Modeling via Knowledge Fusion

To thoroughly investigate RQ2 and validate our framework’s
capability to mitigate cross-modal interference, we conducted
a systematic comparison between the conventional all-in-one
fusion strategy (adopted by ART) and our proposed fusion
approach. To avoid the impact of individual case contingency,
we monitor mean squared error (MSE) as the primary metric
to monitor convergence patterns during training. by comparing
the convergence effect of the loss, we assess the fitting
performance of both training frameworks. As shown in Figure
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Fig. 9: Convergence of all-in-one strategy and fusion strategy in
datasets DI and D2

9, compared to the MSE score of the all-in-one strategy, the
fusion strategy achieves significantly lower MSE values. For
instance, on DI, fusion reduces the final MSE by 11.8%
(from 0.152 to 0.136), while on D2, the improvement reaches
24.6% (from 0.167 to 0.134). This stark contrast highlights
the limitations of indiscriminate feature integration: the all-
in-one strategy introduces noisy spatial-temporal interactions
during early training phases, leading to unstable gradient
updates and suboptimal feature representations. In contrast,
our approach decouples temporal and spatial learning into
dedicated modules, allowing each branch to specialize in
domain-specific patterns before selectively fusing task-relevant
knowledge.

D. Ablation Study

To quantify the contribution of each module in DeST , we
performed an ablation study by systematically removing key
components and evaluating their impact on performance (Table
1).

Spatial Dependency Module (DeST w/o Graph): The graph
encoder plays a critical role in capturing spatial dependencies
between instances, enabling the model to understand the
relational structure of interconnected microservices. To further
validate the importance of spatial dependencies, we perform an
ablation study by disabling the graph attention network. The
results demonstrate a substantial drop in root cause localization
performance, with AVG@5 scores decreasing by 6.25% on
DI (0.786 — 0.738) and 8.2% on D2 (0.878 — 0.811). This
confirms that spatial dependencies modeling is indispensable
for accurately inferring fault causality across interconnected
nodes. Without this module, the framework fails to fully
exploit the spatial relationships, which significantly hampers
its ability to pinpoint the root causes of incidents in a complex
microservice environment.



Fusion Strategy (DeST w/o msf): Compared to all-in-one
strategy methods such as ART, DeST introduces a new multi-
stage fusion strategy, along with different frameworks for
modeling temporal and spatial information. To demonstrate the
effectiveness of the multi-stage fusion strategy, we replaced
it with a simpler feature concatenation approach (all-in-one
fusion) while keeping the temporal and spatial fusion modules
intact. The results revealed a significant performance drop in
anomaly detection, with Fl-score decreasing by 7.4% on D1
(1.0 — 0.931) and 19.5% on D2 (1.0 — 0.837). This drop
underscores the necessity of a multi-stage fusion strategy that
allows the framework to retain and process the nuances of both
temporal and spatial dependencies separately before merging
them. In contrast, the all-in-one fusion approach, by treating
spatial and temporal features equally at the same stage, fails to
preserve the distinctive information carried by each modality,
leading to less accurate anomaly detection.

E. RQ3: Temporal Modeling in Microservice Incident Man-
agement

To rigorously evaluate DeST ’s temporal modeling capa-
bilities in microservice environments, we conduct extensive
experiments on the EASYTSAD benchmark (ISSRE-UTS
benchmark) using the AIOPS dataset. This dataset comprises
operational metrics collected from five major internet com-
panies (Sogou, eBay, Baidu, Tencent, and Alibaba), with
data sampled at 1-2 minute intervals. The dataset captures
diverse failure scenarios, including latency spikes, resource
contention, and cascading failures, making it ideal for validat-
ing time-series modeling robustness in dynamic microservice
systems. We compare DeST against 11 state-of-the-art (SOTA)
baselines spanning classical and deep learning paradigms:

o AE [29]: Reconstructs time windows using autoencoders;

anomalies flagged by reconstruction error.

o Donut [30]: Employs VAE to model latent distributions

and uncertainty for anomaly scoring.

o« LSTMAD [31]: Utilizes multi-step LSTM predictions to

compute forecast errors.

o« FCVAE [19]: Decomposes time series into frequency

components for multi-scale modeling.

o TimesNet [20]: Transforms time series into 2D space via

frequency-based folding.

o« SRCNN [32]: Leverages spectral residual analysis and

CNNs for anomaly detection.

e EncDecAD [33]: Combines LSTM-based encoder-

decoder architectures to capture long-term dependencies.

o AR [34]: Do anomaly detection by using the method of

autoregression

e SubLOF [35]: Traditional distance-based outlier detection

using local outlier factors.

e TranAD [18]: Integrates transformers and adversarial

training to enhance sensitivity.

o AnomalyTransformer(AT) [36]: Contrasts attention distri-

butions between normal and abnormal patterns.

To address threshold bias, as illustrated in Figure 10, we
employ Best F1 as a primary metric that theoretically achieves
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Fig. 10: Evaluation Metrics Specification.
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optimal F1-scores through threshold optimization for all meth-
ods. However, this metric leads to artificial score inflation from
redundant counting of consecutive anomalies in prolonged
events. Recognizing that operational teams prioritize sustained
anomaly event detection over isolated point anomalies, we
complement this with three critical operational metrics: Event
F1 for segment-level detection that treats continuous anomaly
segments as single events to evaluate detection capability
independent of duration, Event AuPRC to assess precision-
recall balance at the event level, and Event F1 k-delay —
a stringent metric requiring detection within k timesteps of
anomaly onset to quantify system responsiveness. This latter
metric specifically reflects the critical need for timely alerting
in microservice incident management, where delayed detection
impedes rapid root cause analysis. This multi-metric frame-
work systematically quantifies both detection accuracy and
operational responsiveness, aligning theoretical optimization
with practical microservice incident management workflows.

As shown in Figure 11, DeST achieves highest Best-F1
score while surpassing all baselines in event-centric met-
rics. Best F1: DeST significantly outperforms other baselines,
demonstrating its robustness in point-wise anomaly detection.
Event F1 and Auprc: DeST attains 0.84 and 0.85, respectively,
surpassing all competitors. This highlights its superiority in
detecting persistent anomalies critical for microservice opera-
tions. Event F1 k-delay: Across varying detection windows (5,
10, and 15 timesteps), DeST consistently achieves the highest
scores. This rapid alerting capability provides root cause
localization with precious lead time for proactive diagnosis
and mitigation.

To evaluate the denoising capability of the differential
operator in microservice time-series modeling, we conduct
comprehensive ablation studies comparing two variants: 1)
the complete DeST framework with differential operations,
and 2) DeST w/o Diff, where we systematically remove the
differential processing module. The comparative evaluation
across three industry-standard datasets (DI, D2, and AIOPS
Challenge Dataset) reveals that the differential operator con-
sistently demonstrates superior noise suppression, as shown in
Figure 12.

VI. RELATED WORK

Current methodologies for microservice incident manage-
ment primarily follow two technical paradigms: single-task



Event Event Event

Best  Event F1 F1 Event
F1 F1 5-delay 10-delay 15-delay Aupre
1.0
AR 0.88 0.71 0.66 0.68 0.68 0.72
AR 0.89 0.74 0.69 0.71 0.71 0.75
Dount 0.85 0.69 0.66 0.67 0.67 0.69 08
EncDecAD 0.9 0.77 0.71 0.73 0.73 0.77
LSTMAD 0.93 0.77 0.72 0.74 0.74 0.78
0.6
FCVAE 0.92 0.78 0.74 0.75 0.75 0.79
TimesNet 0.81 0.65 0.6 0.62 0.62 0.64
0.4
SRCNN 0.53 0.15 0.057 0.084 0.089 0075
SubLOF 0.73 0.38 0.24 0.32 0.33 0.31
TranAD 0.75 0.62 0.56 0.59 0.6 0.56 02
Anomaly
Transformer 0.58 0.33 0.24 0.27 0.28 0.24
DeST 0.94 0.84 0.79 0.8 0.81 0.85

-0.0

Fig. 11: Overall performance ranking using different metrics. The
row names denote the names of metrics, while the column names
denote the names of the methods and the best score of each column
is underlined.

approaches that model problems in isolation, and multi-task
techniques that exploit cross-modal relationships.
Single-task Techniques: Conventional methods employ
autoencoder-based reconstruction frameworks where archi-
tectures detect anomalies through reconstruction errors (AE
[29]). Subsequent variants incorporate probabilistic modeling
(Donut [30]) and frequency-space transformations (TimesNet
[20]). Modern enhancements include attention mechanisms
(AnomalyTransformer [36]) and frequency-constrained vari-
ational autoencoders (FCVAE [19]). Advanced solutions cap-
ture cross-metric and cross-modal correlations through archi-
tectures: CAD [12] implements metric-sensitive Mixture-of-
Experts with dual gating mechanisms, while HADES [13]
performs heterogeneous pattern fusion through synchronized
processing of metric data via causal CNNs and log sequences
via transformer networks, coupled with dynamic attention
alignment. While optimized for temporal pattern recognition,
these approaches suffer from redundant feature engineering
and maintenance costs. The absence of unified contextual rep-
resentations additionally leads to delayed incident resolution.
Multi-task Techniques: Contemporary unified frameworks
co-optimize anomaly detection and root cause analysis: 1)

DeST DeST w/o Diff

AIOPS
EventF1
Sdelay

Fig. 12: Performance of DeST and DeST w/o Diff in different datasets

AIOPS
EventF1

ATOPS
BestF1

D1 D2

Supervised Paradigms: Eadro [16] demonstrates multimodal
fusion of logs, KPIs, and traces for anomaly propagation
modeling, However, its dependence on labeled fault data re-
stricts practical deployment in annotation-scarce environments.
2) Unsupervised Paradigms: ART [15] pioneers a cascaded
transformer-GRU-GraphSAGE architecture modeling channel,
temporal, and call dependencies. Despite achieving state-of-
the-art performance, its fixed modality processing hierarchy
introduces cross-modal interference during feature encoding.

VII. CONCLUSION

In this paper, we present DeST , a novel unsupervised
spatio-temporal framework tailored for end-to-end microser-
vice incident management. DeST addresses three funda-
mental challenges that have hindered prior approaches: (1)
cross-modal interference in all-in-one fusion strategies, (2)
task-knowledge mismatch between anomaly detection and
root-cause localization, and (3) sensitivity to transient noise
in microservice time series modeling. To overcome these,
we propose a multi-stage fusion architecture that decouples
temporal and spatial representation learning, alongside a task-
specific routing mechanism that directs distinct knowledge
representations to the appropriate downstream tasks. Further-
more, we introduce the Differential Multi-Scale Convolutional
Network (MCDCN), which suppresses high-frequency noise
while effectively capturing both short- and long-term pat-
terns. Extensive experiments on two industrial benchmarks
(D1, D2) and the EASYTSAD AIOPS dataset demonstrate
that DeST not only achieves perfect Fl-scores (1.00) for
system-level anomaly detection(improving over the previous
SOTA by up to 5.8% in D1 and 8.3%), but also sets new
records in event-level detection metrics and obtains highest
localization accuracies. Ablation studies validate the contri-
butions of each module: both the decoupled spatial graph
component and the multi-stage fusion strategy significantly
reduce false alarms and accelerate convergence compared to
all-in-one fusion baselines. By explicitly isolating and then
selectively integrating modality-specific knowledge, DeST de-
livers a robust solution for incident management in large-scale
microservice systems.
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