This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSC.2025.3622122

A Comprehensive Benchmark and Empirical Study
of Trace Anomaly Detection

Yongqian Sun, Member, IEEE, Minyi Shao, Xiaohui Nie Member, IEEE, Kaiwen Yang, Xingda Li, Bowen Hao,
Shenglin Zhang, Member, IEEE, Changhua Pei, Dongbiao He, Yanbiao Li, Dan Pei, Senior Member, IEEE

Abstract—The growing complexity of modern Internet applica-
tions and the widespread use of microservice architectures have
amplified the need for efficient trace anomaly detection to main-
tain system stability. Despite the fact that many trace anomaly
detection algorithms have been proposed to identify abnormal be-
haviors, a comprehensive evaluation of these methods is lacking,
which makes it difficult for developers to choose the most suitable
algorithm for real-world applications. To address this gap, we
present TADBench, a comprehensive and extensible benchmark
for trace anomaly detection. TADBench consolidates diverse
publicly available trace datasets and algorithms into a unified
repository, standardizes data formats, and incorporates manual
anomaly labels. To ensure reproducibility and fair comparisons,
we propose a modular evaluation framework supporting end-
to-end model assessment. Additionally, we provide practical
guidance for algorithm selection based on specific data attributes
by evaluating their performance across datasets with different
characteristics, thereby effectively bridging the gap between
academic research and industrial deployment. To the best of our
knowledge, this is the first comprehensive empirical study of trace
anomaly detection algorithms. Our findings aim to facilitate the
adoption of these methods in production environments, offering
actionable insights for developers and researchers.

Index Terms—Trace anomaly detection, Empirical study.

I. INTRODUCTION

N recent years, the rapid development of modern Internet

applications, accompanied by the expansion of business op-
erations, has led to a significant increase in system complexity.
Microservice architecture [1] has emerged as the preferred
architectural choice for many Internet applications due to its
well-documented advantages in scalability, flexibility, main-
tainability, and efficient resource use [2] [3]. This architecture
enables developers and engineers to independently develop,
deploy and update services, greatly boosting development
efficiency and system responsiveness [1]. However, the highly
modular and distributed structure also poses challenges in
system monitoring and management.

To ensure the smooth operation and efficient management of
microservice systems, trace anomaly detection serves as an in-
dispensable tool for maintaining service quality and enhancing

Yonggian Sun, Minyi Shao, Kaiwen Yang, Xingda Li, Bowen Hao, and
Shenglin Zhang are with the College of Software, Nankai University, Tianjin
300071, China (e-mail: sunyonggian@nankai.edu.cn, {2120230754, 2112122,
2210352, 2120230749} @mail.nankai.edu.cn, zhangsl@nankai.edu.cn).

Xiaohui Nie, Changhua Pei, Dongbiao He, and Yanbiao Li are with
Computer Network Information Center (CNIC), Chinese Academy of Sci-
ences (CAS), Beijing 100083, China (e-mail: xhnie, chpei@cnic.cn, her-
bertt12@gmail.com, lybmath@cnic.cn). (corresponding author: Xiaohui Nie.)

Dan Pei is with the Department of Computer Science and Technology, Ts-
inghua University, Beijing 100084, China (e-mail: peidan@tsinghua.edu.cn.)

user experience. It enables the real-time identification of issues
within the service interaction network, facilitating the prompt
localization and resolution of faults and thereby preventing ser-
vice interruptions or performance degradation [4]. Moreover,
tracing request propagation paths is essential for enhancing
system observability and maintainability. Developers can gain
a comprehensive understanding of service interaction patterns
by monitoring the dependencies and sequences of service
calls, which allows them to optimize service performance and
improve system stability [5] [6]. Furthermore, historical trace
analysis can reveal long-term performance trends and abnor-
mal patterns, offering crucial insights for system optimization
and future architectural improvements [7]. Thus, effective trace
anomaly detection technologies are vital for comprehensively
understanding system states and ensuring the stable operation
and efficient management of microservice systems.

Nowadays, many trace anomaly detection algorithms have
been developed to swiftly identify potential abnormal behav-
iors. Despite extensive research in this field, comprehensive
public benchmarks for evaluating these algorithms remain
largely unavailable. This gap can be attributed to several
challenges:

(1) Data availability. Although many anomaly detection
algorithms and trace datasets have been open-sourced, pre-
vious efforts have failed to systematically consolidate these
valuable resources. This lack of integration makes it difficult
for researchers to access datasets and tools efficiently, as
well as to conduct meaningful comparisons and validations
of existing methods. Besides, existing trace datasets generally
lack well-defined anomaly labels, limiting their utility and the
accuracy of anomaly detection models. Inconsistency in data
formats also makes data processing and analysis more difficult,
further complicating subsequent research efforts.

(2) Absence of standardized evaluation framework. In-
consistent data preprocessing methods, inaccurate algorithm
implementations, and the lack of unified testing pipelines
contribute to reproducibility problems. In addition to making it
challenging to compare algorithms equitably, these drawbacks
impede innovation by directing researchers’ focus away from
developing novel approaches and into redundant implementa-
tion tasks.

(3) Difficulty in algorithm adoption for different applica-
tions. While several algorithms may perform better in different
scenarios, it is still difficult for operations personnel to quickly
identify the optimal algorithm for real-world production en-
vironments. Limited empirical analysis and recommendation
strategies further exacerbate the difficulties in selecting and

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSC.2025.3622122

applying anomaly detection algorithms, which may lower the
effectiveness of troubleshooting.

To tackle these challenges, we propose TADBench, a com-
prehensive and extensible benchmark for trace anomaly detec-
tion. TADBench makes diverse publicly available trace datasets
and algorithms into a unified repository with standard data
formats and accurate anomaly labels. For Challenge 1: We
collect, organize, and make a publicly available repository
containing trace datasets and anomaly detection algorithms.
This repository provides researchers with the necessary re-
sources for in-depth study and comprehensive comparisons. In
addition, we standardize the formats of available trace datasets
and provide anomaly labels based on human feedback. These
enhancements significantly improve the datasets’ usability and
ensure greater accuracy for future analysis. For Challenge 2:
In response to the lack of a standardized evaluation frame-
work, we develop a comprehensive framework that includes
trace collection, trace preprocessing, model adaptation, and
model evaluation. This enables thorough empirical assess-
ments of diverse algorithms across multiple datasets, ensur-
ing reproducibility and promoting robust comparative studies.
For Challenge 3: Based on extensive experimental results,
we propose tailored recommendation strategies for selecting
anomaly detection algorithms. These strategies account for
the unique characteristics of various trace datasets and provide
practical guidance for selecting the most appropriate algorithm
for specific scenarios.

The key contributions of this paper can be summarized as
follows:

(1) Public Benchmark. We establish an open-source repos-
itory containing trace data and algorithms and offer
a unified and standardized benchmark for evaluating
trace anomaly detection algorithms. The open-source
data repository has a total size of 3.6 GB, containing
approximately 1.04 million traces. Our code is available
at https://github.com/nkalgo/TADBench.git.

(2) Accurate Data Labeling. We standardize available trace
datasets and provide manually labeled anomaly annota-
tions, improving the datasets’ quality and applicability.
Around 210,000 traces are labeled as structural anomalies
or latency anomalies.

(3) Empirical Study. In response to the question of whether
a universally effective trace anomaly detection algo-
rithm exists, we conduct a comprehensive and systematic
empirical study of trace anomaly detection algorithms,
analyzing their performance across several datasets and
identifying their strengths and limitations. To the best of
our knowledge, this is the first comprehensive empirical
study in this area.

(4) Algorithm Recommendation Strategies. We propose
data-driven recommendation strategies for selecting the
most suitable anomaly detection algorithms based on
trace characteristics and operational requirements.

II. BACKGROUND

A. Trace Structure

Microservice architecture has fundamentally transformed
the way modern applications are developed and operated,

enabling systems to be more modular, scalable, flexible, and
durable. In this architecture, an application is composed of
a collection of loosely coupled services, each responsible
for a specific business function. These services communi-
cate with each other through lightweight protocols and are
independently deployable, allowing for rapid iteration and
fault isolation. However, as the number of services grows,
tracking and managing their interactions becomes increasingly
complex. This is where distributed tracing plays a crucial
role. As illustrated in Fig. 1, a microservice system typically
consists of three layers: the service layer, where microservices
like ts-travel-service and ts-ticketinfo-service function; the
container layer, which provides runtime environments for these
services, ensuring resource isolation and scalability; and the
server layer, where the containers are hosted on physical or
virtual machines.

Distributed tracing records the flow of requests as they prop-
agate through different system components, giving insight into
how microservices interact with one another. By tracing each
request’s path across different services, it becomes possible
to understand not only the performance attributes of distinct
services but also their dependencies and interactions with one
another. Common distributed tracing systems mainly include
Jaeger [8], Zipkin [9], and SkyWalking [10], all of which
adhere to the OpenTracing [11] specification. OpenTracing
defines two core components: traces and spans. Traces serve
as essential tools for describing the execution paths of requests
and play a pivotal role in comprehending and evaluating
system behavior. Conceptually, a trace can be represented as a
directed acyclic graph (DAG) that encapsulates all the services
and operations involved in processing a request, along with
their temporal dependencies, thereby providing a holistic view
of system behavior.

An example of trace is shown in Fig. 1. The illustrated
trace comprises seven spans, with each span representing a
specific service call. Each trace is uniquely identified by its
own trace ID, providing a global reference for tracking the
entire execution flow. Meanwhile, each individual span in the
trace captures detailed call-related information, including the
trace ID, a unique span ID, and the parent span ID. The parent
span ID establishes hierarchical relationships among spans,
thus constructing the structure of the entire trace. Furthermore,
spans typically record time-related information such as the
start time and duration, as well as the service name, specific
operation name, and status code.

B. Trace Anomalies

Trace data is primarily utilized for system operation and
maintenance, supporting tasks such as fault diagnosis, root
cause analysis, and system visualization. Among these tasks,
trace anomaly detection is of particular importance. Generally
speaking, trace anomalies can be categorized into two primary
types:

Latency Anomalies. Latency anomalies occur when the
execution time of an operation exceeds its normal range,
which can be detected when spans exhibit abnormally long
durations. Typically, such anomalies not only impact the target

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSC.2025.3622122

ts-ticketinfo-service H ts-station-service J

T

|

|

| ts-basic-service
|

[

¥

I
|
[Container D } :
|

ts-travel-service

[Container B }

]
|
|
|
|
I
v

q

7
Container A ; ,
/ /
’ . /
\ ’ Container C J/ Container E
\ ’ /
1 / ’
Y
v
\
v
v

r

’ \ . !
i < 7 T

Microservice System

ts-route-service

Trace Example

JfstationName]
_time: 2022-02-02 08:31:11.246000

duration: 232ms
status_code: 200

Fig. 1: Microservice System and Trace

service but can also have cascading effects on its upstream
dependencies, which may impair overall system performance
and have a negative impact on user experience. For instance,
Spans 0, 1, and 2 have abnormally high latencies of 237 ms,
235 ms, and 230 ms, respectively, as illustrated in Fig. 2.
The reasons for causing latency anomalies may include
performance bottlenecks, resource contention, and network
delays. For example, a bottleneck within a service’s processing
(e.g., inefficient database queries or excessive CPU usage)
directly extends the execution time of the corresponding span.
Similarly, contention for limited resources (e.g., memory, disk
I/O, or thread pool capacity) increases operation waiting times,
thereby amplifying service latency. In addition, anomalous net-
work conditions, including packet loss or congestion between
microservices, introduce transmission delays in requests and
responses, further prolongs trace latency beyond its normal
statistical range. These issues are reflected in trace data as
abnormally prolonged durations of specific spans, leading to
service-level latency that exceeds the normal statistical range.

Structural Anomalies. Deviations from expected service
invocation sequences inside a trace are known as structural
anomalies. These deviations may include unexpected service
calls, missing calls, and call order errors.

Unexpected service calls occur when a service or operation
is invoked unexpectedly, as shown in Fig. 3, where Service B
incorrectly invokes Service G instead of Service E. This type
of anomaly may result from configuration drift (e.g., outdated
service registries) leading to incorrect routing rules, fallback

'

e
237ms 5 >
start [Service A K=
pan 0 3%
AN
Service C

Fig. 2: Latency Anomaly

logic failures (e.g., circuit breakers redirecting traffic to unin-
tended or non-redundant services), or dependency mismatches
(e.g., API version upgradation without backward compatibil-
ity). These business-related configuration or deployment issues
can inadvertently cause services to interact with incorrect or
unexpected counterparts, thereby introducing anomalies in the
expected trace.

Missing calls refer to cases where an expected service
or operation is absent, like Service E is missing in Fig. 4.
These anomalies may be caused not only by system failures
or network latency, but more critically by business process
incompleteness. For instance, a workflow step may be skipped
due to unmet preconditions such as data validation failures,
authorization denials, or business rule violations. Additionally,
service outages, communication timeouts, or misconfigured
routing (such as incorrect service addresses, unpublished APIs,
or authentication failures) can also interrupt the normal flow,
preventing certain calls from being made. Furthermore, oper-
ational decisions such as temporary service disruptions during
deployments may lead to the absence of expected service
interactions in the trace.

Moreover, call order errors occur when the sequence of
service invocations deviates from the expected order. For
example, in Fig. 5, Service F mistakenly invokes Service E,
whereas it should have been Service B invoking Service E.
Such errors often stem not merely from race conditions in
asynchronous systems, but more specifically from concurrency
control issues in event-driven architectures where events are
processed in improper sequences, violating logical depen-
dencies between services. Moreover, version incompatibilities
between microservices can induce unintended temporal se-
quencing of operations, which often materializes as observable

structural anomalies in the trace.
q} 4
S
7
start 10 | g rvice A Service F
Span 0

Fig. 3: Structural Anomaly (unexpected)

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSC.2025.3622122

start M’[Service A
Span 0

Fig. 4: Structural Anomaly (missing)

10ms %
start 4" Service A
Span 0

Fig. 5: Structural Anomaly (out-of-order)

C. Trace Anomaly Detection Algorithms

Many algorithms for trace anomaly detection exhibit unique
design principles and robust performance under specific con-
ditions. Traditionally, algorithms in this domain have been
categorized into statistic-based and model-based approaches
[12]. However, as deep learning has become more and more
popular, an increasing number of algorithms now employ
deep learning models, rendering the traditional classification
inadequate for capturing the complexity and diversity of state-
of-the-art trace anomaly detection techniques. To address this
limitation, we propose a classification based on underlying
architectures, providing a more precise and systematic frame-
work. Accordingly, we divide these algorithms into three
main categories: VAE-based, GNN-based, and LSTM-based
algorithms, which represent the dominant design paradigms
in the field. An overview of this classification is presented in
Fig. 6. Except for PUTraceAD, which is a semi supervised
learning algorithm, all others in Fig. 6 are unsupervised.

‘Trace Anomaly

Detection Algorithms

1 1

VAE-based ‘GNN-based LSTM-based
Algorithms Algorithms Algorithms
{ | | | |
[TrareAnumaly] [TraceVAE] [PUTmceAD] [Trace(IRL] ove [Mullimml‘.\l LSTM]

Fig. 6: Algorithm Overview

1) VAE-based Algorithms: Variational Autoencoders
(VAEs) [13] serve as the core model for this category.
These methods aim to reconstruct normal patterns in trace
data, leveraging the learned latent representations to identify
anomalies.

TraceAnomaly. TraceAnomaly [14] employs deep varia-
tional Bayesian networks with posterior flow [15] to model

normal trace patterns. It uses a Service Trace Vector (STV)
to represent data, with each dimension denoting a distinct
call path and the corresponding response time indicated by
its value.

CRISP. Adopting the same anomaly detection model as
TraceAnomaly, CRISP [16] encodes traces by extracting the
critical path using a recursive algorithm. It constructs a Service
Critical Path Vector (SCPV) by subtracting the durations of
child spans when recording spans on the critical path.

TraceVAE. Using Graph-VAE architectures [17]-[19],
TraceVAE [20] separately models structural and temporal
features via a structure VAE and a time VAE. Additionally,
TraceVAE incorporates Graph Attention Networks (GATSs)
[21] to capture correlations among nodes in the trace graphs.

GTrace. By combining graph-wise and node-wise VAE
models, GTrace [12] reconstructs both structural and latency
features of trace graphs. To enhance detection efficiency, it
groups traces with the same substructures. Moreover, GTrace
adopts Tree-LSTM [22] to generate shared encodings for iden-
tical sub-tree structures, further supporting its substructure-
based grouping strategy.

2) GNN-based Algorithms: In this category, Graph Neural
Networks (GNNs) [23], [24] serve as the foundation. These
models excel at capturing structural and relational information
in trace graphs.

PUTraceAD. As a semi-supervised anomaly detection
method, PUTraceAD [25] trains a model based on GATs and
the nnPU [26] algorithm using a limited amount of labeled
abnormal traces. Notably, when generating graph represen-
tations for traces, PUTraceAD uses WordPiece [27] and a
pre-trained BERT model [28] to generate 768-dimensional
embeddings for service and operation names while creating
graph representations for traces.

TraceCRL. Following the GraphCL (Graph Contrastive
Learning with Augmentations) framework [29], TraceCRL
[30] leverages contrastive learning and graph neural networks
to learn effective trace representations. Initially, it utilizes
DeepWalk [31] to generate vector representations for each
operation. Compared to other algorithms that only use duration
as the temporal feature for each invocation, TraceCRL incor-
porates more detailed temporal features, such as the quantile
of the invocation’s start time and the proportion of the local
execution time. By employing One-Class SVM [32] as a
subsequent detection model, TraceCRL is widely used for
anomaly detection tasks.

3) LSTM-based Algorithms: Long Short-Term Memory
(LSTM) networks [33] are used in this category to model
sequential dependencies and detect both latency and structural
anomalies in traces.

Multimodal LSTM. Multimodal LSTM [34] combines
temporal and structural features into a joint representation.
Each span is encoded using a vector with one-hot call path
encoding and normalized duration. Rare calls are excluded to
reduce noise and maintain consistency. LSTM networks are
applied to model the sequential relationships.

In summary, a wide range of trace anomaly detection
algorithms have been developed in recent years, each with
unique design models. Selecting an appropriate detection algo-

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSC.2025.3622122

@ Trace Collection @) Trace Preprocessing

timestamp, trace_id, span_id.
p_span_id. duration, .
1651852800770, 5d72d974ca, S
0bb61£c622, 634jy4d542bd , il

474, .. L

|| 1651852800770, 5d72d974ca, L
2344212d45g6, 654jy4dS42bd,

(1231, ...

140ms

Data formatting

—

K4
Skywalking’ [G-
o Al ZIPKIN

-

Anomaly labeling

@ Model Evaluation

Multimodal LSTM =

i
TraceAnomaly

[x]

@ Model Adaption

CRISP Leaderboard

Model selection
strategy

Fig. 7: Evaluation Framework

rithm for real-world applications remains a critical challenge.
This paper aims to address this issue by conducting a com-
prehensive evaluation of various algorithms under different
conditions. Through extensive experiments, we systematically
analyze their performance, highlight their advantages and
drawbacks, and provide recommendations for the most effec-
tive selection strategy.

II1. TADBench DESIGN

To systematically evaluate the performance of trace anomaly
detection algorithms, we propose an evaluation framework
depicted in Fig. 7, which consists of four main stages: trace
collection, trace preprocessing, model adaptation, and model
evaluation. First, we collect the available trace data, followed
by preprocessing to standardize the data format. Next, the
algorithms needs to ensure proper data format adaptation to
receive and process the pre-processed data for evaluation.
Finally, the performance of different algorithms is evaluated
based on the experimental results.

A. Dataset Overview and Unified Format

In this study, we conduct an in-depth analysis of multiple
datasets, including TrainTicket [35], [36], GAIA (Generic
AlOps Atlas) [37], AIOps2020 [38], AIOps2022 [39] and
AlOps2023. These datasets are generally based on the Open-
Tracing format mentioned in Section II-A.

o TrainTicket: The TrainTicket dataset, sourced from the
open-source data in the PUTraceAD [25] paper, is gen-
erated through fault injection in the microservice system
TrainTicket.

o GAIA: GAIA, dedicated to anomaly detection, log anal-
ysis, and fault localization, is derived from CloudWise
microservice simulation system.

o AIOps2020, AIOps2022 and AIOps2023: The
AlIOps2020, AIOps2022, and AIOps2023 datasets
originate from the CCF International AIOps Challenge
held in 2020, 2022, and 2023 respectively. AIOps2020
originates from a real-world production microservice
system, while AIOps2022 and AIOps2023 simulate
anomalies through fault injection.

However, the specific details in different datasets may
vary, as exemplified by the GAIA and AIOps2022 datasets
shown in Fig. 8a and Fig. 8b, respectively. These differences
encompass various aspects, including the meaning of fields,

field names, the number of fields, and the units of values. In
previous experiments, researchers often had to preprocess each
dataset separately to meet the format requirements of different
algorithms. When new datasets emerged, adapting them to
various algorithms was time-consuming and severely hindered
experimental progress. Furthermore, there were significant
difficulties in comparing the features of various datasets or
combining them.

“timestamp"; 1651852800770,
end-0"

end-0",
20t1634du96h”"

stershop. ProductCatalogService/GetProduct”,
Ohcef8yedeh*

(a) Data Format for GAIA (b) Data Format for AIOps2022

Fig. 8: Different Trace Formats

To address these challenges, we propose a standardized
format consisting of two primary classes: Trace and Span, as
demonstrated in Fig. 9.

o Trace Class. Each trace is uniquely identified by its
trace_id and contains fields such as root_span (denoting
the start of the trace) and span_count (denoting the total
number of spans). The anomaly_type field categorizes
anomalies into four types: 0 (normal), 1 (only latency
anomaly), 2 (only structural anomaly), and 3 (both la-
tency and structural anomalies). Additionally, the source
field denotes the data source.

« Span Class. Each span records detailed call information,
including trace_id, span_id, parent_span_id, and chil-
dren_span_id, which collectively construct the trace tree.
Each span also contains time information (start_time and
duration), service and operation details (service_name
and operation_name), anomaly labels (anomaly) and sta-
tus information (status_code). The latency and structure
fields further specify latency and structural anomaly,
while the extra field captures additional contextual details.

This unified format eliminates the need to preprocess raw
data for each algorithm separately. Instead, we merely convert
the data into this unified format, and then adapt the format
to various algorithms. Consequently, each new dataset in any
format can be compatible with any algorithm without the need
for extra data preprocessing once it has been converted to

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSC.2025.3622122

TABLE I: Dataset Characteristics

Average Trace Depth ~ Average Span Numbers Granularity =~ Service Scale Average Service Number Operation Scale Average Operation Number
per Trace per Trace per Trace
TrainTicket 33 39.0 Operation 29 59 64 7.6
GAIA 4.7 9.3 Service 10 6.4 - -
AlOps2020 55 23.1 Service 10 7.8 - -
AlOps2022 42 21.7 Operation 40 6.9 29 11.6
AlOps2023 3.8 14.5 Service 37 1.3 - -
TABLE II: Dataset Anomaly Ratio

Trace:

{ Total Structure Latency
"trace_id": "Unique identifier for each trace.", TrainTicket | 32.9% 26.7% 28.5%
"root_span": "The starting span of the trace.", GAIA 49.9% 21.8% 29.9%
"span_count": "The total number of spans in the trace.", AlOps2020 | 21.8% 3.5% 21.5%
"anomaly_type": "Anomaly type: O (normal), 1 (latency anomaly only), 2 AlOps2022 | 36.3% 4.0% 35.9%

(structural anomaly only), 3 (both latency and structural anomalies).", AlOps2023 | 53.6% 39.0% 24.0%

"source": “The data source of the trace."

}

Span:

{
"trace_id": "Identifies the trace this span belongs to.",
"span_id": "Unique identifier for the span.",
"parent_span_id": "The identifier of the parent span in the trace tree.",
"children_span_id": "Identifiers of the child spans in the trace tree.",
"start_time": "The start time of the span.",
"duration": "The duration of the span.",
"service_name": "The name of the service associated with the span.",
"operation_name": "The operation name performed in the span.",
"anomaly": "Indicates whether the span is anomalous.",
"status_code": "The status information for the span.",
"latency": "Specifies latency anomalies for the span.",
"structure": "Specifies structural anomalies for the span.",
"extra": "Captures additional contextual details about the span."

Fig. 9: Unified Format

the unified format. Besides, this unified format supports a
systematic comparison of datasets, enabling operators to gain
deeper insight into system behavior, and facilitating efficient
anomaly diagnosis and resolution.

To evaluate the differences between the five datasets, we
examine their respective characteristics, with the results sum-
marized in Table I. Key features are systematically compared
in the table, with particular attention paid to differences in
average trace depth (ranging from 3.3 to 5.5), average span
numbers per trace (ranging from 9.3 to 39.0), monitoring
granularity (service/operation-level), service scale (ranging
from 10 to 40), average service numbers per trace (ranging
from 1.3 to 7.8), operation scale (ranging from 29 to 64),
and average operation numbers per trace (ranging from 7.6
to 11.6). Notably, TrainTicket has the highest operation scale
(64), while AIOps2022 contains the most services (40). Ad-
ditionally, GAIA, AIOps2020 and AIOps2023 lack operation-
level metrics.

Table II summarizes the anomaly ratios for the five datasets
across three categories: total, structure, and latency. The total
anomaly ratios range from 21.8% (AIOps2020) to 53.6%
(AIOps2023). For structural anomalies, the ratios range from
3.5% (AIOps2020) and 39.0% (AIOps2023). For latency
anomalies, the ratios range from 21.5% (AIOps2020) to 35.9%
(AIOps2022).

B. Dataset Labeling

Despite being publicly accessible, the five datasets are
generally collected systematically without specific labels. Con-
sequently, researchers cannot directly distinguish between nor-
mal and abnormal traces in these datasets, posing challenges
for further analysis and application. Without proper labeling,
it is impossible to successfully validate the performance of
anomaly detection algorithms. Therefore, recognizing that
trace anomalies are generally categorized into latency and
structural anomalies, we develop the labeling process shown
in Fig. 10.

These datasets usually contain fault microservice infor-
mation and fault occurrence time. Using this critical data,
we divide the traces into two categories: normal traces and
fault-injected traces. For latency anomaly detection, we assess
whether the latency of each service in a fault-injected trace
falls within the normal range. As discussed in Section II-B,
some business-related anomalies—such as performance bot-
tlenecks, resource contention, and network delays—produce
detectable latency distribution shifts in trace data. To enhance
accuracy, we group services based on their shared calling
paths from the root service, rather than relying solely on
service names. Next, we use a Gaussian distribution to model
the service latency distribution in normal traces. Specifically,
let and o denote the mean and standard deviation of the
latency distribution, respectively. A service latency L in a
fault-injected trace is considered abnormal if it satisfies:

)

following the 3-sigma rule, which assumes that 99.73% of
normally distributed data falls within three standard deviations
of the mean. We employ the 3-sigma rule because it is a
statistically robust and widely accepted method for detecting
rare, extreme deviations from an established normal pattern
[14]. If such an anomaly is detected, both the service and the
trace are labeled as latency anomalies.

For structural anomaly detection, we compare the structural
differences between faulty and normal traces. Initially, we
collect all patterns and their frequencies from normal traces.
Then, for each fault-injected trace, we examine if its structure
exists in the normal dataset. If the structure is rare or absent,

L ¢ [u— 30,1+ 30]

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSC.2025.3622122

Latency Statistics

i Grouped Service’s
Fault Injection E
Information .

Unlabeled Traces

Pre-classification

Labeled Traces

Trace Pattern’s L) Jaccard Similarity O :
Frequency Computing Comparison @ i
Human Feedback !

Fig. 10: Trace Labeling Process

we apply the Jaccard similarity to identify the most similar
pattern from the normal traces. The Jaccard similarity between
two traces 7" and P is defined as:

SN S(P)
[S(T)LS(P)|
where S(T') and S(P) denote the set of services in traces T’

and P respectively. We then select the most similar normal
pattern through:

J(T, P) 2)

P* = argmax J(T, P;) 3)
P,eP

where P is the collection of normal trace patterns. Sub-
sequently, we perform a detailed examination by manually
comparing the faulty trace 7' with the most similar normal
pattern P*. The trace is finally labeled as a structural anomaly
if this comparison confirms the presence of deviations such as
missing calls, unexpected service calls, or call order errors.

C. Algorithm Adaption

In general, different algorithms often call for specific trace
formats in their architecture. In prior studies, researchers who
intended to use open-source algorithm code had to implement
additional data preprocessing steps to meet the algorithm
requirements, which incurred considerable time overhead. To
address this, our work have standardized the data format,
allowing us to simply add code to each algorithm’s implemen-
tation that converts the unified format into the specific format
required by the algorithm. As a result, when a new dataset
needs to be applied to these algorithms for detection, it only
needs to be converted to the standardized format now, which
will then be automatically compatible with all algorithms,
eliminating the need for cumbersome format adjustments. The
open-source code we have released already incorporates this
functionality.

In addition, to ensure the standardization, modularity, and
extensibility of algorithm evaluation, we construct an algo-
rithm Software Development Kit (SDK), as illustrated in the
Fig. 11. By requiring each algorithm to inherit from the
common abstract base class, we standardize the format of
inputs and outputs across different algorithms. This design
not only simplifies the integration of new algorithms into
the evaluation pipeline but also reduces the effort required

for extra adaptation or modification. More importantly, it
facilitates fair and consistent comparisons. The SDK also
serves as a scalable and extensible foundation for future
research, enabling rapid prototyping, algorithm benchmarking,
and collaborative development in the field of trace anomaly
detection.

class TADTemplate(ABC):
def init (self, dataset name=None, data path=None):
self.dataset name = dataset name
self.data path = data_path

@abstractmethod

def preprocess_data(self):
"""Preprocess raw trace data (feature engineering, normalization, etc.)"""
pass

@abstractmethod

def train(self):
"""Train model and save trained model"""
pass

@abstractmethod

def test(self):
"""Evaluate model by different datasets
pass

Fig. 11: Algorithm SDK

D. Evaluation Metrics

In this study, we utilize several evaluation metrics to
measure the performance of the anomaly detection models,
including Precision, Recall, F1-score, Accuracy, and Time
Consumption. These metrics evaluate both the effectiveness
and efficiency of the trace anomaly detection algorithms.
They are defined as follows, where TP refers to the number
of anomalous traces accurately detected as anomalies, FP
refers to the number of normal traces mistakenly detected as
anomalies, FN refers to the number of anomalous traces that
fail to be identified as such, and TN refers to the number of
normal traces correctly detected as normal.

« Precision: the proportion of real anomalous traces over

all the predicted anomalous traces, which can be calcu-
lated using the following formula:

TP

Precision = ———
TP + FP

“4)

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSC.2025.3622122

« Recall: the proportion of predicted anomalous traces over
all the real anomalous traces, which can be calculated
using the following formula:

TP
Recall = ———
T TP EN ®)

o Fl-score: the harmonic mean of the precision and recall,
which can be calculated using the following formula:

Precision x Recall

Fl-score = 2 x — (6)
Precision + Recall

o Accuracy: the proportion of correctly predicted traces
over all the traces, which can be calculated using the
following formula:

TP + TN

Accuracy = (7
TP + TN + FP 4+ FN

o Time Consumption: A key metric for assessing model
efficiency, particularly in large-scale or real-time appli-
cations. This is quantified by the time required for the
training and testing phases.

Trace Anomaly Detection Algorithm Leaderboard

Benchmark on TrainTicket

Structure Latency

Rank Algorithm Precision Recall ¢ Fl-score 1 Accuracy Time(s) 1

GTrace 94.0% 92.3% 931% 98.8% 32010
PUTraceAD 96.5% 85.6% 90.7% 99.5% 2736.0
TraceVAE 98.3% 75.2% 85.2% 97.8% 51496.0
CRISP 512% 89.6% 65.2% 91.8% 65330
Multimodal LSTM 87.8% 447% 59.2% 94.7% 855.0

TraceAnomaly 397% 69.5% 50.5% 88.3% 6876.0

0006000

TraceCRL 14.6% 251% 18.5% 81.0% 14182.0

Fig. 12: Trace Anomaly Detection Algorithm Leaderboard

E. Algorithm Leaderboard

To provide a clearer and more comprehensive comparison of
trace anomaly detection algorithms, we design and implement
a dedicated leaderboard, as illustrated in Fig. 12. This leader-
board systematically displays the performance of different
algorithms on different datasets. Specifically, it reports a set of
key evaluation metrics — including precision, recall, F1-score,
accuracy, and time consumption — across three representative
anomaly types: total anomalies, structural anomalies, and
latency anomalies. Moreover, the leaderboard supports inter-
active functionality, allowing users to dynamically sort results
based on any chosen metric. This design enables researchers
to explore algorithms’ strengths and weaknesses from multiple
dimensions. By offering a unified and visually accessible
platform for comprehensive performance comparison, this
leaderboard not only facilitates the identification of state-of-
the-art methods but also encourages further improvement in
trace anomaly detection research.

IV. EVALUATION

In this section, we focus on the evaluation to address the
following research questions:

o RQ1: Is there an algorithm that consistently outperforms
others across all datasets?

« RQ2: How well do the algorithms perform across various
dataset conditions?

« RQ3: How can we choose the algorithm that works best
for a certain dataset?

A. Experimental Setup

After performing anomaly labels on each of the five datasets
including TrainTicket, GAIA, AlIOps2020, AIOps2022 and
AlOps2023, we evaluated the performance of the trace-based
anomaly detection algorithms on these datasets separately. For
each dataset, we divided the normal traces into a training set
and a test set in a 2:1 ratio, while all abnormal traces were
included in the test set.

During experiments, we generally use default hyperparam-
eters from the corresponding anomaly detection algorithm
papers. If the training or detection performance on a particular
dataset is suboptimal, hyperparameters are adjusted to opti-
mize the results. All experiments are performed on a server
configured with two Intel(R) Xeon(R) Gold 5416S CPUs, 376
GB of RAM, and seven NVIDIA RTX A6000 GPUs, each
with 48 GB of GPU memory.

B. Overall Performance (RQI)

Table III summarizes the overall performance of various
algorithms across datasets, and Fig. 13 presents a radar
chart comparing the Fl-scores achieved by different algo-
rithms on various datasets. The findings reveal that no
single algorithm consistently outperforms others across all
datasets. Specifically, GTrace [12] achieves optimal perfor-
mance with Fl-scores of 99.4% and 71.8% on the TrainTicket
and AIOps2020 datasets respectively. TraceVAE [20] demon-
strates leading performance on the GAIA and AIOps2022
datasets with Fl-scores of 90.9% and 78.9% respectively,
while PUTraceAD [25] achieves the highest Fl-score of
74.7% on the AIOps2023 dataset. These results highlight that
the effectiveness of each algorithm is influenced by dataset
characteristics. GTrace’s innovative strategy of “predicting
latency with structure” proves effective in part datasets, while
TraceVAE’s integration of GNNs and VAEs addresses com-
plex data characteristics. PUTraceAD’s semi-supervised ar-
chitecture demonstrates unique advantages on the AIOps2023
dataset containing 53.6% anomalies.

To evaluate the algorithms’ performance in detecting dif-
ferent types of anomalies, we calculate the Fl-scores for
both structural and latency anomalies. This analysis does
not take into account the dataset differences, as detailed in
Table IV. TraceVAE achieves a structural anomaly detection
Fl-score of 96.8%, highlighting the exceptional performance
of its Structure VAE module. The model’s GNN encoder
explicitly captures topological dependencies within trace data,
significantly enhancing its structural modeling capabilities. In

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSC.2025.3622122

TABLE III: Overall Performance (F1: Fl-score; ACC: Accuracy)

TrainTicket GAIA AlOps2020 AlOps2022 AlOps2023
FI (%) ACC (%) FI (%) ACC (%) FI1 (%) ACC (%) FI (%) ACC (%) FIl (%) ACC (%)
Multimodal LSTM 685 737 89.8 70.7 545 116 59.2 514 64.4 805
TraceAnomaly 62.6 82.1 46.3 65.3 56.8 77.9 58.5 78.7 554 82.9
CRISP 62.5 82.0 445 64.1 57.0 78.0 58.1 78.5 66.4 87.2
PUTraceAD 95.4 98.9 68.6 84.8 48.3 78.6 68.1 88.1 74.7 95.5
TraceCRL 55.6 50.9 75.0 73.9 53.0 40.8 53.2 36.2 442 574
TraceVAE 97.3 98.2 90.9 91.1 57.1 72.7 78.9 86.7 74.0 90.0
GTrace 99.4 80.3 70.9 64.5 71.8 81.9 76.5 93.8 70.3 87.6
TrainTicket —o— Multimodal LST™M performance, we then reclassify the combined data based on
100.0% g ¢ Tecehnomaly - ghecific feature values, thereby establishing different subsets
90.0%7 N -~ CRISP
s \\ PUTraceAD where data with similar characteristics are clustered together.
70.0% > —@— TraceCRL These newly constructed datasets are subsequently applied to
L et evaluate the performance of different algorithms. The results
indicate that these data characteristics significantly influence
AIOps2023 GAIA .
algorithm performance:

Trace Depth. Fig. 14 clearly illustrates that different al-
gorithms excel at different trace depths. Specifically, when
trace depth is < 3, TraceVAE achieves the highest Fl-score
of 92.2%, slightly outperforming PUTraceAD (91.6%) and
GTrace (91.4%). Both GTrace and TraceVAE show distinct
performance advantages as trace depth increases. Notably,
when the trace depth is more than 6, TraceVAE signif-

AIOps2022 AIOps2020

Fig. 13: Fl-score Comparison Across Datasets

contrast, GTrace achieves a latency anomaly detection F1-
score of 78.2%, primarily due to its focus on modeling latency
features at the span level, unlike other algorithms that operate
solely at the trace level. This span-level modeling allows
GTrace to capture fine-grained latency variations within traces,
leading to more precise anomaly detection that might be
overlooked by trace-level approaches. Furthermore, this table
indicates that current latency detection methods still have room
for improvement, making it a promising direction for future
research.

TABLE IV: Algorithm Performance under Different Anomaly
Types

Structure Latency
Multimodal LSTM 76.5% 62.2%
TraceAnomaly 57.7% 56.0%
CRISP 55.8% 56.2%
PUTraceAD 89.1% 61.7%
TraceCRL 65.9% 53.7%
TraceVAE 96.8 % 76.4%
GTrace 95.6% 78.2%

C. Performance on Various Data Characteristics (RQ2)

In order to thoroughly analyze the impact of data char-
acteristics on the performance of trace anomaly detection
algorithms, we first combine data from the five distinct
datasets into a single, comprehensive dataset. This aggregated
dataset serves as a unified foundation for further analysis.
To better understand how different features affect algorithm

icantly outperforms other algorithms, reaching an F1-
score of 82.3%, while GTrace drops to 66.5%. This suggests
that many anomaly detection methods are capable of effec-
tively handling relatively simple traces with shallow invocation
paths. However, when trace depth grows, the complexity of
invocation logic and multi-layer service interactions increases,
resulting in wider fault propagation and more noticeable varia-
tions in algorithm performance. In such scenarios, TraceVAE’s
dual-variable graph variational autoencoder [17]-[19] appears
better equipped to capture long-range dependencies and con-
textual information. Meanwhile, GTrace shows its strength in
moderate-depth situations, and PUTraceAD remains competi-
tive for traces with small depth.

100

#°. Multimodal LSTM
90 - _— 'g:lc;:numa\y
/7 .oD E . PUTraceAD
1 g % T
/ © K Il Glrace
_ 704 ? Ioo\.. "
£ / - Ve ~,
f o1 7 5. 7\
a5 7 o N\ ||
B] ?: vo_ - - . ? N
N | N |
i /7 o N\ / N /:x, "l
0 /: yo_ = ; o™ - ? N
. 2: Ioo\- . ; ’><D°(\- . ;:><Jod\. v
/_ .oD . / ><OO(\ . . ?:><,oc\ . .
20 L £ N | o« N6 e .
1-3 25 o

Trace Depth
Fig. 14: Algorithm Performance under Different Trace Depths

Span Count. As shown in Fig. 15, GTrace achieves

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSC.2025.3622122

the highest F1-score for traces with 1-5 spans (99.7%),
11-30 spans (70.7%), and more than 30 spans (60.8%),
demonstrating its robust performance across both simple and
highly complex traces. In contrast, TraceVAE excels at 6-
10 spans, attaining an Fl-score of 74.2%, which suggests
that its architecture is well-suited to traces of moderate com-
plexity. Notably, both TraceVAE (99.4%) and PUTraceAD
(99.1%) also approach 99% at 1-5 spans, indicating that
simple traces can be effectively handled by a variety of
methods. Moreover, CRISP exhibits a unique performance
trend: it improves steadily with increasing span count, starting
from 24.3% for traces with 1-5 spans and reaching 59.3%
when the span count exceeds 30. Meanwhile, other methods,
such as Multimodal LSTM [34] and TraceCRL [30], exhibit
moderate performance but do not outperform the optimal
algorithm in any particular range. The span count of a trace
reflects both the breadth and depth of its execution logic,
encompassing horizontal service calls at the same level and
vertical, multi-layered interactions across different services.
Traces with more spans often involve more frequent service
calls, denser data interactions, and greater opportunities for
fault propagation. GTrace’s Tree-LSTM [22], specifically de-
signed for tree structures, effectively captures dependencies
between parent-child nodes, aligning well with typical trace
structures. However, although TraceVAE achieves outstanding
results for traces with a medium or small number of spans,
its detection capability may be limited by its fixed span count
requirement, determined by a predefined max_node_count. A
small max_node_count constrains the model’s ability to deal
with highly complex traces involving a large number of spans.
Meanwhile, CRISP [16] becomes more competitive at higher
span counts, suggesting that its focus on extracting critical
paths is well-suited for scenarios requiring a lot of invocation.
In contrast, methods like PUTraceAD and Multimodal LSTM
maintain high accuracy for relatively simple traces but show
diminished performance as trace complexity grows, due to
their limited capacity for modeling long-range dependencies.
For traces with high span counts, approaches capable of
capturing extensive dependencies, like GTrace, are expected
to yield better anomaly detection results.

Service Count. Fig. 16 illustrates that for traces with 1-
4 services, TraceVAE achieves the highest Fl-score (89.7%),
followed by GTrace (83.5%) and Multimodal LSTM (78.3%).
Similarly, TraceVAE maintains its dominance at 5-8 services
with an Fl-score of 67.9%, while GTrace and Multimodal
LSTM are still competitive at 57.7% and 57.0%, respec-
tively. However, when the number of services exceeds 8,
GTrace outperforms the other methods, reaching 68.1%,
whereas TraceAnomaly trails behind at 59.6%. As the number
of services in a trace increases, fault diagnosis becomes
more challenging. These results suggest that TraceVAE is
particularly effective in relatively simple service topologies,
where modeling key service-to-service interactions can capture
most of the anomaly-relevant information. However, GTrace
demonstrates better performance for traces with more ser-
vices. This is primarily attributed to GTrace’s Node-wise VAE
encoder, which leverages the service name field to capture
each service’s impact on overall trace latency. In contrast,

10
100
¢ B ## Multimodal LSTM
e 4 —— TraceAnomaly
90 4 ; s B \ / CRISP
|] ¢ - ~ . PUTraceAD
gad 4 o . TraceCRL
; ¢ . * TraceVAE
ol ; Dt \' |- Il Glrace
§ v o(\.- . . .
E 60 4 ; c‘\.- ; '- J°| .‘ <
- / o / . 3.
" 0 ; o‘\ § |] _><:°| ‘ /:< < 1
7 c\- 7 o o™ s o /7»<0 .
40 4 | o o\ . | 3. e ;: Y. /: "¢ .
//: ¢ e ; X N 2 CIR /_-<o N .
1 7 D(\- /s :)(30\ ’ | 7><Ja'\.n /7<ID<\. .
30 | o\- j :\. 5_ :|\- 5_ L.
B . B ‘ w -
20 /_f clt . / :><:|Ia . B _><J?| . /_<°‘<\|
1-5 6-10 11-30 =30
Span Count

Fig. 15: Algorithm Performance under Different Span Counts

other anomaly detection methods such as PUTraceAD, CRISP,
and TraceCRL show relatively limited adaptability, and their
inability to consistently model detailed inter-service interac-
tions hinders their performance, especially as system scale
increases. These observations underscore the importance of
capturing nuanced interactions across multiple services, which
is critical for accurate anomaly detection in large-scale trace
data.

100

2 Multimodal LSTM
—— TraceAnomaly

90 4 m N 7 CRISP
80 - : : Tracr:é:L
7 T
G e ,
5 60 - o) —
i 2 IOD .l 7 -. , :
EU A N B = |
7 e 7\~ 2: o
40 ?: IOO\" ? ><' ,\... ;E, ‘:oc\.-
307 ?: Ioo\ : ¢_><o° \-. “ :oc '
/7 " | - /7>< O(\.- §:><° \ .
20 /_ 0 e /_ Dt e /_'B(:‘c .
14 5-8 >8

Service Count

Fig. 16: Algorithm Performance under Different Service
Counts

Anomaly Ratio. According to Fig. 17, GTrace achieves
the highest Fl-score (68.7%) when the anomaly ratio is
0%, whereas TraceVAE leads at 0.5% (69.1%). For 1%,
GTrace again outperforms other methods at 61.8%, but when
the anomaly ratio reaches 3%, TraceVAE stands out
with 56.6%. Other algorithms, including Multimodal LSTM,
TraceAnomaly, and CRISP, exhibit moderate performance
across all anomaly levels. Notably, PUTraceAD loses detection
capability for 0% or 0.5% but achieves 41.9% at 1% and
55.0% at 3%. This is consistent with its positive-unlabeled

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSC.2025.3622122

learning paradigm, which relies on the presence of a sufficient
number of positive (abnormal) samples to perform effective
training. PUTraceAD’s detection performance deteriorates in
the absence of sufficient anomalies to direct the optimization
process. Additionally, Since abnormal traces account for ap-
proximately 1% of total traces [40] in real-world production
environments, GTrace’s robustness at this ratio is particularly
noteworthy. However, as the anomaly ratio further increases,
unlike methods such as GTrace that use negative log-likelihood
(NLL) directly as anomaly scores, TraceVAE’s techniques,
including Bernoulli & Categorical Scaling, Node Count Nor-
malization, and Gaussian Std-Limit [20], reduce entropy gaps
effectively , mitigate the negative impact of noise, and enable
more accurate differentiation between normal and anomalous
traces. This findings underscore the importance of designing
models that can handle increased noise effectively, ensuring
reliable anomaly identification even in highly contaminated
datasets.

100

72 Multimodal LSTM
—— TraceAnomaly

90 \ / CRISP
~ . PUTraceAD
80 4 \ TraceCRL
. TraceVAE
I Glrace
70 4
’é‘ .
< .
@V
S 60 ° *
GJ’ . »
- L4 . [
. 504 ¢ i —_ i -] .

w0 \ ~ N 7N
;3(\ /><o\

| |
| 5

30 4 p‘ N §3< \'. §:><)°‘_ ;:<.°\
9 o ;3(\. 4;)<o\ . £:<.°\.

20 T T
0% 0.50% 1% 3%
Anomaly Ratio

Fig. 17: Algorithm Performance under Different Anomaly
Ratios

D. Efficiency analysis of different algorithms

To evaluate the detection efficiency of various algorithms,
we measure the time consumption during the training and
detection phases using the same dataset. Specifically, 51,386
traces are randomly sampled from the TrainTicket dataset as
the training set, while the test set comprises 51,309 normal
traces and 25,197 anomalous traces. The time consumption
details are presented in Table V.

TABLE V: Training Time and Detecting Speeding of Different
Algorithms

Algorithm Training Time | Detecting Speed
Multimodal LSTM 419 s 4500 traces/s
TraceAnomaly 3422 s 107 traces/s
CRISP 3827 s 107 traces/s
TraceCRL 13176 s 700 traces/s
PUTraceAD 1715 s 548 traces/s
TraceVAE 23497 s 257 traces/s
GTrace 1641 s 10211 traces/s

The results reveal notable differences in time efficiency
among the algorithms. Multimodal LSTM demonstrates the
lowest training overhead, owing to its approach of indepen-
dently modeling temporal and structural features with LSTMs.
This architecture simplifies the learning process and leads to
superior training efficiency compared to other models with
more complex graph-based encoders or latent variable mech-
anisms. Conversely, TraceVAE requires a significant amount
of training time, which reflects the computational complexity
of its dual-variable graph variational autoencoder architecture,
even if it has demonstrated outstanding detection performance
in prior experiments. The model’s training cost may hinder its
real-time adaptability or deployment in resource-constrained
environments. Similarly, TraceCRL exhibits considerable time
consumption during trace representation generation, even with
GPU acceleration. The model’s reliance on contrastive learn-
ing frameworks, involving large numbers of positive and neg-
ative sample pairs, results in high computational complexity.
Notably, GTrace achieves remarkable detection speed, primar-
ily attributed to its caching techniques and trace grouping
strategies, which allow shared representations and precom-
puted features to be reused across similar trace structures. By
avoiding redundant computation, GTrace effectively minimizes
time consumption during detection phases, making it suitable
for real-time anomaly detection scenarios where response time
is critical.

E. Recommended Algorithms (RQ3)

In previous experiments, we evaluated the performance
of various algorithms on datasets characterized by distinct
individual features, primarily focusing on the impact of sin-
gle features on detection performance. However, real-world
datasets typically exhibit multiple coexisting features, ne-
cessitating a more comprehensive evaluation. To bridge this
gap and approximate more realistic application scenarios, we
extend our analysis by employing a decision tree model [41]
to integrate multiple dataset characteristics, as illustrated in
Fig. 18. The results demonstrate that when the proportion
of abnormal data in the dataset exceeds 10%, the semi-
supervised anomaly detection method PUTraceAD is preferred
due to its ability to effectively utilize anomaly information.
For datasets with lower anomaly proportions, the choice of
the algorithm depends on additional factors. If the number
of spans in a trace is < 5 or > 30, we recommend GTrace,
benefiting from its Tree-LSTM architecture that handles both
shallow and complex hierarchical structures efficiently. For
traces with 6-10 spans, the selection depends on the trace
depth: TraceVAE performs better for traces with a depth of 3
or less, whereas GTrace is more effective for deeper traces due
to its ability to capture long-range dependencies. For traces
with spans ranging from 11 to 30, TraceVAE is preferable
when the anomaly proportion is < 1% or > 3%; otherwise,
GTrace remains the optimal choice.

This hierarchical decision-making framework provides a
systematic and practical strategy for selecting the most suitable
anomaly detection algorithm across diverse real-world scenar-
ios, effectively accounting for the interplay of multiple dataset
characteristics.

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSC.2025.3622122

J <5 >10 & <30 PUTraceAD

GTrace - >30 >5&<10

<1% >3% > 1% & <3%
s ; '
l_ —1 TraceVAE

GTrace

TraceVAE GTrace

Fig. 18: A decision tree based on multiple datasets’ character-
istics

V. THREATS TO VALIDITY

Algorithms. The primary threat to validity in this empirical
study lies in the models’ configuration. By default, we utilize
the hyperparameter settings given in the original publications
for the corresponding algorithm and conduct each experiment
at least three times. However, when suboptimal results are
observed on certain datasets, adjustments are made to improve
detection performance. While using default hyperparameters is
a practical approach, fine-tuning them to align with the unique
characteristics of each dataset may result in better detection
outcomes.

Datasets. The external threat to validity stems from the
datasets used in the evaluation. Although five distinct datasets
were employed to assess algorithm performance, their data
features may not comprehensively reflect the wide range of
real-world scenarios. Each dataset has unique characteristics
and inherent limitations, potentially failing to capture the
full diversity and complexity of data encountered in practical
applications. To overcome this restriction, we will focus on
collecting more datasets from a broader range of scenarios
and domains in the future.

VI. DISCUSSION AND FUTURE DIRECTIONS

This section builds upon the empirical findings and provides
a deeper exploration of the insights gained from benchmarking
trace anomaly detection algorithms. We first discuss the data-
driven strategy required for selecting an optimal existing
algorithm. Following this, we address the current limitations
observed in anomaly detection methodologies and outline
promising research directions.

Insights for Existing Algorithm Selection. Our extensive
evaluation demonstrates that the most architecturally complex
or recently published method is not necessarily the most
effective across all scenarios. The effectiveness of an algorithm
is deeply intertwined with the characteristics of trace data.
Therefore, to select the most appropriate method for a specific
scenario, practitioners first need to conduct a thorough analysis
of their production trace data, considering factors like span
count, service count, trace depth, and anomaly ratio, and
then follow our recommended strategy. For example, we
recommend PUTraceAD for data with high anomaly ratios.
For traces with a large number of spans or a large number of
services, GTrace is the preferred choice. Conversely, for trace
data with shallow depth, we suggest TraceVAE. Additionally,

when higher detection efficiency is the primary goal, GTrace
is the most suitable option.

Future Research Directions. Despite the progress made
by existing trace anomaly detection algorithms, our empiri-
cal results reveal current limitations and future optimization
directions.

« Towards fine-grained span-level anomaly detection.
Many anomaly detection algorithms [14], [16], [20], [25],
[34] operate primarily at the trace level, labeling an
entire trace as normal or abnormal. This trace-centric
approach is insufficient for detailed diagnosis. Future
work should focus on optimizing the capability for span-
level detection, which is essential for root cause analysis.

o Building upon the strengths of prior methods. Re-
searchers should aim to adopt effective design elements
from existing work while minimizing architectural con-
straints that may negatively impact model performance.
For example, TraceVAE’s use of a fixed span count per
trace leads to performance degradation on traces with
high span counts, which should be avoided in future
designs. Building upon established methodologies while
addressing their limitations, future anomaly detection
methods can integrate the entropy gap reduction strategies
pioneered in TraceVAE. Specifically, this involves imple-
menting Bernoulli & Categorical Scaling for structural
anomaly identification, Node Count Normalization for
dimensional consistency, and Gaussian Std-Limit thresh-
olding for latency anomalies. These techniques are to
be synergistically combined with the hierarchical graph
encoding architecture of GTrace, which separates global
structure modeling from node-level feature processing
through its innovative dispatching layer. Furthermore, the
entire system can leverage GTrace’s optimized caching
strategy that utilizes dynamic programming and LRU-
cached trees to enable batched processing of merged
subgraphs, thereby enhancing overall efficiency and scal-
ability.

VII. CONCLUSION

This paper presents a comprehensive empirical study on
anomaly detection algorithms used in distributed tracing sys-
tems, addressing critical challenges in selecting and applying
suitable models for real-world scenarios. By systematically
evaluating multiple state-of-the-art algorithms across diverse
datasets, we provide an in-depth analysis of their respective
strengths and limitations under varying data characteristics,
including trace depth, span count, service count, and anomaly
ratio. The labeled datasets and algorithm implementation have
been made publicly available. Future studies can seamlessly
apply these models to new datasets by simply converting the
data into our standardized format, eliminating the need for
additional format-specific preprocessing for each model. This
not only supports experiment reproducibility but also signif-
icantly facilitates future research in trace anomaly detection.
Furthermore, we offer practical guidance for selecting suitable
algorithms based on different data characteristics, bridging the
gap between academic research and industrial applications.

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSC.2025.3622122

To the best of our knowledge, this is the first comprehensive
empirical study on trace anomaly detection, providing valuable
insights to guide both research and practical deployment.

[1]

[2]

[3

=

[4

=

[5

—

[6]

[8

[t}

[9
[10

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

REFERENCES

M. Villamizar, O. Garcés, H. Castro, M. Verano, L. Salamanca, R. Casal-
las, and S. Gil, “Evaluating the monolithic and the microservice archi-
tecture pattern to deploy web applications in the cloud,” in 2015 10th
Computing Colombian Conference (10CCC), 2015, pp. 583-590.

N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, “Microservices: Yesterday, today,
and tomorrow,” in Present and Ulterior Software Engineering,
M. Mazzara and B. Meyer, Eds. Cham, Switzerland: Springer
International Publishing, 2017, pp. 195-216. [Online]. Available:
https://doi.org/10.48550/arXiv.1606.04036

P. Jamshidi, C. Pahl, N. C. Mendonga, J. Lewis, and S. Tilkov, “Mi-
croservices: The journey so far and challenges ahead,” IEEE Software,
vol. 35, no. 3, pp. 24-35, 2018.

P. Liu, H. Xu, Q. Ouyang, R. Jiao, Z. Chen, S. Zhang, J. Yang, L. Mo,
J. Zeng, W. Xue, and D. Pei, “Unsupervised detection of microservice
trace anomalies through service-level deep bayesian networks,” in 2020
IEEE 31st International Symposium on Software Reliability Engineering
(ISSRE), Oct 2020, pp. 48-58.

J. Kaldor et al., “Canopy: An end-to-end performance tracing and
analysis system,” in Proceedings of the 26th Symposium on Operating
Systems Principles, 2017.

X. Guo, X. Peng, H. Wang, W. Li, H. Jiang, D. Ding, T. Xie, and L. Su,
“Graph-based trace analysis for microservice architecture understanding
and problem diagnosis,” in Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2020. New York,
NY, USA: Association for Computing Machinery, 2020, p. 1387-1397.
[Online]. Available: https://doi.org/10.1145/3368089.3417066

C. Zhang, X. Peng, C. Sha, K. Zhang, Z. Fu, X. Wu, Q. Lin, and
D. Zhang, “Deeptralog: Trace-log combined microservice anomaly de-
tection through graph-based deep learning,” in 2022 IEEE/ACM 44th
International Conference on Software Engineering (ICSE), 2022, pp.
623-634.
Jaegertracing.io,
jaegertracing.io/.
Twitter, “Zipkin,” [Online]. Available: https://zipkin.io/.
Skywalking.apache.org, “Apache skywalking,” [Online]. Available: http:
/Iskywalking.apache.org/.

Opentracing.io, “Opentracing,” [Online]. Available: http://opentracing.
io/.

Z. Xie, C. Pei, W. Li, H. Jiang, L. Su, J. Li, G. Xie, and D. Pei,
“From point-wise to group-wise: A fast and accurate microservice trace
anomaly detection approach,” in Proceedings of the 31st ACM Joint
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2023. New York,
NY, USA: Association for Computing Machinery, 2023, p. 1739-1749.
[Online]. Available: https://doi.org/10.1145/3611643.3613861

D. P. Kingma, “Auto-encoding variational bayes,” arXiv preprint
arXiv:1312.6114, 2013.

P. Liu, H. Xu, Q. Ouyang, R. Jiao, Z. Chen, S. Zhang, J. Yang, L. Mo,
J. Zeng, W. Xue, and D. Pei, “Unsupervised detection of microservice
trace anomalies through service-level deep bayesian networks,” in 2020
IEEE 31st International Symposium on Software Reliability Engineering
(ISSRE), 2020, pp. 48-58.

D. Rezende and S. Mohamed, “Variational inference with normalizing
flows,” in International conference on machine learning. PMLR, 2015,
pp. 1530-1538.

Z. Zhang, M. K. Ramanathan, P. Raj, A. Parwal, T. Sherwood, and
M. Chabbi, “CRISP: Critical path analysis of Large-Scale microservice
architectures,” in 2022 USENIX Annual Technical Conference (USENIX
ATC 22). Carlsbad, CA: USENIX Association, Jul. 2022, pp. 655-672.
Y. Kwon, J. Yoo, Y.-S. Choi, W.-J. Son, D. Lee, and S. Kang,
“Efficient learning of non-autoregressive graph variational autoencoders
for molecular graph generation,” Journal of Cheminformatics, vol. 11,
no. 1, p. 70, 2019. [Online]. Available: https://doi.org/10.1186/
s13321-019-0396-x

J. Mitton, H. M. Senn, K. Wynne, and R. Murray-Smith, “A graph vae
and graph transformer approach to generating molecular graphs,” arXiv
preprint arXiv:2104.04345, 2021.

“Jaeger,” [Online]. Available: https://www.

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

(35]

M. Simonovsky and N. Komodakis, “Graphvae: Towards generation
of small graphs using variational autoencoders,” in Artificial Neural
Networks and Machine Learning—ICANN 2018: 27th International Con-

ference on Artificial Neural Networks, Rhodes, Greece, October 4-7,

2018, Proceedings, Part I 27. Springer, 2018, pp. 412-422.

Z. Xie, H. Xu, W. Chen, W. Li, H. Jiang, L. Su, H. Wang,
and D. Pei, “Unsupervised anomaly detection on microservice traces
through graph vae,” in Proceedings of the ACM Web Conference
2023, ser. WWW ’23. New York, NY, USA: Association for
Computing Machinery, 2023, p. 2874-2884. [Online]. Available:
https://doi.org/10.1145/3543507.3583215

P. Velickovi¢, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” in International Conference
on Learning Representations, 2018. [Online]. Available: https:
/lopenreview.net/forum?id=rJXMpikCZ

M. Ahmed, M. R. Samee, and R. E. Mercer, “Improving tree-Istm with
tree attention,” in 2019 IEEE 13th International Conference on Semantic
Computing (ICSC), 2019, pp. 247-254.

W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proceedings of the 31st International
Conference on Neural Information Processing Systems, ser. NIPS’17.
Red Hook, NY, USA: Curran Associates Inc., 2017, p. 1025-1035.

M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end deep
learning architecture for graph classification,” in Proceedings of the
AAAI conference on artificial intelligence, vol. 32, no. 1, 2018.

K. Zhang, C. Zhang, X. Peng, and C. Sha, “Putracead: Trace anomaly
detection with partial labels based on gnn and pu learning,” in 2022
IEEE 33rd International Symposium on Software Reliability Engineering
(ISSRE), 2022, pp. 239-250.

R. Kiryo, G. Niu, M. C. du Plessis, and M. Sugiyama, “Positive-
unlabeled learning with non-negative risk estimator,” in Proceedings
of the 31st International Conference on Neural Information Processing
Systems, ser. NIPS’17. Red Hook, NY, USA: Curran Associates Inc.,
2017, p. 1674-1684.

M. Schuster and K. Nakajima, “Japanese and korean voice search,” in
2012 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2012, pp. 5149-5152.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer,
P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. Le Scao,
S. Gugger, M. Drame, Q. Lhoest, and A. Rush, “Transformers: State-
of-the-art natural language processing,” in Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing:
System Demonstrations, Q. Liu and D. Schlangen, Eds. Online:
Association for Computational Linguistics, Oct. 2020, pp. 38-45.
[Online]. Available: https://aclanthology.org/2020.emnlp-demos.6

Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, “Graph con-
trastive learning with augmentations,” Advances in neural information
processing systems, vol. 33, pp. 5812-5823, 2020.

C. Zhang, X. Peng, T. Zhou, C. Sha, Z. Yan, Y. Chen, and H. Yang,
“Tracecrl: contrastive representation learning for microservice trace
analysis,” in Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE 2022. New York, NY, USA: Association
for Computing Machinery, 2022, p. 1221-1232. [Online]. Available:
https://doi.org/10.1145/3540250.3549146

B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
ser. KDD ’14. New York, NY, USA: Association for Computing
Machinery, 2014, p. 701-710. [Online]. Available: https://doi.org/10.
1145/2623330.2623732

B. Scholkopf, R. C. Williamson,

A. Smola, J. Shawe-Taylor,

and J. Platt, “Support vector method for novelty detection,” in
Advances in Neural Information Processing Systems, S. Solla,
T. Leen, and K. Miiller, Eds., vol. 12. MIT Press, 1999.

[Online]. Available: https://proceedings.neurips.cc/paper_files/paper/
1999/file/8725fb777£25776£ta9076e44fcfd776-Paper.pdf

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735-1780, 11 1997. [Online].
Available: https://doi.org/10.1162/nec0.1997.9.8.1735

S. Nedelkoski, J. Cardoso, and O. Kao, “Anomaly detection from
system tracing data using multimodal deep learning,” in 20/9 IEEE
12th International Conference on Cloud Computing (CLOUD), 2019,
pp. 179-186.

X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding, “Fault
analysis and debugging of microservice systems: Industrial survey,

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

[36]

(371
[38]
[39]

[40]

[41]

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSC.2025.3622122

benchmark system, and empirical study,” IEEE Transactions on Software
Engineering, vol. 47, no. 2, pp. 243-260, 2021.

X. Zhou, X. Peng, T. Xie, J. Sun, C. Xu, C. Ji, and W. Zhao,
“Benchmarking microservice systems for software engineering
research,” in Proceedings of the 40th International Conference
on Software Engineering: Companion Proceeedings, ser. ICSE ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
323-324. [Online]. Available: https://doi.org/10.1145/3183440.3194991
CloudWise, “GAIA,” [Online]. Available: https://github.com/
CloudWise-OpenSource/GAIA-DataSet, 2021.

NetManAIOps, “AlOps Challenge 2020 Data,” [Online]. Available:
https://github.com/NetManAIOps/AlOps-Challenge-2020-Data, 2020.
Google Cloud Platform, “Online Boutique,” [Online]. Available: https:
//github.com/GoogleCloudPlatform/microservices-demo.

S. Zhang, Z. Pan, H. Liu, P. Jin, Y. Sun, Q. Ouyang, J. Wang,
X. Jia, Y. Zhang, H. Yang, Y. Zou, and D. Pei, “Efficient and robust
trace anomaly detection for large-scale microservice systems,” in 2023
IEEE 34th International Symposium on Software Reliability Engineering
(ISSRE), 2023, pp. 69-79.

L. Breiman, J. Friedman, R. A. Olshen, and C. J. Stone, Classification
and Regression Trees, 1st ed. New York: Chapman and Hall/CRC,
1984, eBook Published 19 October 2017.

Yonggian Sun received the B.S. degree in statistical
specialty from Northwestern Polytechnical Univer-
sity, Xi’an, China, in 2012, and Ph.D. in computer
science from Tsinghua University, Beijing, China,
in 2018. He is currently an assistant professor in
the College of Software, Nankai University, Tianjin,
China. His research interests include anomaly detec-
tion and root cause localization in service manage-
ment.

Minyi Shao received the B.E. degree in software
engineering from Nankai University, Tianjin, China,
in 2023. She is currently working toward the M.E.
degree with the Department of Software Engineer-
ing, Nankai University. Her research interests in-
clude AIOps and anomaly detection in service man-
agement.

Xiaohui Nie received the B.E. degree in computer
science and technology from Jilin University, Jilin,
China, in 2013, and Ph.D. in computer science from
Tsinghua University, Beijing, China, in 2019. He
is currently an associate professor with the Com-
puter Network Information Center (CNIC), Chinese
Academy of Sciences (CAS), Beijing, China. His re-
search interests include AIOps and Internet Security.

Kaiwen Yang received the B.E. degree in software
engineering from Nankai University, Tianjin, China,
in 2025. She is currently working toward the M.E.
degree with the Department of Software Engineer-
ing, Nankai University. Her research interests in-
clude AIOps and LLM.

Xingda Li He is currently working toward the B.E.
degree with the Department of Software Engineer-
ing, Nankai University. His research interests include
anomaly detection and root cause localization.

Bowen Hao received the B.E. degree in software
engineering from Nankai University, Tianjin, China,
in 2023. He is currently working toward M.E. de-
gree with the Department of Software Engineering,
Nankai University. His research interests include
LLM for AIOps and software engineering.

Shenglin Zhang received B.S. in network engineer-
ing from the School of Computer Science and Tech-
nology, Xidian University, Xi’an, China, in 2012 and
Ph.D. in computer science from Tsinghua University,
Beijing, China, in 2017. He is currently an associate
professor with the College of Software, Nankai Uni-
versity, Tianjin, China. His current research interests
include failure detection, diagnosis and prediction
for service management.

Changhua Pei received the B.E. and Ph.D. in
computer science from the Department of Computer
Science and Technology, Tsinghua University in
2012 and 2017, respectively. He is currently an asso-
ciate professor with the Computer Network Informa-
tion Center (CNIC), Chinese Academy of Sciences
(CAS), Beijing, China. His research interests include
AIOps and Al for Networking.

Dongbiao He received the PhD degree in com-
puter science and technology from Tsinghua Univer-
sity, Beijing, China in 2019. His research interests
include networking and edge computing systems.
He received his B.E. degree from Jilin University,
China, in 2013. He is an associate professor at
the Computer Network Information Center of the
Chinese Academy of Sciences.

Yanbiao Li received the B.S. degree in mathematics
from Hunan University, Changsha, China, in 2009,
and Ph.D. in computer science from Hunan Uni-
versity, Changsha, China, in 2016. He is currently
a professor with the Computer Network Informa-
tion Center (CNIC), Chinese Academy of Science
(CAS), Beijing, China. His research interests include
efficient and reliable routing, and satellite network.

Dan Pei received the B.E. and M.S. degree in
computer science from the Department of Computer
Science and Technology, Tsinghua University in
1997 and 2000, respectively, and the Ph.D. degree
in computer science from the Computer Science
Department, University of California, Los Ange-
les (UCLA) in 2005. He is currently an associate
professor in the Department of Computer Science
and Technology, Tsinghua University. His research
interests include network and service management
in general. He is an IEEE and ACM senior member.

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

