
FoundRoot: Towards Foundation Model for Root Cause Analysis
via Structured Deep Thinking

Zhe Xie
Tsinghua University

China
xiez22@mails.tsinghua.edu.cn

Zeyan Li
ByteDance
China

lizeyan.42@bytedance.com

Xiao He
ByteDance
China

xiao.hx@bytedance.com

Shenglin Zhang
Nankai University

China
zhangsl@nankai.edu.cn

Longlong Xu
Tsinghua University

China
xll23@mails.tsinghua.edu.cn

Yuzhuo Yang
Tsinghua University

China
yangyz24@mails.tsinghua.edu.cn

Tieying Zhang∗
ByteDance

USA
tieying.zhang@bytedance.com

Jianjun Chen
ByteDance

USA
jianjun.chen@bytedance.com

Rui Shi
ByteDance
China

shirui@bytedance.com

Dan Pei
Tsinghua University

China
peidan@tsinghua.edu.cn

Abstract
Root Cause Analysis (RCA) for service systems is critical for en-
suring their reliability, while its application remains challenging
because of the large number of metrics and the complex causal
relationships. Classical RCA methods typically rely on statisti-
cal or rule-based approaches, making them difficult to generalize
to unseen systems. The introduction of Large Language Models
(LLMs) has partly addressed these challenges with their under-
standing of the domain-specific semantics of metrics and reasoning
capabilities. However, they still struggle with incomplete or shal-
low reasoning when facing a large amount of metrics. To address
these limitations, we present FoundRoot, a reinforcement learning
(RL)-enhanced LLM foundation model for zero-shot RCA. Found-
Root features a novel structured deep thinking paradigm, which
breaks down the RCA reasoning into several goal-oriented sub-
steps, enhancing the completeness and reasoning capability of the
causal relationship. We collect and curate diverse open-sourced
RCA datasets across different systems and introduce a data aug-
mentation technique to ensure data scalability. We design a two-
stage training pipeline that includes supervised fine-tuning (SFT)
and RL to align the LLM with the structured deep thinking para-
digm, which significantly improves its reasoning quality. Extensive
experiments on four datasets show that FoundRoot outperforms

∗Corresponding author.

This work is licensed under a Creative Commons Attribution 4.0 International License.
ICSE ’26, Rio de Janeiro, Brazil
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2025-3/2026/04
https://doi.org/10.1145/3744916.3787814

both classical and LLM-based methods in RCA accuracy on un-
seen systems, achieving 4.5%-48.6% mean reciprocal rank (MRR)
improvements. The source code and data of this paper is available
at: https://github.com/NetManAIOps/FoundRoot.

CCS Concepts
• Software and its engineering → Maintaining software; •
Computing methodologies→ Natural language generation.

Keywords
Root Cause Analysis, LLM Reasoning

ACM Reference Format:
Zhe Xie, Zeyan Li, Xiao He, Shenglin Zhang, Longlong Xu, Yuzhuo Yang,
Tieying Zhang, Jianjun Chen, Rui Shi, and Dan Pei. 2026. FoundRoot: To-
wards Foundation Model for Root Cause Analysis via Structured Deep
Thinking. In 2026 IEEE/ACM 48th International Conference on Software Engi-
neering (ICSE ’26), April 12–18, 2026, Rio de Janeiro, Brazil. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3744916.3787814

1 Introduction
Nowadays, service-oriented and component-based systems are
widely adopted. As their scale grows and failures become inevitable,
accurately identifying the root cause of failures is essential for rapid
recovery. Therefore, root cause analysis (RCA) is critical to ensur-
ing the reliability of such systems [53]. In these systems, metrics
are collected to monitor the status of components. RCA algorithms
analyze these metrics to locate the root cause of failures, assisting
operators in achieving efficient recovery. However, in real-world
systems, failures often propagate across components due to de-
pendencies, and their underlying causal relationships are highly

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3744916.3787814
https://github.com/NetManAIOps/FoundRoot
https://doi.org/10.1145/3744916.3787814

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Zhe Xie, Zeyan Li, Xiao He, Shenglin Zhang, Longlong Xu, Yuzhuo Yang, Tieying Zhang, Jianjun Chen, Rui Shi, and Dan Pei

Math RCA

Input
Svc-A

Pod-0 Host

Pod-1

Large Number of Metrics
and Complex Graph

…
Short, self-contained

text problem

Reason

First, transform…
Then, find the value…
When x=-3, we have…
So the min value is …

First, I need to analyze the metrics in
svc-A, I found a clear spike. Then, …
I need to find the causal relationship
between … So, the root cause is …

Reason over abstract,
well-defined variables

and relationships

Interpret multivariate metrics
with diverse semantics and
implicit causal structures

Output
-3

Root Cause: Svc-A. Failure
propagation: The failure stars from

Svc-A to both pods, which…

Numeric / Symbolic answer
Root cause and explanation
about failure propagation

<latexit sha1_base64="m03eAAuSD9e2Suip+fqS866YNS4=">AAACGXicbVDLSgMxFM3UV62vUZdugh1BqJSZqtVNsehClxXsAzq1ZNK0Dc1khiRTWob+hht/xY0LRVzqyr8xfSy0euDC4Zx7ufceL2RUKtv+MhILi0vLK8nV1Nr6xuaWub1TkUEkMCnjgAWi5iFJGOWkrKhipBYKgnyPkarXuxr71T4Rkgb8Tg1D0vBRh9M2xUhpqWnaLg8obxGu4DXtEw6twX0ukxsUjq0j14WW61Mej6WTQeZ0VLAummbaztoTwL/EmZE0mKHUND/cVoAjX6/ADElZd+xQNWIkFMWMjFJuJEmIcA91SF1TjnwiG/HksxE80EoLtgOhS584UX9OxMiXcuh7utNHqivnvbH4n1ePVPu8EVMeRopwPF3UjhhUARzHBFtUEKzYUBOEBdW3QtxFAmGlw0zpEJz5l/+SSi7r5LP521y6eDmLIwn2wD44BA44A0VwA0qgDDB4AE/gBbwaj8az8Wa8T1sTxmxmF/yC8fkN8g6dvA==</latexit>

Given x2 + 2x = 3,
min x2 + 4x + 5 =?

…

Figure 1: Comparison of math and RCA reasoning.

complex, making RCA particularly challenging. Additionally, his-
torical failure data is often scarce or unavailable because collecting
such data requires extensive manual effort. This highlights the need
for zero-shot RCA methods that can identify faults directly from
current monitoring data without relying on historical labels.

Classical metric-based RCA approaches usually rely on the anal-
ysis of numerical values of the metrics to infer causal relation-
ships [20, 23, 25]. However, real-world metric data is often noisy
and incomplete. To address this, many methods incorporate expert-
defined rules tailored to specific systems [16, 26]. These rules are
difficult to scale and cannot be generalized across different en-
vironments. Fundamentally, these methods cannot interpret the
semantics carried by the meta information of metrics (e.g., the
domain-specific semantics inferred from metric names), limiting
their effectiveness in complex and dynamic systems.

Since the emergence of LLMs, many studies have explored their
application to RCA [34, 54], leveraging their strengths in under-
standing the domain-specific semantics ofmonitoringmetrics.Main-
stream approaches employ agent-based methods [32, 38, 49], where
time series analysis tools are invoked to assist in analyzing metrics.
However, these approaches still struggle to reason about the com-
plex causal relationships among multivariate time series due to the
large number of metrics and their intricate causal dependencies.

With the introduction of the “deep thinking” paradigm in Ope-
nAI’s o1 [31] model, the reasoning capabilities of LLMs are signif-
icantly improved, which we find to be beneficial for RCA tasks
(see Section 2.3). Nevertheless, the current application of LLM
deep thinking to RCA remains limited in its effectiveness. Exist-
ing deep-thinking benchmarks for LLMs have primarily focused
on structured domains such as mathematics and code [45]. As
illustrated in Figure 1, RCA tasks differ significantly, requiring
comprehensive analysis of a large number of metrics and complex
component graphs. We find that existing LLMs often encounter se-
rious incompleteness and shallow reasoning during deep thinking
(see Section 2.3) when applied to RCA tasks, limiting their accuracy.
However, building an LLM for RCA faces several challenges. First,
RCA tasks involve a large amount of metrics data and component

dependencies, which differ fundamentally from the well-structured
inputs in math or code reasoning. Second, to perform zero-shot
generalization across different environments, the model should be
easily adapted to systems with varying architectures. Third, col-
lecting high-quality datasets for RCA remains challenging due to
the diversity of system architectures and data formats, resulting in
limited training resources for LLMs.

In this work, we propose structured deep thinking, a novel
LLM-based reasoning strategy for RCA tasks. Structured deep think-
ing breaks down the overall reasoning process of RCA into several
substeps. Each substep focuses on reasoning for a specific purpose,
and all substeps are completed within a single LLM inference, en-
suring logical coherence in the output. This design significantly
mitigates the incompleteness and shallow reasoning while pre-
serving the logical coherence inherent in numerous metric inputs.
To address the challenge of dataset scarcity, we conducted an ex-
tensive search for existing open-source RCA datasets that include
metrics. Finally, we collected 10 high-quality open-sourced datasets,
which are across different systems. To the best of our knowledge,
this is the largest collection of datasets in existing RCA research.
Building upon structured deep thinking, we design a two-stage
training pipeline: a warm-up supervised fine-tuning (SFT) followed
by reinforcement learning (RL), to significantly improve the LLM’s
reasoning capabilities for RCA. Based on these efforts, we intro-
duce FoundRoot, an LLM equipped with structured deep thinking
capabilities for zero-shot RCA. Our extensive experiments across
multiple real-world RCA datasets demonstrate that FoundRoot
generalizes well to unseen systems and significantly outperforms
both traditional statistical methods and strong LLM baselines. The
datasets, source code, and the model checkpoints are available at
https://github.com/NetManAIOps/FoundRoot.

Our contributions are as follows:

• Wepresent FoundRoot, the first reinforcement learning-enhanced
LLM foundation model for zero-shot root cause analysis.

• We propose a novel structured deep thinking paradigm that de-
composes RCA reasoning into goal-oriented substeps, improving
the completeness and causal reasoning capability of LLMs.

• We show that the two-stage training pipeline, which integrates
SFT and RL with structured deep thinking, can significantly en-
hance the LLM’s zero-shot generalization to unseen systems.

• We collect and curate a diverse set of high-quality RCA datasets,
and show that the proposed FoundRoot model consistently out-
performs both classical and LLM-based baselines.

2 Preliminaries and Motivation
2.1 Problem Formulation
In this paper, we formulate the task for zero-shot RCA foundation
models as follows. In a collection of datasets D, each dataset 𝐷𝑚 ∈
D contains several failure cases. Each failure case is composed of:

• A set of multivariate time series windows X = {(𝑥𝑖 ,𝑚𝑖 , 𝑐𝑖)}𝑁𝑖=1,
where 𝑥𝑖 ∈ R𝑇 is the time series of the 𝑖-th metric,𝑚𝑖 is its name,
and 𝑐𝑖 ∈ C is the associated component.

• A component dependency graph G = (C, E), where C denotes
the set of components and E denotes the set of edges.

• A failure root cause component 𝑐𝑟𝑐 .

https://github.com/NetManAIOps/FoundRoot

FoundRoot: Towards Foundation Model for Root Cause Analysis via Structured Deep Thinking ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

System A System B

Different Architectures

Different Companies

Unrelated

Supervised Unsupervised Zero-Shot
Foundation Model

Train on A
Test on A

Can not
be used B

Test on A and B

Train on A
(any many

other datasets)
Test on B
(any many

other datasets)

…

…

Figure 2: Types of Models for RCA

The goal is to predict a ranked list Y of the components:

Y = 𝑓𝜃 (X,G) where Y ⊆ C and 𝑦0 = 𝑐𝑟𝑐

In the zero-shot foundation model setting (Figure 2), the model
𝑓𝜃 is trained on datasets Dtrain and evaluated on disjoint datasets
Dtest with different system structures andmetric spaces (i.e.,Dtrain∩
Dtest = ∅). This setting requires the model to generalize across
heterogeneous systems without retraining.

2.2 Classical Methods
Classical unsupervised RCAmethods [19, 24, 26, 29, 39, 44] typically
follow a three-stage pipeline:
(1) First, anomaly detection algorithms are applied to identify the

anomalies in time series data.
(2) Next, causal graphs are constructed to capture relationships

amongmetrics. Given the component graphG, the causal graphs
are usually built using statistical methods (e.g., causal discovery)
and predefined expert rules. However, such methods often fail
to incorporate the domain-specific semantics of the metrics,
leading to inaccurate or incomplete causal relationships.

(3) Finally, components are ranked based on the graph, where
PageRank, random walk, and intervention-based techniques are
employed. This step also considers only the statistical and topo-
logical relationships among metrics and ignores their domain-
specific semantics. This limits its effectiveness in real-world
scenarios where understanding system semantics is critical.

Overall, while classical methods are intuitive and easy to implement,
they struggle to handle noise, analyze complex failure propagation
behaviors, and provide meaningful, interpretable explanations.

2.3 LLM-based Methods
2.3.1 Deep thinking can bring consistent improvement in
RCA tasks to LLMs. To explore the effectiveness of deep thinking
in LLMs in RCA tasks, we compared models of the same size with
and without deep thinking. Figure 3a compares the performance
of the base model (Qwen2.5-14B-Instruct) and its deep-thinking
version (DeepSeek-R1-Distill-Qwen2.5-14B) across four evaluation
datasets (see Section 3.3). The model with deep thinking capabil-
ity consistently outperforms the base model. This demonstrates
that deep thinking indeed contributes to enhancing the reasoning
capabilities required for RCA. LLMs with deep thinking not only
retain the advantage of understanding domain-specific semantics

A B C D
Dataset

0.0

0.2

0.4

0.6

0.8

M
R

R

Qwen2.5-14B
DS-R1-Distill-Qwen2.5-14B

(a) w/ or w/o deep thinking

Omitted
Collapsed

Shallow Other

Error Type

0

10

20

30

40

Po
rti

on

(b) Error w/ deep thinking

Figure 3: LLMs achieve consistent improvements on RCA
tasks with deep thinking. However, they still frequently fail
when handling inputs with numerous metrics.

Omitted: Root cause metric is completely omitted
during reasoning

Example (Root Cause: os_018 Network)
<think>Alright, I’m trying to figure out…
First, looking at db_008, I‘ve … Looking further, docker_002 …
…(metrics related to os_018 Network are completely omitted)…
So, the root cause seems to be db_007 … </think>

Collapse: Metrics are analyzed initially but
contradictions arose later
Example (Root Cause: docker_006)
<think>…docker_006##proc spikes indicate increased
processing… db_003’s drop might be the downstream of
docker_006… Therefore, db_007 is the root cause, other
components like docker_006 is either noise or normal…

Shallow: Reasoning is shallow and contains some
clear factual errors
Example (Root Cause: db_003)
<think>…looking at the component graph, I see that
docker_005 calls db_003… Considering the component graph,
if docker_005 fails, it would affect db_003…

Figure 4: Examples of different categories of errors w/ deep
thinking in LLMs

but also leverage their reasoning capabilities to achieve further
improvements.

2.3.2 LLMs with deep thinking still fail when facing com-
plex MTS inputs. Common failure modes include omitting
key metrics, inconsistent reasoning, and shallow analysis.
Although deep thinking can improve RCA reasoning capabilities,
we find that these models still generate a large number of incorrect
answers. We classify these error cases into four major categories
(omitted, collapsed, shallow, and other). The different categories
and corresponding examples are illustrated in Figure 4. Figure 3b
shows the proportion of different categories within the error cases
produced by LLMs with deep thinking. Among 49 incorrect cases, a
significant portion falls into these three major categories. Notably,
the “Collapsed” error category accounts for the highest proportion.
This suggests that LLMs with deep thinking are prone to forgetting
or generating inconsistencies when faced with a large volume of
metrics, which significantly reduces RCA accuracy. Furthermore,
error cases of “metric omitted” and “shallow reasoning” are also
highly relevant. This is also caused by the large number of metrics

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Zhe Xie, Zeyan Li, Xiao He, Shenglin Zhang, Longlong Xu, Yuzhuo Yang, Tieying Zhang, Jianjun Chen, Rui Shi, and Dan Pei

Substep: Metric Scanning
Alright, I’ll first analyze the
components one by one:
- os_021: CPU_iowait_time is

showing a spike
- os_022: The memory is

showing a dip…

Substep: Analyze Propagation
I see a spike in
docker_007##proc around
point 10. This might trigger
downstream issues. But this
may caused by the os_022,
which shows a …

Substep: Reflection
Wait, let me double-check —
did I miss any hidden
anomalies, like os_018
Recv_Total and disk metrics?

Let’s check this now…

Substep: Ranking
OK, I think I’ve now finished
the analysis.
Here's the ranked list:
- os_018 is likely the root cause
- os_022 showing a dip in its
memory metrics, may affected
by …

<answer>
{

“rank_list”: {
“component”: “os_018”,
“upstream”: “”,
“description”: “os_018 shows a

large sudden decrease, indicating …”}, {
“component”: “db_007”,
“upstream”: “os_018”,
“description”: “The failure in

os_018 propagates to db_007 …” }, …
“conclusion”: “The root cause of the

current failure is the failure in os_018.
This failure in os_018 directly caused
the host to become unresponsive or
slow. The failure propagated through
the system as follows: os_018 →
db_007→…”
}
</answer>

Answer: JSON OutputReasoning: Structured Deep Thinking

os_022
Memory_Available_Pct

docker_004
Cost

docker_006
Succ_Rate

os_018 Recv_Total

db_007
User_Commit

Question: Text + Metrics Input

Q: In this system,
we have the
following metrics: …

- docker_004 is
deployed on
os_002;

- db_007 is called
by docker_006;

- …

Please rank the
components in
order from the most
possible root cause

…

<think>

</think>

Foun
dR

oot

Figure 5: The input/output format and structured deep thinking in FoundRoot. Structured deep thinking employs substeps
with explicit goals to ensure comprehensive reasoning while maintaining depth through continuous inference.

and the complex causal relationships in RCA tasks. These findings
suggest that while deep thinking improves overall reasoning qual-
ity, it remains struggling in reasoning about the causal relationship
across multiple metrics.

To address these challenges, we propose structured deep thinking,
an approach that explicitly organizes reasoning into substeps, guid-
ing the model to systematically analyze and reflect. By breaking
down the thinking process into several substeps with preset goals,
structured deep thinking forces the LLMs to focus on every metric
and to do reflection on the causal relationships.

3 Method
In this section, we first present the general idea of structured deep
thinking, followed by its details in Section 3.1. Next, we present an
overview of the pipelines to build FoundRoot in Section 3.2. Finally,
we describe the dataset and the LLM pipelines in detail in Section
3.3 and Section 3.4, respectively.

3.1 Structured Deep Thinking
As motivated in Section 2.3, while general-purpose deep thinking
capabilities can enhance LLM performance on RCA tasks (Finding
1), they still frequently produce incomplete and shallow reasoning
(Finding 2). To address these issues, we introduce structured deep
thinking, inspired by the standard RCA workflow of detection,
analysis, causal attribution, and ranking [29].

The core idea of structured deep thinking is to break down the
complex RCA deep thinking process into a sequence of distinct,
goal-oriented substeps, while keeping them in a single output with-
out additional prompts. By designing the thinking goal at each
substep, LLMs are guided to analyze all the metrics in the failure
case, which prevents them from missing key points. Different from
agent-based or workflow-based methods [32, 49], structured deep
thinking is an ability embedded within LLMs through training and
performed within a single, continuous inference, rather than being
guided with prompts. This preserves the logical coherence and
context of a unified thought process, mitigating the error accumu-
lation and context loss with decoupled tool calls or prompts. Each
substep allows unconstrained internal reasoning and is then opti-
mized through RL. As illustrated in Figure 5, the structured deep

thinking guides FoundRoot through four substeps following the
RCA practice of human operators:
(1) Metric Scanning: Iterate through all components and their

associated metrics to identify any potential anomalies or note-
worthy patterns. This step is explicitly designed to ensure no
critical information is overlooked, directly addressing the omit-
ted metric problem.

(2) Propagation Analysis: Analyze the potential failure propaga-
tion paths according to the anomalous metrics in the previous
step. This is the core substep of the RCA process. LLMs can
analyze the failure propagation using their internal reasoning
capabilities without any additional constraints.

(3) Reflection: A reflection step to prevent the LLM from reason-
ing collapse when faced with a large number of metrics. The
LLM double-checks its reasoning and tries to identify the incon-
sistency of previous steps. This self-correction step is crucial
for preventing collapsed and shallow reasoning.

(4) Ranking: Finally, based on the comprehensive analysis from
the previous stages, the model concludes its findings to generate
a ranked list of potential root causes. Each ranked component is
accompanied by a detailed explanation, including the evidence
from the metrics and its upstream component.
By integrating these structured substeps into a single, continu-

ous output, FoundRoot internalizes a more robust and generaliz-
able reasoning pattern to mitigate the incompleteness and shallow
reasoning for RCA. Motivated by OpenAI o1 [31] and DeepSeek-
R1 [9], we choose to employ RL to enable the model’s structured
deep thinking ability. Further implementation details are provided
in the following sections.

3.2 Data and Model Training Pipelines
In this section, we illustrate the overall training workflow of build-
ing FoundRoot, which is depicted in Figure 6. The data pipeline
initiates with input data in the question-answering (QA) format, fol-
lowed by data augmentation to improve its diversity. Subsequently,
we utilize an LLM to generatewarmup SFT data in a structured deep
thinking format by means of structurally-constrained continuation
generation. Based on this, we use Supervised Fine-Tuning (SFT) to
train the WarmUp-SFT Only version of FoundRoot model, which is

FoundRoot: Towards Foundation Model for Root Cause Analysis via Structured Deep Thinking ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

Augmented
QA Data

Warmup
SFT
Data

FoundRoot-
BaseFoundRoot

Generation

Warmup

SFT

RL

Raw Data
Question
Answer

Augment

Rejection
Sampling

Base LLM

Data Pipeline

LLM Pipeline

Data Pipeline

LLM Pipeline

Figure 6: The data and model pipelines of FoundRoot.

Table 1: Datasets overview. (Aug.) denotes augmented cases.

Dataset # Cases (Aug.) System Split

A [22] 63 A service system of a major ISP

Test
B [22] 90

C [15] 10 SocialNetwork

D [5] 255 MicroSS (GAIA)

E [22] 136 (1,158) A service system of a bank

Train

F [21] 81 (769) Oracle DB

G [15] 43 (345)
TrainTicketH [50] 34 (259)

I [21] 94 (771)

J [50] 27 (200) HipsterShop

capable of structured deep thinking. To obtain the final FoundRoot
model, we further apply RL with the augmented QA data, which
enhances the model’s reasoning capability on the RCA task.

3.3 Curation of Datasets
As shown in Figure 6, our data pipeline includes several steps. First,
we have collected and preprocessed a large number of datasets
(Section 3.3.1). Next, to support model training, we augmented
the dataset (Section 3.3.2) and constructed a warm-up SFT dataset
(Section 3.3.3) with structured deep thinking traces.

3.3.1 Dataset Construction. Although several works have intro-
duced synthetic datasets for model training [47, 52], it is very
difficult to synthesize data for RCA. This is because fault prop-
agation is closely related to the domain-specific semantics of the
components. Therefore, we focus on using real-world datasets for
training and evaluation. To train a generalizable RCA foundation
model, our dataset construction process aims to ensure diversity
in system architectures, metric semantics, and failure propagation
patterns, which are essential for promoting cross-system general-
ization. We collect and curate a collection of large-scale datasets
from a large number of open-sourced datasets. The details of the
collected datasets are shown in Table 1. Our dataset collection in-
cludes ten datasets in total, with six datasets for training and four
datasets for evaluation. All datasets are formatted into a uniform
Q&A format (refer to Figure 5) for LLM training and evaluation.

The training datasets cover a variety of domains and system
types, including bank service system [22], Oracle database [21], and
microservice-based applications from [15, 21, 50]. In contrast, the
evaluation datasets are all collected from totally different systems
from the systems in the training datasets. To comprehensively
evaluate the models in different system architectures, we include

datasets from both service systems (A and B) [21] and microservices
systems (C [15] and D [5]) in the collection of evaluation datasets.

Data quality is crucial for training LLMs. Therefore, we perform
extensive preprocessing and cleaning across all datasets in order
to ensure the data quality. First, most open-source RCA datasets
are generated using failure injection methods on testbeds. These
datasets may contain many cases of failed injections. Therefore, we
used both manual and automated methods to check all fault cases.
This process ensures that the training and evaluation are correct.
Furthermore, the data contains many noisy or normal metrics that
are unrelated to the failure. We used a k-sigma anomaly detec-
tion [3] method to filter out normal metrics, which significantly
reduced the number of metrics. For each failure case, we collect
a time window of data before and after the failure and convert it
into text as input. All metric values were converted into text format
for input. We do not focus on the encoding of time series, which
is beyond the scope of this work. We also unified the input and
output formats of the datasets for training the foundation model.

Prompt

Continuous
Generation

Prompt

…

Generated
Answer

<think> First, I will do I will first simply analyze all the 28
components and their metrics in order:
- os_021: CPU_iowait_time is showing a spike
- os_022: The memory is showing a dip…
OK, now I will analyze the failure propagation of the
components according to the metrics and their relationship.
Now let's start:
I see a spike in docker_007##proc around point 10. This might
trigger downstream issues. But this may caused by the os_022,
which shows a …
Alright, let me check if there are any possible errors in the
process before. Now let's start:
Wait, let me double-check — did I miss any hidden anomalies,
like os_018 Recv_Total and disk metrics? Let’s check this now…
Finally, output the rank results in order (from rank 1 to
rank 28) Let's get started:
Here's the ranked list:
- os_018 is likely the root cause
- os_022 showing a dip in its memory metrics, may … </think>

<answer> {“rank_list”: {…}, “conclusion”: “…”} </answer>

Rejection
Sampling

Warmup
SFT
Data

Reward
Calculation

Figure 7: An example of generating warm-up SFT data with
structured deep thinking. Prompts are interleaved with
LLM’s continuous generation to ensure coherence, and rejec-
tion sampling is used to retain high-quality data.

3.3.2 Data Augmentation. Given the limited size of RCA datasets
and the risk of overfitting, we further apply augmentation tech-
niques to the training datasets. To increase data diversity and simu-
late different observability conditions, we apply a sampling-based
data augmentation strategy. Given a multivariate time series X
with 𝑁 metrics and𝑇 time points, we generate multiple augmented
variants through two sampling operations:

Temporal sampling. For each training case, we randomly select
sub-windows of variable length 𝐿 ∼ U(𝐿min, 𝐿max) to simulate
diverse monitoring durations. A sampled window is denoted as

x(𝑡)
𝑖

= x𝑖 [𝑡 : 𝑡 + 𝐿 − 1] . (1)

This increases temporal diversity by varying both the start position
and the window length.

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Zhe Xie, Zeyan Li, Xiao He, Shenglin Zhang, Longlong Xu, Yuzhuo Yang, Tieying Zhang, Jianjun Chen, Rui Shi, and Dan Pei

Metric sampling. To avoid removing root-cause signals, we al-
ways keep all root-cause metrics R in the sampled subset. Then, we
randomly sample additional non-root-cause metrics Snon-rc with
size drawn from a uniform range, and form the final metric set
as S = R ∪ Snon-rc. The resulting sampled multivariate series is
X′ = {x(𝑡)

𝑖
| 𝑖 ∈ S}.

The augmented training dataset is obtained by repeatedly sam-
pling time windows and metric subsets for each original training
case:

Daug
train =

𝑀train⋃
𝑗=1

{(X′
𝑗,𝑘
, 𝑦 𝑗)}

𝐾𝑗

𝑘=1 . (2)

In practice, this procedure expands the 415 original training cases
into 3,502 augmented samples. All test cases remain unchanged to
ensure a fair evaluation.

3.3.3 Warm-Up SFT Dataset. To enable the model to support struc-
tured deep thinking, we construct a warm-up SFT dataset, which
includes complete thinking traces and Q&A pairs. Structured deep
thinking requires each substep to follow a specific format and objec-
tive. As a result, it is difficult for existing LLMs to directly generate
thinking process that meet these requirements. To address this,
we designed a strategy called structurally-constrained continuation
generation. As shown in Figure 7, each substep begins with a set
of carefully designed prompts. These prompts guide the LLM to
continuously generate the thinking process for the current step
in the structured thinking format. By alternating between prompt
and LLM continuous generation, it forms a complete and fluent
structured reasoning trace. During generation, we insert explicit
control phrases such as “After this, I will perform Step 2” in the
prompts to mark the end of each substep, which are later removed
during data extraction. When the model produces outputs that
cannot be parsed within the predefined max_tokens limit, we trun-
cate or discard those samples to ensure structural consistency. We
further apply rejection sampling [30] with the reward functions de-
fined in Section 3.4.4 to filter out samples that violate the structural
constraints or contain substantial reasoning errors. Through this
process, we obtain the WarmUp SFT dataset that conforms to the
required structure and maintains reliable quality without manual
post-editing.

It is important to note that this interleaved prompting is only used
in the data generation stage. During inference, the trained model
performs deep thinking in a continuous and unified manner with
its inherent structured deep thinking ability, without the need for
intermediate prompts.

3.4 Model and Training Details
The training pipeline of FoundRoot follows a two-stage process,
as illustrated in Figure 6. The first stage is a warm-up supervised
fine-tuning (SFT), where the model is trained to follow the format
of structured deep thinking. The second stage adopts Dynamic
Sampling Policy Optimization (DAPO) [51] to further enhance the
reasoning capabilities of the LLM for RCA.

3.4.1 Input and Output. The input and output format of FoundRoot
is illustrated in Figure 5. As FoundRoot is a text-based model, we
convert values in the time series windows to text in the input.
To reduce the number of input metrics, we use k-sigma anomaly

detection to filter out normal metrics. The model’s output consists
of two parts. The reasoning part contains the complete structured
deep thinking content and is enclosed within <think> tags. The
answer part is enclosed by a <answer> tag and contains a dictionary
in json format. In the answer part, the rank_list field is a list.
Each entry in the list represents a component, ranked from the
highest to the lowest probability of being the root cause. An entry
also includes the upstream component of the fault propagation and
a corresponding description. The conclusion field contains
a complete explanation of the fault propagation. This allows the
model’s output to be parsed accurately and makes it convenient for
operators to check the failure.

3.4.2 Warm-Up SFT. In the first stage, we finetune a base LLM
(DeepSeek-R1-Distill-Qwen2.5-14B) on the warm-up SFT dataset
(see Section 3.3). The warm-up SFT dataset includes the question as
input and the complete reasoning traces and answer as output. The
outputs are supervised under a fixed format with explicit ‘<think>’
and ‘<answer>’ tags, helping the model to learn coherent and com-
plete causal reasoning. The warm-up SFT stages equip the LLM
with the ability of structured deep thinking, thereby reducing the
difficulty of enforcing format constraints in the following RL step.

3.4.3 RL with DAPO. After the warm-up SFT stage, the model ac-
quires a basic ability for structured deep thinking, but its reasoning
on RCA tasks still needs further improvement. Therefore, we adopt
reinforcement learning (RL) with DAPO [51] in the second stage to
enhance reasoning quality and robustness.

DAPO strengthens the model’s reasoning process by samplling
multiple possible reasoning paths for each RCA case, evaluating
them with the rewards in Section 3.4.4, and learning from the best
reasoning paths. Through repeated sampling and optimization, the
model gradually learns to produce more accurate reasoning and
perform RCA correctly, without requiring any manually labeled
reasoning traces. Compared with previous RL methods such as
GRPO [9], DAPO introduces a more flexible update strategy that
allows the model to explore diverse reasoning paths, which helps
the model better handle complex reasoning in RCA tasks. The
training in this stage is performed on the augmented RCA datasets
described earlier.

3.4.4 RewardDesign. Wedefine the total reward 𝑟 (𝑥,𝑦) as aweighted
sum of multiple components, each targeting a specific aspect of
RCA accuracy and output structure:

𝑟 (𝑥,𝑦) = 𝜆format 𝑟format + 𝜆json 𝑟json + 𝜆acc 𝑟acc + 𝜆think 𝑟think (3)

The components are defined as follows:

• Format (𝑟format): A binary reward where 𝑟 = 1 if and only if the
output contains both <think> and <answer> tags.

• JSON format (𝑟json): A binary reward where 𝑟 = 1 if and only if
the answer is valid JSON and its fields meet the requirements.

• RCA accuracy (𝑟acc): Model’s output is a JSON list that contains
a ranked list ordered from the component most likely to be the
root cause to the one least likely. The ground-truth root cause
rank rankgt is computed by finding the position of the root cause
component in this list. Given the ground-truth root cause rank

FoundRoot: Towards Foundation Model for Root Cause Analysis via Structured Deep Thinking ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

rankgt, this reward is defined as the MRR (mean reciprocal rank):

𝑟mrr =
1

rankgt + 1
(4)

• Structured thinking (𝑟think): A binary reward where 𝑟 = 1 if
and only if the entire reasoning trace strictly follows the four-
substep structured deep thinking format (metric scanning, prop-
agation analysis, reflection, and ranking).

4 Evaluation
To comprehensively assess the effectiveness and generalizability
of FoundRoot, we design a series of experiments to address the
following research questions:
• RQ1. Does FoundRoot outperform classical and LLM-based RCA
baselines?

• RQ2. How effective is the proposed structured deep thinking in
improving RCA performance?

• RQ3. Does RL really enhance the model’s reasoning perfor-
mance?

• RQ4. How well does FoundRoot generalize to unseen systems
with different architectures and metric distributions?

• RQ5. How do smaller/quantized variants of FoundRoot perform?
The following sections detail our experimental setup and provide

a systematic analysis for each of the above questions.

4.1 Experimental Setup
4.1.1 Evaluation Metrics. We adopt three widely used metrics for
evaluating root cause localization: Top-1 Accuracy, Top-3 Accuracy,
and MRR (Equation 4), following common practice in existing ap-
proaches [21, 48]. These metrics quantify how accurately the model
can identify the root cause component(s) from a ranked list. All
metrics are computed at the component level. For all metrics, higher
values indicate better performance.

4.1.2 Evaluation Datasets. As shown in Table 1, we collected a total
of 10 datasets, among which 4 are used for evaluation. The datasets
used for evaluation have system architectures that are completely
distinct from those used for training, ensuring the reliability of the
zero-shot evaluation.
• Dataset A, B: Two server datasets from a large financial institu-
tion, originally used in the AIOps Challenge [22].

• Dataset C: Collected from the SocialNetwork microservice [15].
• Dataset D: Collected from theMicroSSmicroservice by GAIA [5].
These datasets are completely held out during training to ensure a
strict zero-shot generalization setting. Each incident in the dataset
includes a set of metric values, their corresponding components, a
component dependency graph, and a ground truth root cause label.

4.1.3 Baselines. We compare FoundRoot against a diverse set of
baseline approaches, including both classical RCA algorithms and
LLM-based methods.

Classical Methods: To compare the performance of different
types of algorithms, we choose classic causal-graph-based algo-
rithms, as well as the recently studied intervention-based algo-
rithms, the change-point-based algorithm, and the E2E algorithm.
• MicroScope: MicroScope [23] uses PC algorithm [39] for graph
construction and ranks the root cause with Pearson correlation.

• MonitorRank: MonitorRank [13] ranks the metrics with per-
sonalized PageRank algorithm.

• MicroCause: MicroCause [29] uses PCMCI [35] for causal dis-
covery and ranks the metrics with a second-order random walk.

• CIRCA: CIRCA [16] proposes an intervention recognition-based
approach for causal inference.

• RCD: RCD [12] propose localized a hierarchical learning algo-
rithm for intervention-based RCA.

• BARO: BARO [33] employs BOCPD [1] to detect failures and
a nonparametric statistical hypothesis testing technique for ro-
bustly identifying root causes.

• ART: ART [40] proposes to represent failures as system and
instance-level deviations with an E2E framework. It ranks the
instances according to their deviation similarity to the system.

LLM-based Methods: We comprehensively compare the abilities
of non-thinking models, thinking models, and agent-based models.
• LLMs: We select several mainstream open-source and closed-
source LLMs as baselines. These include models without deep
reasoning capabilities, such as Qwen2.5-14B and GPT-4o, as well
as models with deep reasoning capabilities, including OpenAI
o4-mini, DeepSeek-R1-Distill-Qwen2.5-14B (R1-14B), DeepSeek
R1 (R1-Full), and Doubao-Seed-1.6-Thinking (Doubao-Thinking).
The input question format for these models is kept consistent
with that of FoundRoot, without any additional processing.

• RCA-Agent: RCA-Agent, proposed by OpenRCA [49], leverages
LLMs to generate and execute Python code for reading metric
data, using R1-Full as the LLM.
Most classical methods, including CIRCA, RCA, BARO, and ART,

are implemented using the official code released by their original
authors. The remaining classical baselines are re-implemented due
to the unavailability of publicly released source code. For LLM-
based baselines, all methods are implemented using their official
repositories and APIs.

4.1.4 Implementation Details. All models are trained using the
Open-R1 framework [11] and the TRL library [42]. FoundRoot is
initialized from DeepSeek-R1-Distill-Qwen2.5-14B1 and trained for
400 steps with a batch size of 32 on 8×A100 GPUs, with tempera-
ture=1.0 and lr=1e-6. Inference is conducted using vLLM [14] with
top-5 sampling. In our experiments, we empirically set the reward
weights to: 𝜆format = 1.0, 𝜆struct = 1.0, 𝜆mrr = 3.0, and 𝜆stf = 1.0.
Implementation details can be found in our source code.

4.2 RQ1: Does FoundRoot outperform classical
and LLM-based RCA methods?

To answer RQ1, we compare FoundRoot with a range of classi-
cal RCA methods and modern LLM-based approaches across four
benchmark datasets (A–D). The evaluation results are shown in
Table 2. The results demonstrate that FoundRoot consistently out-
performs all baselines across all datasets and metrics, indicating
both superior RCA accuracy and strong generalization capability.

Looking at the results in Table 2, FoundRoot presents a large
improvement compared to the second-best option. However, in
certain datasets (e.g., datasets A and B), its accuracy in some cases

1https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Zhe Xie, Zeyan Li, Xiao He, Shenglin Zhang, Longlong Xu, Yuzhuo Yang, Tieying Zhang, Jianjun Chen, Rui Shi, and Dan Pei

Table 2: Comparison of baseline models. Higher is better.

Dataset A B C D

Type Method Top-1 Top-3 MRR Top-1 Top-3 MRR Top-1 Top-3 MRR Top-1 Top-3 MRR

Classical

MicroScope 0.143 0.159 0.221 0.089 0.233 0.211 0.300 0.400 0.462 0.436 0.795 0.645
MonitorRank 0.063 0.095 0.154 0.078 0.167 0.228 0.200 0.200 0.296 0.461 0.897 0.687
MicroCause 0.159 0.413 0.292 0.089 0.489 0.361 0.100 0.700 0.383 0.410 0.923 0.636
CIRCA 0.079 0.302 0.272 0.144 0.400 0.329 0.400 0.700 0.571 0.282 0.871 0.553
RCD 0.143 0.270 0.188 0.111 0.144 0.121 0.100 0.100 0.125 0.539 0.744 0.637
BARO 0.048 0.222 0.212 0.133 0.333 0.290 0.400 0.900 0.583 0.615 0.949 0.776
ART 0.095 0.127 0.177 0.133 0.289 0.242 0.600 0.700 0.708 0.256 0.564 0.486

LLM

Qwen2.5-14B 0.048 0.222 0.221 0.067 0.267 0.250 0.500 0.800 0.597 0.462 0.846 0.652
GPT-4o 0.143 0.460 0.338 0.122 0.256 0.256 0.700 0.800 0.763 0.590 0.949 0.762

o4-mini 0.079 0.175 0.168 0.056 0.133 0.162 0.700 0.800 0.754 0.820 0.949 0.891
R1-14B 0.175 0.317 0.330 0.178 0.344 0.329 0.500 0.700 0.677 0.794 0.923 0.827
R1-Full 0.254 0.413 0.383 0.200 0.467 0.426 0.700 0.800 0.811 0.785 0.929 0.859
Doubao-Thinking 0.111 0.429 0.364 0.178 0.500 0.404 0.800 0.800 0.834 0.785 0.929 0.859

RCA-Agent+R1-Full 0.032 - - 0.178 - - 0.700 - - 0.462 - -

FoundRoot-14B 0.429 0.619 0.569 0.433 0.744 0.610 0.800 0.900 0.858 0.886 0.984 0.931
Improvement +68.9% +34.6% +48.6% +116.5% +48.8% +43.2% 0% 0% +2.9% +8.0% +3.7% +4.5%

A B C D
Dataset

0.2
0.4
0.6
0.8
1.0

Sc
or

e

Top-1

A B C D
Dataset

0.4

0.6

0.8

1.0
Top-3

A B C D
Dataset

0.4

0.6

0.8

1.0
MRR

w/ Workflow w/o Deep Think w/o Struct. Think FoundRoot

(a) Ablation Studies of Structured Deep Thinking

A B C D
Dataset

0.0
0.2
0.4
0.6
0.8
1.0

Sc
or

e

Top-1

A B C D
Dataset

Top-3

A B C D
Dataset

MRR
WarmUP SFT Only SFT + SFT SFT + RL (FoundRoot)

(b) Ablation Studies of RL

Figure 8: Results of ablation studies. FoundRoot shows consistent improvements over models without structured deep thinking
or deep thinking, and models trained without RL (WarmUp SFT Only, SFT + SFT). These results show the effectiveness of both
structured deep thinking and the RL method.

remains relatively low. The main reason lies in system observabil-
ity and metric quality. Systems with more comprehensive metric
coverage, clearer component boundaries, and well-defined depen-
dency graphs enable better RCA performance. In contrast, systems
with sparse metrics and noisy data pose greater challenges. For
instance, Dataset A comes from a complex service system with
many components, making RCA inherently more difficult.

First, we observe that the performance of classical methods is
generally poor. Especially in datasets A and B, classical methods
can only achieve a Top-1 accuracy of 15.9%, which is much lower
than the LLMs like R1-Full. One key limitation of classical meth-
ods is their reliance on numeric values for causal discovery and
ranking. Thus, they often overlook the domain-specific semantics
underlying the metrics. Additionally, real-world monitoring met-
rics frequently contain significant noise, which compromises the
robustness of these methods. Among classical approaches, the re-
cently proposed intervention-based algorithms, CIRCA and BARO,
perform relatively better due to their more accurate modeling of

fault propagation relationships. However, their modeling of causal
relationships still exhibits many inaccuracies.

Compared to classical methods, LLM-based approaches without
deep reasoning capabilities also fail to demonstrate significant ad-
vantages. Although these methods can infer the underlying domain-
specific semantics based on metric names, their limited reasoning
abilities make it difficult to analyze the complex failure propagation,
achieving much lower MRRs from 0.036 to 0.151 on datasets A, B, C,
and D compared with the LLMs with deep thinking, respectively. In
contrast, models equipped with deep reasoning capabilities gener-
ally achieve better performance, indicating that the deep reasoning
ability of LLMs is crucial for RCA tasks. However, as discussed
above, even models with deep reasoning capabilities are primarily
trained on math and code tasks. This limits their effectiveness in
handling complex RCA scenarios and prevents them from fully
leveraging their deep thinking potential.

Another noteworthy approach is the agent-basedmethod. Agents
can repeatedly execute code to analyze metrics step by step, which
intuitively allows the LLM to focus more on critical metrics and

FoundRoot: Towards Foundation Model for Root Cause Analysis via Structured Deep Thinking ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

reduce reasoning hallucinations. However, based on the evaluation
results, we find that this method does not significantly enhance the
reasoning capabilities of LLMs in RCA tasks. On the contrary, its
performance falls short compared to a series of models that directly
apply deep thinking to RCA problems. This indicates that break-
ing down RCA reasoning into action-reflection processes does not
significantly enhance the ability to reason about complex causal
relationships. On the contrary, it often results in some severe hal-
lucinations when analyzing fault propagation because of the lack
of intrinsic reasoning capabilities. A detailed comparison of the
workflow-based approach is provided in RQ2.

In summary, compared to these various types of baseline models,
our proposed FoundRoot achieves outstanding performance, with
68.9%-116.5% Top-1 improvement on datasets A and B, and 4.5%-
48.6% MRR improvement on all datasets. This demonstrates that the
training approach introduced by FoundRoot effectively enhances
the reasoning capabilities of LLMs for RCA tasks. However, accu-
racy in some of the datasets (A and B) is relatively low. The main
reason lies in system observability and metric quality. For instance,
datasets A and B come from complex service systems with many
interdependent components, making RCA more difficult compared
with datasets C and D.

4.3 RQ2: How effective is structured deep
thinking for RCA?

To evaluate the contribution of structured deep thinking, we con-
duct ablation studies as shown in Figure 8. First, we compare Found-
Root with the w/o Struct. Think variant, which adopts the same two-
stage SFT+RL pipeline as FoundRoot, but the warm-up SFT data
only contains ordinary deep thinking traces rather than structured
ones. The evaluation results in Figure 8a show that FoundRoot
achieves consistent improvement compared with this variant. This
is because the absence of structured substeps leads to incomplete
reasoning or inconsistent failure propagation analysis. These re-
sults demonstrate that structured deep thinking plays a crucial role
in enhancing the reasoning depth and robustness of zero-shot RCA.
Moreover, we provide illustrative comparisons of reasoning traces
in Section 4.7 to further support this conclusion.

To further illustrate the importance of deep thinking, we also
show the results of w/o Deep Think variant, which is trained using
the same two-stage pipeline and datasets as FoundRoot but based
on a non-thinking model without thinking capability. As shown
in Figure 8a, this variant performs significantly worse than Found-
Root, showing that the deep thinking paradigm itself substantially
improves RCA reasoning quality.

We also implement aworkflow-basedmethod, which uses prompt
engineering to achieve structured thinking format rather than train-
ing with RL. The RCA workflow [32] executes a predefined, human-
designed sequence of prompt-based steps to transform the input
into a final output. To achieve this, we use several prompts to
guide the LLMs to generate the same substeps as in structured
deep thinking. We employ DeepSeek-R1 as the base LLM for this
workflow model (w/ Workflow). As shown in Figure 8a, the model
with workflow exhibits certain advantages over the LLMs with-
out structured deep thinking across all datasets (in Table 2), which
demonstrates that breaking down reasoning steps mitigates shallow

0 100 200 300 400
Training Steps

0.5

0.6

0.7

0.8

M
R

R

Training

0 100 200 300 400
Training Steps

0.6

0.7

M
R

R

Evaluation

FoundRoot w/o Struct. Think

Figure 9: Overall MRR on training and evaluation datasets
during training. FoundRoot is showing more generalization
capability compared with one w/o structured thinking.

reasoning to some extent. However, the workflow-based model still
fall short of FoundRoot on all of the datasets in terms of RCA ac-
curacy. This is because simply decomposing the reasoning process
through prompts cannot fully eliminate hallucinations or enforce
coherent substep reflection. At each substep, the LLMmust still rely
on its intrinsic reasoning capability to analyze failure propagation
accurately. This highlights that the SFT+RL approach, which em-
beds structured deep thinking as an inherent capability, is essential
for enhancing the model’s intrinsic reasoning abilities. Overall, our
results indicate that integrating structured deep thinking directly
into the model through RL is effective and generalizable.

4.4 RQ3: Does RL really improve reasoning
performance?

To investigate this question, we replace the two-stage SFT + RL
pipelinewith a one-stageWarmUp SFTOnly version and a two-stage
SFT + SFT version which replaced the RL training with SFT training
using the same datasets. As shown in Figure 8b, the two SFT-based
variants exhibit very different behaviors. The WarmUp SFT Only
model acquires basic structured deep thinking patterns from the
WarmUp SFT datasets, which enables it to generate partially valid
reasoning traces. However, without the RL stage, the model tends to
focus on reproducing template-like reasoning structures and often
fails to capture the causal dependencies among metrics, resulting
in limited RCA accuracy on all datasets.

Similarly, the SFT + SFT variant performs even worse. Since the
second-stage SFT dataset contains only fixed-format structured
JSON with highly deterministic phrasing, the model is exposed to
little variation or exploratory reasoning. This causes the second-
stage SFT to learn format imitation only rather than to deepen the
model’s causal reasoning ability. As a result, the model gradually
loses much of its RCA capability, leading to consistently low Top-1,
Top-3, and MRR scores. In comparison, our SFT + RL (FoundRoot)
model benefits from RL, which explicitly rewards reasoning com-
pleteness, structural consistency, and correct causal ranking, allow-
ing the model to refine and strengthen the structured deep thinking
behavior learned during warm-up SFT. This enables FoundRoot
to move beyond format reproduction and develop more accurate,
coherent, and generalizable RCA reasoning in unseen systems.

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Zhe Xie, Zeyan Li, Xiao He, Shenglin Zhang, Longlong Xu, Yuzhuo Yang, Tieying Zhang, Jianjun Chen, Rui Shi, and Dan Pei

4.5 RQ4: Does structured deep thinking provide
more generalization to unseen systems?

We compared the training and evaluation curves of FoundRoot and
the variant without structured deep thinking (w/o Struct. Think),
as shown in Figure 9. It can be observed that both models exhibit a
significant upward trend in MRR on the training dataset as training
progresses, with similar rates of increase. However, on the evalua-
tion set, FoundRoot achieves a substantially greater improvement
compared to the model without structured deep thinking.

The training curve of FoundRoot starts slightly higher than that
of the model w/o structured deep thinking. However, the two mod-
els exhibit nearly the same initial performance on the evaluation
curve. Therefore, the performance gains of FoundRoot primarily
come from the RL phase, where structured deep thinking con-
tributes to these improved results.

4.6 RQ5: How do smaller and quantized
variants perform?

A B C D
Dataset

0.0
0.2
0.4
0.6
0.8
1.0

Sc
or

e

Top-1

A B C D
Dataset

Top-3

A B C D
Dataset

MRR
FoundRoot-7B FoundRoot-14B-Int4 FoundRoot-14B

Figure 10: Study of smaller and quantized FoundRootmodels.

To support easier and more cost-efficient deployment, we train a
7B variant (FoundRoot-7B) and a GPTQ-Int4 [6] quantized version
of the 14B model (FoundRoot-14B-Int4). As shown in Figure 10,
the 7B model shows noticeable performance degradation compared
with 14B, especially on more complex datasets A and B. This shows
that a 7B LLM may not be sufficient for complex reasoning in RCA.
In contrast, the quantized GPTQ-Int4 version of the 14B model
achieves much better performance than the 7Bmodel andmaintains
performance comparable to the original 14B model.

4.7 Case Study
In Figure 11, we compare the reasoning processes among Found-
Root, R1-14B (base model of FoundRoot), and the R1-14BwithWork-
flow. In this case, we show a failure case where the root cause is
os_021. FoundRoot first analyzes all metrics in the Metric Scanning
substep. In the reflection step, FoundRoot reflects on the correlation
of os_021##proc and the drops in docker_003. It correctly rea-
sons that docker_003 depends on os_021, and thus the failure in
os_021 leads to downstream failures. Finally, FoundRoot correctly
identified os_021 as the root cause.

In contrast, the R1-14B fails to consider os_021 at all in its entire
deep thinking process. It finally selects docker_001 as the possible
root cause based on the incomplete analysis of the metrics. This
is a typical case of an error caused by missing key metrics. Simi-
larly, the model with workflow ignores the fact that os_021 hosts
docker_003 and incorrectly attributes the root cause to docker_003.

A2 case study

Root Cause: os_021

<think> (Step 1) I will first analyze all the components…
(Step 2) I will analyze the propagation of the components…
… "os_021##proc" drops from 1217.85 to 1457.51, but wait, no, looking at the
data, it's 1217.85, then 1457.51, but that's a spike, not a drop...because
"docker_003" is host by "os_021", so if "os_021" crashes, "docker_003" drop…
(Note: FoundRoot analyzed all the metrics in Metric Scanning)
(Step 3) Now, I will check if there are any possible errors…
I should verify if "docker_003" could be the root cause. "os_021" is a deployment
for "docker_003", so if "os_021" fails, "docker_003" can't run properly. Therefore,
"os_021" is the initiating failure point…
(Note: In Reflection, os_021 is correctly identified as the root cause)
(Step 4) The final rank results… The root cause is “os_021”…</think>

<think> The components to rank are quite a few, so I'll go through them one by
one. Starting with "docker_001”… Next, "os_019 Memory”…
Other components like "os_019 Memory”…
In conclusion, the root cause is "docker_001”</think>
(Note: os_021 is not analyzed at all during thinking, leading to wrong RCA)

<think> I will analyze …
There is a drop in os_021##proc…
docker_003##count drops…. This would cause the services it supports to drop.
(Note: os_021 is hosting docker_003, it should be the upstream reason for
the drop in docker_003##count, but it’s ignored, leading to incorrect RCA)
In conclusion, the root cause is "docker_003”</think>

FoundRoot-14B

R1-14B (Missing Key Metrics)

R1-14B + Workflow (Incomplete Reasoning)

os_021

os_022

docker_003

docker_001
db_009

Figure 11: Case study on FoundRoot and baseline methods.
Compared with the R1-14B and Workflow models, Found-
Root achieves better performance by comprehensively ana-
lyzing metrics and better causal reasoning.

This case shows the missing key metrics and incomplete causal
reasoning in existing LLMs. Therefore, the structured deep thinking
in FoundRoot demonstrates its superior reasoning capability for
RCA by incorporating complete analysis on the large number of
metrics and its reflection on the causal relationship.

4.8 Analysis of failure cases

Step 1
(45.5%)

Step 2
(51.5%)

Step 3
(3.0%)

Error Steps

Detection
(45.5%)

Reasoning
(45.5%)

Factual Error
(9.1%)

Reason Distribution

(a) First Error Substep

Step 1
(45.5%)

Step 2
(51.5%)

Step 3
(3.0%)

Error Steps

Detection
(45.5%)

Reasoning
(45.5%)

Factual Error
(9.1%)

Reason Distribution

(b) Error Reason

Figure 12: Statistical analysis of error cases produced by
FoundRoot. Most errors occur in substep 1 and 2. In par-
ticular, many root cause metrics are not recognized by the
model as anomalous metrics, which leads to errors.

To further understand the limitations of FoundRoot, we conduct
a detailed analysis of its failure cases, as illustrated in Figure 12. The
results reveal that most errors arise during the first two reasoning
substeps. Specifically, in substep 1 (Metric Scanning), the model
frequently fails to detect the true root cause metrics as anomalous.
In substep 2 (Propagation Analysis), the model tends to make log-
ical mistakes when reasoning about the detected anomalies and

FoundRoot: Towards Foundation Model for Root Cause Analysis via Structured Deep Thinking ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

their causal relationships, which can be attributed to the limited
reasoning capacity of the 14B LLM. This suggests that improving
the model’s capability to accurately detect anomalous metrics and
enhancing its reasoning ability are promising directions.

5 Related Work
Classical RCA methods. Classical metric-based methods usually
consist of two steps: graph construction and ranking. For graph
construction, some adopt statistical causal discovery algorithms
such as the PC algorithm [24, 39, 44], while others improve robust-
ness by addressing propagation delay [29], grouping correlated
metrics [26], or using a physical dependency graph [19]. In the
ranking phase, a variety of techniques have been proposed, includ-
ing DFS traversal [4], random walk [44], PageRank [46], hypothesis
testing [33, 36], reconstruction-based [40], and intervention-based
inference [12, 17, 48]. Beyondmetrics, event-based methods [43, 50],
log-based [2], and trace-based methods [25] leverage additional
observability signals to improve precision but often assume com-
plete instrumentation. Recent efforts also explore heterogeneous
RCA [8, 21], though they typically require strong supervision or
expert rules, limiting adaptability in dynamic environments.
LLM-based RCA methods. With the rise of LLMs, leveraging
their advantages for RCA has been increasingly adopted by a grow-
ing number of researchers. Many studies focus on enabling LLMs
to understand logs [10, 18, 27, 28, 37] for root cause localization,
to fully leverage the rich semantic information contained in logs.
Meanwhile, to enable LLMs to understand metric information, some
agent-based approaches have been proposed for metric-based or
multimodal data-based RCA [32, 34, 38, 47, 49, 54]. However, due
to the complexity of RCA, root cause analysis requires extensive
and sophisticated reasoning. Existing models have addressed some
issues from an engineering perspective. However, limited research
focuses on the enhancement of the reasoning capabilities for RCA.
Reinforcement Learning for LLM. Recent efforts have enhanced
LLM reasoning by applying reinforcement learning [7, 31, 41]. To
improve training stability and sampling efficiency, algorithms such
as GRPO [9] have been proposed, which is further extended by
DAPO [51], which refines reward shaping and policy optimization
for long-form reasoning tasks.While thesemethods primarily target
math and code domains, LLM reasoning for RCA based on time
series has been scarcely studied. Our FoundRoot successfully adapts
DAPO to the RCA setting through structured reasoning, offering a
new direction for the application of LLMs in the RCA domain.

6 Threats to Validity
The main threat to the internal validity of this study lies in the
implementation of the baseline methods. 3 out of 14 baselines (Mi-
croScope, MonitorRank, and MicroCause) are reimplemented by us
based on their original papers due to the lack of publicly available
code. For all other methods, we use the official implementations and
parameter settings. Although we followed the described algorithm
as closely as possible, potential discrepancies may exist.

The threats to external validity primarily come from the selection
of evaluation datasets. While our datasets are diverse and include
both different types of systems, they may not fully represent the

breadth of failure patterns seen in all real-world systems. To alle-
viate these threats, we collected as many evaluations as possible
from different systems to evaluate the cross-system generalization.

7 Limitations and Future Work
Although FoundRoot demonstrates strong performance across mul-
tiple RCA datasets, several limitations remain. First, FoundRoot is
trained and evaluated using metrics data only. While this modal-
ity has the advantages of universality, it may miss useful signals
available in logs, traces, or configuration metadata [40, 49].

Second, our structured thinking format is designed based on
domain knowledge. While it aligns with expert reasoning patterns,
it may not fully reflect the diversity of RCA workflows in practice.
Developing adaptive or learnable formats that evolve with new data
or feedback is a promising direction.

Third, the DAPO is computationally expensive and difficult to
implement. However, DAPO is only used during the training stage
and does not introduce any additional cost during deployment. It
also simplifies data preparation because it only requires metric time
series and RCA labels.

Finally, although we evaluate our model on multiple real-world
datasets, large-scale industrial deployment would require additional
evaluations in production-grade environments. For practitioners,
the rather low accuracy for datasets A and B suggests that Found-
Root should be used as a decision-support tool rather than a fully au-
tomated solution. In systems with lower absolute accuracy, Found-
Root can significantly narrow down the search space and provide
interpretable reasoning traces to assist human operators. Further-
more, improving system observability by adding more informative
metrics can enhance FoundRoot’s effectiveness.

8 Conclusion
In this paper, we present FoundRoot, a foundation model designed
for zero-shot RCA based on LLMs with metrics data. To address
the incomplete and shallow reasoning and poor generalization in
unseen systems, we introduce a novel structured deep thinking
method for systematic analysis of the failure propagation. Struc-
tured deep thinking breaks down the RCA process into explicit
reasoning steps, enabling the model to capture causal semantics
and failure propagation patterns more effectively. To support the
training of FoundRoot, we curate and clean ten diverse RCA datasets
from real-world systems and develop a data augmentation strategy
that ensures both data diversity and domain coverage. By leverag-
ing a 2-stage training pipeline with warm-up SFT + DAPO built
upon structured deep thinking, we demonstrate for the first time
in research that RL can significantly enhance the reasoning and
generalization capabilities of LLMs for zero-shot RCA tasks. Experi-
mental results on four zero-shot benchmarks show that FoundRoot
consistently outperforms both classical RCA algorithms and strong
LLM-based baselines, achieving up to a 48.6% improvement in MRR.
We believe that FoundRoot establishes a solid foundation for future
research in LLM-based reasoning for RCA tasks.

Acknowledgments
This work is supported by the National Key Research and Develop-
ment Program of China (No.2024YFB4505903).

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Zhe Xie, Zeyan Li, Xiao He, Shenglin Zhang, Longlong Xu, Yuzhuo Yang, Tieying Zhang, Jianjun Chen, Rui Shi, and Dan Pei

References
[1] Ryan Prescott Adams and David JC MacKay. 2007. Bayesian online changepoint

detection. arXiv preprint arXiv:0710.3742 (2007).
[2] Pooja Aggarwal, Ajay Gupta, Prateeti Mohapatra, Seema Nagar, Atri Mandal,

QingWang, and Amit Paradkar. 2021. Localization of Operational Faults in Cloud
Applications by Mining Causal Dependencies in Logs Using Golden Signals.
In Service-Oriented Computing – ICSOC 2020 Workshops, Hakim Hacid, Fatma
Outay, Hye-young Paik, Amira Alloum, Marinella Petrocchi, Mohamed Reda
Bouadjenek, Amin Beheshti, Xumin Liu, and Abderrahmane Maaradji (Eds.).
Vol. 12632. Springer International Publishing, Cham, 137–149. doi:10.1007/978-
3-030-76352-7_17

[3] Vic Barnett, Toby Lewis, et al. 1994. Outliers in statistical data. Vol. 3. Wiley New
York.

[4] Pengfei Chen, Yong Qi, Pengfei Zheng, and Di Hou. 2014. CauseInfer: Automatic
and Distributed Performance Diagnosis with Hierarchical Causality Graph in
Large Distributed Systems. In IEEE INFOCOM 2014 - IEEE Conference on Computer
Communications. IEEE, Toronto, ON, Canada, 1887–1895. doi:10.1109/INFOCOM.
2014.6848128

[5] CloudWise. 2021. GAIA Dataset. https://github.com/CloudWise-OpenSource/
GAIA-DataSet.

[6] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. 2022. Gptq:
Accurate post-training quantization for generative pre-trained transformers.
arXiv preprint arXiv:2210.17323 (2022).

[7] Jiaxuan Gao, Shusheng Xu, Wenjie Ye, Weilin Liu, Chuyi He, Wei Fu, Zhiyu Mei,
Guangju Wang, and Yi Wu. 2024. On designing effective rl reward at training
time for llm reasoning. arXiv preprint arXiv:2410.15115 (2024).

[8] Shenghui Gu, Guoping Rong, Tian Ren, He Zhang, Yongda Yu, Xian Li, Jian
Ouyang, and Chunan Chen. 2023. TrinityRCL: Multi-Granular and Code-Level
Root Cause Localization Using Multiple Types of Telemetry Data in Microservice
Systems. IEEE Transactions on Software Engineering 49, 5 (May 2023), 3071–3088.
doi:10.1109/TSE.2023.3241299

[9] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin
Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1:
Incentivizing reasoning capability in llms via reinforcement learning. arXiv
preprint arXiv:2501.12948 (2025).

[10] Adha Hrusto, Per Runeson, and Magnus C Ohlsson. 2024. Autonomous monitors
for detecting failures early and reporting interpretable alerts in cloud opera-
tions. In Proceedings of the 46th International Conference on Software Engineering:
Software Engineering in Practice. 47–57.

[11] Hugging Face. 2025. Open R1: A fully open reproduction of DeepSeek-R1. https:
//github.com/huggingface/open-r1

[12] Azam Ikram, Sarthak Chakraborty, Subrata Mitra, Shiv Saini, Saurabh Bagchi, and
Murat Kocaoglu. 2022. Root cause analysis of failures in microservices through
causal discovery. Advances in Neural Information Processing Systems 35 (2022),
31158–31170.

[13] Myunghwan Kim, Roshan Sumbaly, and Sam Shah. 2013. Root Cause Detec-
tion in a Service-Oriented Architecture. In Proceedings of the ACM SIGMET-
RICS/International Conference on Measurement and Modeling of Computer Systems.
ACM, Pittsburgh PA USA, 93–104. doi:10.1145/2465529.2465753

[14] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng,
Cody Hao Yu, Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. 2023. Efficient Mem-
ory Management for Large Language Model Serving with PagedAttention. In
Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles.

[15] Cheryl Lee, Tianyi Yang, Zhuangbin Chen, Yuxin Su, and Michael R Lyu. 2023.
Eadro: An end-to-end troubleshooting framework for microservices on multi-
source data. In 2023 IEEE/ACM 45th International Conference on Software Engi-
neering (ICSE). IEEE, 1750–1762.

[16] Mingjie Li, Zeyan Li, Kanglin Yin, Xiaohui Nie, Wenchi Zhang, Kaixin Sui, and
Dan Pei. 2022. Causal inference-based root cause analysis for online service
systems with intervention recognition. In Proceedings of the 28th ACM SIGKDD
conference on knowledge discovery and data mining. 3230–3240.

[17] Mingjie Li, Zeyan Li, Kanglin Yin, Xiaohui Nie, Wenchi Zhang, Kaixin Sui, and
Dan Pei. 2022. Causal Inference-Based Root Cause Analysis for Online Service
Systems with Intervention Recognition. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining. ACM, Washington DC USA,
3230–3240. doi:10.1145/3534678.3539041

[18] Peiwen Li, Xin Wang, Zeyang Zhang, Yuan Meng, Fang Shen, Yue Li, Jialong
Wang, Yang Li, and Wenwu Zhu. 2024. RealTCD: temporal causal discovery from
interventional data with large language model. In Proceedings of the 33rd ACM
International Conference on Information and Knowledge Management. 4669–4677.

[19] Ye Li, Jian Tan, Bin Wu, Xiao He, and Feifei Li. 2023. Shapleyiq: Influence
quantification by shapley values for performance debugging of microservices. In
Proceedings of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 4. 287–323.

[20] Zeyan Li, Junjie Chen, Rui Jiao, Nengwen Zhao, Zhijun Wang, Shuwei Zhang,
Yanjun Wu, Long Jiang, Leiqin Yan, Zikai Wang, Zhekang Chen, Wenchi Zhang,
Xiaohui Nie, Kaixin Sui, and Dan Pei. 2021. Practical Root Cause Localization for

Microservice Systems via Trace Analysis. In 2021 IEEE/ACM 29th International
Symposium on Quality of Service (IWQOS). IEEE, Tokyo, Japan, 1–10. doi:10.1109/
IWQOS52092.2021.9521340

[21] Zeyan Li, Nengwen Zhao, Mingjie Li, Xianglin Lu, Lixin Wang, Dongdong Chang,
Xiaohui Nie, Li Cao, Wenchi Zhang, Kaixin Sui, et al. 2022. Actionable and
interpretable fault localization for recurring failures in online service systems. In
Proceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 996–1008.

[22] Zeyan Li, Nengwen Zhao, Shenglin Zhang, Yongqian Sun, Pengfei Chen, Xidao
Wen, Minghua Ma, and Dan Pei. 2022. Constructing large-scale real-world
benchmark datasets for aiops. arXiv preprint arXiv:2208.03938 (2022).

[23] JinJin Lin, Pengfei Chen, and Zibin Zheng. 2018. Microscope: Pinpoint perfor-
mance issues with causal graphs in micro-service environments. In International
Conference on Service-Oriented Computing. Springer, 3–20.

[24] Jinjin Lin, Pengfei Chen, and Zibin Zheng. 2018. Microscope: Pinpoint Perfor-
mance Issues with Causal Graphs in Micro-service Environments. In Service-
Oriented Computing, Claus Pahl, Maja Vukovic, Jianwei Yin, and Qi Yu (Eds.).
Vol. 11236. Springer International Publishing, Cham, 3–20.

[25] Dewei Liu, Chuan He, Xin Peng, Fan Lin, Chenxi Zhang, Shengfang Gong, Ziang
Li, Jiayu Ou, and Zheshun Wu. 2021. MicroHECL: High-Efficient Root Cause
Localization in Large-Scale Microservice Systems. In 2021 IEEE/ACM 43rd In-
ternational Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE, Madrid, ES, 338–347. doi:10.1109/ICSE-SEIP52600.2021.00043

[26] Xianglin Lu, Zhe Xie, Zeyan Li, Mingjie Li, Xiaohui Nie, Nengwen Zhao, Qingyang
Yu, Shenglin Zhang, Kaixin Sui, Lin Zhu, and Dan Pei. 2022. Generic and Robust
Performance Diagnosis via Causal Inference for OLTP Database Systems. In 2022
22nd IEEE International Symposium on Cluster, Cloud and Internet Computing
(CCGrid). IEEE, Taormina, Italy, 655–664. doi:10.1109/CCGrid54584.2022.00075

[27] Lipeng Ma, Weidong Yang, Yixuan Li, Ben Fei, Mingjie Zhou, Shuhao Li, Sihang
Jiang, Bo Xu, and Yanghua Xiao. 2025. AdaptiveLog: An Adaptive Log Analysis
Framework with the Collaboration of Large and Small Language Model. arXiv
preprint arXiv:2501.11031 (2025).

[28] Lipeng Ma, Weidong Yang, Bo Xu, Sihang Jiang, Ben Fei, Jiaqing Liang, Mingjie
Zhou, and Yanghua Xiao. 2024. Knowlog: Knowledge enhanced pre-trained
language model for log understanding. In Proceedings of the 46th ieee/acm inter-
national conference on software engineering. 1–13.

[29] Yuan Meng, Shenglin Zhang, Yongqian Sun, Ruru Zhang, Zhilong Hu, Yiyin
Zhang, Chenyang Jia, Zhaogang Wang, and Dan Pei. 2020. Localizing Failure
Root Causes in a Microservice through Causality Inference. In 2020 IEEE/ACM
28th International Symposium on Quality of Service (IWQoS). IEEE, Hang Zhou,
China, 1–10. doi:10.1109/IWQoS49365.2020.9213058

[30] RadfordMNeal. 2003. Slice sampling. The annals of statistics 31, 3 (2003), 705–767.
[31] OpenAI. [n. d.]. Learning to Reason with LLMs. https://openai.com/index/

learning-to-reason-with-llms/
[32] Changhua Pei, Zexin Wang, Fengrui Liu, Zeyan Li, Yang Liu, Xiao He, Rong

Kang, Tieying Zhang, Jianjun Chen, Jianhui Li, et al. 2025. Flow-of-Action:
SOP Enhanced LLM-Based Multi-Agent System for Root Cause Analysis. In
Companion Proceedings of the ACM on Web Conference 2025. 422–431.

[33] Luan Pham, HuongHa, andHongyu Zhang. 2024. BARO: Robust Root Cause Anal-
ysis for Microservices via Multivariate Bayesian Online Change Point Detection.
Proc. ACM Softw. Eng. 1, FSE, Article 98 (jul 2024), 24 pages. doi:10.1145/3660805

[34] Devjeet Roy, Xuchao Zhang, Rashi Bhave, Chetan Bansal, Pedro Las-Casas, Ro-
drigo Fonseca, and Saravan Rajmohan. 2024. Exploring llm-based agents for
root cause analysis. In Companion Proceedings of the 32nd ACM International
Conference on the Foundations of Software Engineering. 208–219.

[35] Jakob Runge, Peer Nowack, Marlene Kretschmer, Seth Flaxman, and Dino Sejdi-
novic. 2019. Detecting and quantifying causal associations in large nonlinear
time series datasets. Science advances 5, 11 (2019), eaau4996.

[36] Huasong Shan, Yuan Chen, Haifeng Liu, Yunpeng Zhang, Xiao Xiao, Xiaofeng He,
Min Li, and Wei Ding. 2019. ?-diagnosis: Unsupervised and real-time diagnosis
of small-window long-tail latency in large-scale microservice platforms. In The
World Wide Web Conference. 3215–3222.

[37] Shiwen Shan, Yintong Huo, Yuxin Su, Yichen Li, Dan Li, and Zibin Zheng. 2024.
Face it yourselves: An llm-based two-stage strategy to localize configuration
errors via logs. In Proceedings of the 33rd ACM SIGSOFT International Symposium
on Software Testing and Analysis. 13–25.

[38] Binpeng Shi, Yu Luo, Jingya Wang, Yongxin Zhao, Shenglin Zhang, Bowen Hao,
Chenyu Zhao, Yongqian Sun, Zhi Zhang, Ronghua Sun, et al. 2025. FlowXpert:
Expertizing Troubleshooting Workflow Orchestration with Knowledge Base and
Multi-Agent Coevolution. (2025).

[39] Peter Spirtes, Clark N Glymour, and Richard Scheines. 2000. Causation, prediction,
and search. MIT press.

[40] Yongqian Sun, Binpeng Shi, Mingyu Mao, Minghua Ma, Sibo Xia, Shenglin Zhang,
and Dan Pei. 2024. Art: A unified unsupervised framework for incident manage-
ment in microservice systems. In Proceedings of the 39th IEEE/ACM International
Conference on Automated Software Engineering. 1183–1194.

[41] Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen,
Cheng Li, Chenjun Xiao, Chenzhuang Du, Chonghua Liao, et al. 2025. Kimi k1. 5:

https://doi.org/10.1007/978-3-030-76352-7_17
https://doi.org/10.1007/978-3-030-76352-7_17
https://doi.org/10.1109/INFOCOM.2014.6848128
https://doi.org/10.1109/INFOCOM.2014.6848128
https://github.com/CloudWise-OpenSource/GAIA-DataSet
https://github.com/CloudWise-OpenSource/GAIA-DataSet
https://doi.org/10.1109/TSE.2023.3241299
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1
https://doi.org/10.1145/2465529.2465753
https://doi.org/10.1145/3534678.3539041
https://doi.org/10.1109/IWQOS52092.2021.9521340
https://doi.org/10.1109/IWQOS52092.2021.9521340
https://doi.org/10.1109/ICSE-SEIP52600.2021.00043
https://doi.org/10.1109/CCGrid54584.2022.00075
https://doi.org/10.1109/IWQoS49365.2020.9213058
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://doi.org/10.1145/3660805

FoundRoot: Towards Foundation Model for Root Cause Analysis via Structured Deep Thinking ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

Scaling reinforcement learning with llms. arXiv preprint arXiv:2501.12599 (2025).
[42] Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tris-

tan Thrush, Nathan Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gal-
louédec. 2020. TRL: Transformer Reinforcement Learning. https://github.com/
huggingface/trl.

[43] Hanzhang Wang, Zhengkai Wu, Huai Jiang, Yichao Huang, Jiamu Wang, Selcuk
Kopru, and Tao Xie. 2021. Groot: An event-graph-based approach for root cause
analysis in industrial settings. In 2021 36th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 419–429.

[44] Ping Wang, Jingmin Xu, Meng Ma, Weilan Lin, Disheng Pan, Yuan Wang, and
Pengfei Chen. 2018. CloudRanger: Root Cause Identification for Cloud Native
Systems. In 2018 18th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGRID). IEEE, Washington, DC, USA, 492–502. doi:10.1109/
CCGRID.2018.00076

[45] Junde Wu, Jiayuan Zhu, and Yuyuan Liu. 2025. Agentic Reasoning: Reasoning
LLMs with Tools for the Deep Research. arXiv preprint arXiv:2502.04644 (2025).

[46] Li Wu, Johan Tordsson, Jasmin Bogatinovski, Erik Elmroth, and Odej Kao. 2021.
MicroDiag: Fine-grained Performance Diagnosis for Microservice Systems. In
2021 IEEE/ACM International Workshop on Cloud Intelligence (CloudIntelligence).
IEEE, Madrid, Spain, 31–36. doi:10.1109/CloudIntelligence52565.2021.00015

[47] Zhe Xie, Zeyan Li, Xiao He, Longlong Xu, Xidao Wen, Tieying Zhang, Jian-
jun Chen, Rui Shi, and Dan Pei. 2024. Chatts: Aligning time series with llms
via synthetic data for enhanced understanding and reasoning. arXiv preprint
arXiv:2412.03104 (2024).

[48] Zhe Xie, Shenglin Zhang, Yitong Geng, Yao Zhang, Minghua Ma, Xiaohui Nie,
Zhenhe Yao, Longlong Xu, Yongqian Sun, Wentao Li, et al. 2024. Microservice

root cause analysis with limited observability through intervention recognition in
the latent space. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining. 6049–6060.

[49] Junjielong Xu, Qinan Zhang, Zhiqing Zhong, Shilin He, Chaoyun Zhang, Qingwei
Lin, Dan Pei, Pinjia He, Dongmei Zhang, and Qi Zhang. [n. d.]. OpenRCA: Can
Large Language Models Locate the Root Cause of Software Failures?. In The
Thirteenth International Conference on Learning Representations.

[50] Guangba Yu, Pengfei Chen, Yufeng Li, Hongyang Chen, Xiaoyun Li, and Zibin
Zheng. 2023. Nezha: Interpretable fine-grained root causes analysis for microser-
vices on multi-modal observability data. In Proceedings of the 31st ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 553–565.

[51] Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue,
Weinan Dai, Tiantian Fan, Gaohong Liu, Lingjun Liu, et al. 2025. Dapo: An open-
source llm reinforcement learning system at scale. arXiv preprint arXiv:2503.14476
(2025).

[52] Haochuan Zhang, Chunhua Yang, Jie Han, Liyang Qin, and Xiaoli Wang. 2025.
TempoGPT: Enhancing temporal reasoning via quantizing embedding. arXiv
e-prints (2025), arXiv–2501.

[53] Shenglin Zhang, Sibo Xia,Wenzhao Fan, Binpeng Shi, Xiao Xiong, Zhenyu Zhong,
Minghua Ma, Yongqian Sun, and Dan Pei. 2024. Failure diagnosis in microservice
systems: A comprehensive survey and analysis. ACM Transactions on Software
Engineering and Methodology (2024).

[54] Xuanhe Zhou, Guoliang Li, Zhaoyan Sun, Zhiyuan Liu, Weize Chen, Jianming
Wu, Jiesi Liu, Ruohang Feng, and Guoyang Zeng. 2023. D-bot: Database diagnosis
system using large language models. arXiv preprint arXiv:2312.01454 (2023).

https://github.com/huggingface/trl
https://github.com/huggingface/trl
https://doi.org/10.1109/CCGRID.2018.00076
https://doi.org/10.1109/CCGRID.2018.00076
https://doi.org/10.1109/CloudIntelligence52565.2021.00015

	Abstract
	1 Introduction
	2 Preliminaries and Motivation
	2.1 Problem Formulation
	2.2 Classical Methods
	2.3 LLM-based Methods

	3 Method
	3.1 Structured Deep Thinking
	3.2 Data and Model Training Pipelines
	3.3 Curation of Datasets
	3.4 Model and Training Details

	4 Evaluation
	4.1 Experimental Setup
	4.2 RQ1: Does FoundRoot outperform classical and LLM-based RCA methods?
	4.3 RQ2: How effective is structured deep thinking for RCA?
	4.4 RQ3: Does RL really improve reasoning performance?
	4.5 RQ4: Does structured deep thinking provide more generalization to unseen systems?
	4.6 RQ5: How do smaller and quantized variants perform?
	4.7 Case Study
	4.8 Analysis of failure cases

	5 Related Work
	6 Threats to Validity
	7 Limitations and Future Work
	8 Conclusion
	Acknowledgments
	References

