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ABSTRACT
We present our proposed ABSENCE system which detects service
disruptions in mobile networks using aggregated customer usage
data. ABSENCE monitors aggregated customer usage to detect when
aggregated usage is lower than expected in a given geographic re-
gion (e.g., zip code), across a given customer device type, or for
a given service. Such a drop in expected usage is interpreted as
a sign of a potential service disruption being experienced in that
region / device type / service. ABSENCE effectively deals with users’
mobility and scales to detect failures in various mobile services
(e.g., voice, data, SMS, MMS, etc). We perform a systematic evalu-
ation of our proposed approach by introducing synthetic failures in
measurements obtained from a US operator. We also compare our
results with ground truth (real service disruptions) obtained from
the mobile operator.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network monitoring, Network man-
agement

Keywords
usage-based failure detection; mobile networks; large scale; opera-
tional networks

1. INTRODUCTION
The proliferation of sophisticated mobile devices like smart phones,

tablets and wearable devices [9] have made them an integral part of
today’s society. The growth in both the number of mobile devices,
the data usage of each device and the types of mobiles devices of
course implies an increased reliance and dependence on mobile net-
works. To address this demand, mobile operators are continuously
investing in new mobile networks and technologies. In recognition
of the importance of the underlying network, mobile operators are
building redundancy into nearly all components of their infrastruc-
ture and developing sophisticated systems to monitor the health of
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their networks and to rapidly respond to any customer impacting
events [15].

Despite these efforts, the inherent complexity of mobile networks
and their environments (customer devices, applications) may result
in service disruptions that go undetected by monitoring the network
elements. Hence modern mobile operators adopt the strategy of
deploying service monitoring, in addition to the network monitor-
ing, on the customer service experience. Service monitoring is
designed to continuously monitor the end-to-end experience that
customers receive from their network-based services. This contrasts
with network monitoring, in which the status of individual network
elements and links are monitored for failures and impairments (e.g,
link losses). Service monitoring is vital as a second line of defense
– capturing network, customer device or application issues as well
as interaction issues among them which may not be detected by
the network/applications/devices themselves. Service monitoring
is also crucial to quantifying the service impact of known network
problems for prioritizing issue resolution.

Somewhat counter-intuitively, network elements that support the
service functions are not always able to alarm on conditions which
are in fact service impacting. This may be the result of, for example,
software bugs in the network elements’ firmware, or in the EMS
(element management system) for the network elements, or due to
configuration errors. It is possible that, even though all network
metrics indicate a healthy network, customers might be experiencing
degraded service or a complete service disruption. For example, the
deployment of a new service feature or a software upgrade to address
a bug, might trigger an unintended side effect (or indeed a new bug)
that the monitoring system is not equipped to detect. We define such
service disruptions that are not captured by network monitoring as
silent failures. Furthermore, it is difficult to infer service quality
perceived by customers using the status of the network. There is
a complicated relationship between the status of the network and
the service quality the users experience. For example, because of
redundancy mechanisms within the network, a particular network
failure does not necessarily imply customer impact. For example,
users associated with a failed cell tower could be picked up by
neighboring towers as long as they are in the coverage range of the
neighboring towers and the neighbors still have enough resources to
handle the users’ traffic [27].

However, monitoring service performance across a mobile net-
work is extremely challenging. Traditional active monitoring ap-
proaches – techniques which send test traffic across the network –
simply don’t scale, courtesy of the very large number of cell tow-
ers (end points) that need to be monitored and the diverse set of
services supported by mobile networks. One could alternatively
naively imagine looking for service disruptions by looking for drops
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in traffic volumes on network elements. However, the inherently
dynamic nature of a mobile network environment makes it difficult
to infer service impact by monitoring individual network elements,
e.g., routers or base stations, to distinguish between changes in
traffic volume that are simply the result of the normal operation of
the network, and changes that are the result of anomalous network
behavior.

In this paper we present our work on the ABSENCE system to
address the detection of service disruptions in mobile networks in
a proactive manner. Our key insight is that service disruptions of-
ten impact the traffic consumed by customers, which very likely
reflects in customers’ usage. This seemingly obvious observation,
combined with a suitable mechanism to monitor customer usage,
allows ABSENCE to rely on customer usage data to detect the pos-
sible presence of service disruptions. Specifically, ABSENCE uses
aggregated (e.g., zip code level and handset manufacturer/model
level) usage data for different mobile services (e.g., voice call, data,
and short message) calculated from anonymized call detail records
(CDRs). ABSENCE uses the historical aggregated usage data to
predict the expected customer usage for different mobile services at
appropriate aggregations of customers, and compares this with real
time customer usage data. A deviation from the predicted customer
usage is highly likely an indication of a service disruption.

We make the following contributions:

• We present the design of ABSENCE, a novel service disrup-
tion detection system for mobile networks that infers service
disruptions by monitoring aggregate customer usage. Our de-
sign is informed by a data driven exploration of the problem
domain using data from an operational mobile network.

• We present a scalable Hadoop-based implementation of our
approach which is capable of performing service disruption
detection by processing huge volumes of anonymized CDR
data (e.g., hundreds of millions of records every hour for
mobile data service) in a streaming manner, for all the mobile
services associated with an operational mobile network.

• Using data from the same operational mobile network, we
perform a systematic data-driven evaluation of our approach
by introducing a comprehensive synthetic set of both net-
work and mobile device failure scenarios. Our results show
that: (i) Our variable-scale temporal aggregation improves
detection by an order of magnitude over fixed interval aggre-
gation. (ii) We achieve overall detection rates of 88%, while
we achieve 98% or better detection rates for service disruption
that have over 10% usage impact within the corresponding
aggregation (e.g., zip code and handset device model).

• We compare our results with ground truth from actual service
disruption events and present a number of case studies show-
ing the effectiveness of our approach. For a set of confirmed
service disruptions, ABSENCE achieves 100% detection rate.

2. MOTIVATION
In this paper we define a service disruption to be a scenario in

which customers become unable to utilize the offered service(s)
that they would normally utilize. A service disruption can be either
due to the network/application fails to complete customers’ service
requests, or because customers give up making service attempts
due to unacceptable service performance. Service disruptions are
typically the result of a network, device or application outage or
severe performance degradation. The vast majority of service issues
are rapidly detected via the network and/or application. However,

there are a small number of issues – typically those resulting from
complex software bugs – that may remain undetected by the network
and/or application.

Given the challenges of scaling active service monitoring tech-
niques, one could imagine instead simply relying on customers to
inform a mobile service provider of service disruptions as is per-
formed in other industries, such as the power industry. However,
given that individual customer concerns may relate to a large number
of underlying causes – individual customer device issues, customer
user error or broader service disruptions – identifying a significant
service disruption would typically require detecting a pattern in the
customer feedback across a number of different customers. This is
inherently slow, and thus a highly undesirable approach to detecting
service issues. Figure 1a shows an example of customer ticket vol-
ume resulting from a service disruption. The figure shows a time
series of the number of tickets in the customer care system. The
actual event occurred around 16:38 UTC, but was only evident via
an increase in customer ticket volumes at 21:00 UTC (i.e., 4.5 hours
later), when the number of customer calls rapidly increased. Rely-
ing on customer complaints to detect such failures is thus clearly
undesirable – customers are simply too slow at calling in for this to
be a timely approach for detecting service issues.

Given the relative maturity of network management and operation
practices [15], and significant research efforts associated with failure
detection [13, 4], network and application interaction [22, 14, 19,
10], mobile network performance [20, 21, 25, 12, 6] and service
monitoring [26, 24, 5], the obvious question is: Why are these
service disruptions so difficult to detect?

Active end to end service monitoring is used extensively across
mobile and wireline networks to test service integrity and perfor-
mance. Active monitoring uses probes placed strategically across
the network to send test traffic. However, the major challenge with
active monitoring is scale – ideally probes must be deployed so that
every combination of service path, customer device type and appli-
cation is actively tested on an ongoing basis. But this is clearly an
unrealistic expectation. There are simply too many different types
of customer devices in the market place, a multitude of different
applications and a huge geographic environment to probe. In a
wireless environment, service performance can vary considerably
across a very local region even for customers connected to a com-
mon cell site. Thus, even placing a dedicated probe associated with
each individual cell site does not provide a comprehensive view
of service experience across the entire region associated with that
cell site. Thus, active monitoring in a mobile network provides
only a sampling of service experience and, depending on the ex-
tent of the deployments, will likely not be able to detect all service
impairments.

One may alternatively use passive monitoring of customer traffic
to detect service impairments. Such monitoring can be performed on
traffic aggregates, and thus does not need visibility into individual
customer experience. However, service outage detection cannot be
achieved by observing customer traffic – by its very nature customer
traffic is expected to disappear during an outage. Thus, detecting
a service outage using passive monitoring entails looking for an
absence of expected traffic. Thus, one could natively assume that we
could look for drops in load on network elements to identify service
outages. However, where in the network to look for such reductions
in carried load is an intriguing challenge – traffic is regularly shifting
around a mobile network, typically without any service impact. For
example, activities such as load balancing or planned maintenance
events could cause load changes on network devices, yet has no
impact on customers’ service experience. Figure 1b shows a load
change on an Serving Gateway (SGW) node in an SGW pool during
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(a) Customer care tickets indicating a service disruption
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(b) Load reduction caused by load balancing
Figure 1: Network events

a load balancing event. Despite the load change on the individual
SGW, there was no impact on users. Simply looking at the load of
this SGW alone is insufficient to determine customer impact.

While detailed network performance metrics have been defined
for mobile networks by 3GPP [3], and are being implemented by
equipment vendors, these key performance indicators (KPIs) are
not always sufficient to detect user impact either. For example,
3GPP defines accessibility as a KPI to measure the probability that
a user will be provided with radio access network (RAN) resources
(technically with a radio access bearer) on request. This metric can
clearly provide insight concerning resource shortages in the radio
access network. However, users might still be impacted, even when
the RAN accessibility KPI is good, because users that lost radio
coverage are not even accounted for in the KPI calculation or when
the root cause of the service problems are beyond the RAN (e.g.,
congestion on a core network element). In other words, service
disruption occurs when accessibility is bad, but accessibility being
good does not necessarily imply that service is good.

Finally, in order to deliver the end-to-end service successfully,
handset device, mobility network and application need to work to-
gether seamlessly. Thus the root cause of a service disruption could
be well beyond the mobility network. For example, a firmware
upgrade on a certain customer device model could result in incom-
patibility between equipment in the RAN (e.g., a radio network con-
troller (RNC)), and the mobile devices that performed the firmware
upgrade, thus resulting in a large number of devices not being able
to access the network. Similarly, an update in the delivery protocol
of a video streaming application could cause interoperability issues
between application and network, which further leads to service
disruptions. These types of service disruption are challenging for
mobility network operators since there is little evidence of it on the
network side.

In this paper, we argue that users’ usage, or lack thereof, is a
reliable indicator of service outages and severe performance degra-
dations in a mobile network. By monitoring and analyzing users’
usage, we are able to detect service disruptions that could be chal-
lenging for other event detection mechanisms.

3. APPROACH
With ABSENCE we propose to use historical customer usage data

to predict expected usage that should be generated from customers
under normal conditions. Any deviation from expected customer
usage indicates an anomaly, which might be indicative of a service
disruption. While this basic approach conceptually seems to make
sense, it is not obvious that the method would be feasible in practice.
For example: would customer usage predictions based on usage
data be sufficiently accurate to allow anomaly detection? Given the
number of mobile devices, the variety of services offered on mobile
networks and the complexity of the mobile network infrastructure,
is there a level of customer usage aggregation that would provide
fidelity of detection fine-grained enough to detect silent failures at a

granularity that is practically useful? Given that users in a mobile
network are by design using the network while moving around, how
should we deal with mobility?

In this section, we present our exploration of these questions
using customer usage data from a large mobile network provider.
Before describing our exploration we briefly describe the nature of
Call Detail Records (CDRs) which, when aggregated, constitute the
customer usage data used in ABSENCE.

3.1 Customer usage data
ABSENCE aggregates metrics from Call Detail Records (CDRs)

to measure customer usage at different locations and application
levels. These aggregates are calculated within ABSENCE using
individual, anonymized CDRs. Note that these individual CDRs are
only used internally to the system during the aggregation process,
and no customer specific data (anonymized or otherwise) is ever
exposed to a user of the ABSENCE system. Call Detail Records
contain meta data about executed transactions across the mobile
network (i.e., phone call, data session, access to voice mail etc.).
Each record captures information that is needed for charging and
debugging such as a time-stamp of the activity, device specific
information (e.g., the international mobile station equipment identity
(IMEI)), network related information concerning the activity (e.g.,
the sector(s) of a cell tower that the device is connected to), the
duration of the activity (for voice services) or the volume of data the
device downloads/uploads (for data services). Of critical importance
for our approach, CDRs are generated in near real time: for Voice
service a CDR record is generated right after a call finishes, for
Data service a CDR record is generated whenever a PDP context
is created and a new CDR record is created every hour if the data
connection spans multiple hours. This allows CDRs to be used as a
timely indicator of customer activity (or inactivity). Note that CDRs
do not contain actual customers’ short message, voice call or data
content and ABSENCE only uses anonymized CDRs.

3.2 Usage prediction and aggregation size
The primary challenge in calculating aggregate customer usage

information is to determine what level of aggregation is most effec-
tive to address the problem at hand. In considering the question of
accuracy of predicting traffic volumes versus fidelity of anomaly
detection, there exists an intuitive tradeoff: At one extreme one
might attempt to use the usage data of each individual. While the
network usage pattern of an individual user might show fairly pre-
dictable patterns, at this granularity a deviation from an expected
pattern is clearly not a reliable indication of a service impairment.
The user in question might simply have a change in their normal
behavior, e.g., going on vacation. At the other extreme, the usage
aggregated across all customers in the US is highly predictable.
However, at this aggregation level, a service disruption that only
impacts a relatively small number of users, e.g., those associated
with a particular cell-tower, would not be visible at such a coarse
grained data aggregation level. The challenge therefore is to find

466



an aggregation level of usage data that is small enough that it can
provide high fidelity of detection, but at the same time large enough
to render stable usage patterns to allow for accurate prediction.

For example, Figure 2a and 2b show the amount of voice calls
respectively made by a group of 70 and 3020 randomly chosen
devices over the course of three weeks. The amount of usage on
the smaller group is significantly less that in the larger group and
the larger group also shows more stable day-to-day usage pattern
between the different weeks.

To understand how the amount of usage affects the tradeoff be-
tween the stability of the usage patterns versus the fidelity of detec-
tion regardless of device specific, we conduct experiments to predict
future usage based on historical usage with different amounts of
aggregated data.

Experiment description: We selected a uniform random sam-
pling of users to form different groups (with size ranging from 20
to 150,000 users) for Voice and LTE data service. We assumed that
the aggregated service usage follows a weekly seasonal model and
we used 16 weeks of data for our training. We constructed a weekly
seasonal usage pattern using the additive decomposition technique
described in Section 4. The seasonal pattern is the predicted us-
age for the future usage and the “noise” is the absolute distance
between the usage and its seasonal data point. We then used the
above seasonal usage pattern to predict another week of usage.

Metric: To quantify the prediction accuracy, we use the normal-
ized noise ratio as the metric. We formally define the noise ratio in
Section 4. In short, the noise ratio is the “noise” between the testing
data and the training data normalized by the training data. Intu-
itively, if the usage of an hour deviates too much from the seasonal
pattern, the noise of that hour is high and therefore results in a higher
normalized noise ratio. We sampled the noise ratio at two regions of
a time series (i.e., during the peak usage period 17:00-23:00 UTC
and during the low usage period 03:00-11:00 UTC), and plot the
noise ratio as a function of usage.

Results: Figure 2c shows the noise ratio as a function of the
usage for LTE and voice. Overall, for a sufficient aggregation (i.e.,
above 1,000 of usage), the usage is quite predictable (i.e., the noise
is about 10%). Moreover, the noise ratio is high for a small usage
and reduces when the amount of usage increases. This matches
the intuition that the usage of an individual user is less predictable
than the aggregated usage of a group of users. The figure also
suggests that after a certain amount of usage data, the predictability
of an aggregation does not increase significantly. This suggests that
the size of an aggregation should not be too large for both good
predictability and high sensitivity, e.g., if we monitor usage of an
entire city as an aggregation, a failure that impact only a single ZIP
code area might not cause a significant enough drop on the total
usage for a system to detect.

3.3 Practical user aggregation
In this section we consider the question of how groups of users can

be selected in practice. While network and service failures can be
highly diverse in their impact scope, the mobile network design and
operational practice would inherently cause the service failures to
be localized to geographically close-by regions and/or user devices
with some common hardware or software. For example, rolling out
a software upgrade on Radio Network Controllers (RNCs) would
typically take place in a few geographical regions, and the upgrade
may introduce an unexpected compatibility problem with certain
phone models that was not captured by the RNC equipment vendor
during lab testing. As another example, a software bug in a packet
data network gateway (PGW) may cause the service that the PGW
supports (e.g,. visual voice mail) becomes unusable, and all service

requests originated from certain geographical regions that are routed
toward this PGW are affected. Hence, grouping users geographically
and by device hardware and software and tracking usage by different
service features would have the best chance of capturing service
failures.

Geographical hierarchy: In this grouping method, we utilize
the geographical hierarchy in the ZIP-code system to group users.
We use the ZIP-code hierarchy for three reasons: (i) the ZIP-code
system was designed for efficient postal delivery and therefore each
ZIP-code naturally covers a sufficient and relatively equal amount
of users, (ii) the ZIP-code hierarchy is geographically driven and
the structure of the ZIP-code has geographical meanings, (iii) by
utilizing the ZIP-code hierarchy, the system can quickly scale up and
down the size of aggregation based on the structure of the ZIP-code.
I.e., groups of states, states, large cities etc. Moreover, a ZIP code
area is relatively large enough for sufficient usage prediction and
small enough to obtain good sensitivity A ZIP code area also often
belongs to either an urban or a rural area and therefore users in a
same ZIP code often have the same usage pattern. The detailed
ZIP-code hierarchy is presented in Figure 3a.

Device type hierarchy: Under each geo-group (i.e, a node in
Figure 3a), we divide devices into smaller groups based on operating
systems (i.e, Android, IOS, Windows, BlackBerry OS), device make
(i.e, Samsung, Apple, Nokia, etc), and device type (i.e, Samsung
Galaxy S5, iPhone 4, Nokia Lumia 512, etc). This way the system
can monitor not only geographical aggregations (e.g., Salt Lake
City) but also specific device types in the area (e.g., all Samsung
Galaxy S4 devices in Salt Lake City). As shown in Figure 3b, this
device hierarchy can be applied at different levels in the geographical
hierarchy.

3.4 Temporal usage aggregation
Recall that in Section 3.2 we found that in order to get good

predictability the aggregations being monitored should have a large
enough usage. (Figures 2c.) Daily network usage follows a well
known diurnal pattern with well established busy and quiet times.
During the network quiet time (i.e., after midnight), hourly usage is
typically small and might not be sufficient for a good predictability.
Figure 3c shows the CDF of hourly voice usage during low usage
period (i.e., 03:00 UTC to 11:00 UTC) and peak usage period (i.e.,
17:00 UTC to 23:00 UTC) of all ZIP codes. Almost 95% of the
hourly usage measurements during low usage period are smaller
than 500 which reduces the accuracy of prediction over hourly
aggregations. I.e., at the ZIP code level, simply grouping usage into
hourly bins results in insufficient usage to obtain a good prediction.
In contrast, 48% of the hourly usage measurements during peak
period are smaller than 500. Moreover, usage can also be low
if, when using the geographical or device aggregation, the chosen
aggregation level only has a small number of users (e.g., a ZIP code
in a rural area or a ZIP code with a small number of subscribers).

This suggests the utility of grouping multiple hours during low
usage period or of small spatial aggregations into a single temporal
aggregation. Note that using longer time periods over which to do
the usage aggregation would present higher accuracy at the cost
of increasing the potential detection time, i.e., when the usage is
low this technique increases the likelihood of detecting a failure
after several hours while the conventional technique cannot detect
it. Based on this observation we employ a variable scale aggrega-
tion strategy in Section 4 to improve the accuracy of prediction in
ABSENCE.
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3.5 Usage aggregation
ABSENCE uses aggregate service usages to detect service dis-

ruptions. In order to generate these aggregates, ABSENCE groups
individual anonymized CDRs from a set of similar users. In AB-
SENCE, users are considered similar to each other if their mobile
devices are from the same manufacturer/model or from the same zip-
code. Aggregation usage from users with the same mobile device
manufacturer/model is straight-forward. Due to space constraints,
in the section, we only focus on how to group users based on the
zip-code that they are in.

The inherent challenge stems from the mobility nature of mobile
network users. Thus the set of users in a particular zip-code area,
is changing over time. For example, the number of mobile users in
a zip-code covering a business or educational campus might vary
by thousands, or even tens of thousands, over the course of a day as
workers/students arrive for the work day and leave again at the end
of the day. In this section we explore mechanisms to deal with this
inherent variability in ABSENCE.

Our approach hinges on the observation that for our purposes
in ABSENCE, the exact location and mobility patterns of specific
users at a particular point in time are not relevant. Rather, we are
interested in knowing these properties with sufficient accuracy for a
statistically meaningful aggregate of users. Moreover, approximated
users’ location could be used to localize geographical location of
a failure to benefit root cause analysis. Thus, to calculate the zip-
code level usage aggregates we simplify the internal operation of
our ABSENCE system by simply aggregating over those customers
that are typically in the given zip code for that time of day. Thus,
within ABSENCE, for each (anonymous) user, we derive a user
zip-code profile which approximates the user’s mobility pattern
at zip-code level over time. This user zip-coed profile is derived
within ABSENCE using the anonymized CDRs. After calculating
an individual user profile, the usage of an user is counted toward
his/her profiled zip-code regardless of the current zip-code of the
user. For example, during summer some students leave their campus
for internship, those students’ usage will be counted toward their
approximated zip-code, i.e., their campus.

Zip-code level profiling: We evaluated a number of strategies to
derive the user profiles. We assumed users’ mobility pattern follows
a daily pattern during weekdays and weekends (i.e., weekends are
treated differently). We explored 2 parameters used to approximate
users’ zip code profile: how many zip-codes in a day a user has and
the length of training data used for the approximation. Note that
maintaining multiple zip-codes for a user results in more resources
required to store the historical data and extract usage in real time.
For example, if the user zip-code profile maintains 48 zip-codes for
each user (i.e., 24 hours for weekdays and 24 hours for weekends)
then there are 48 historical usage measurements for that user and
each of them may be grouped differently (recall that ABSENCE
groups usage based on user zip-code profile).

Due to space constraints we only describe the home/work ap-
proach which provided acceptable complexity/accuracy tradeoff
and is what we use within ABSENCE. Our experience is that the
fine-grained hourly user zip-code estimation does not improve the
accuracy yet requires significant more computation. With the home-
/work profile approach we make the simplifying assumption that
user mobility can be approximated as follows: Depending on the
time of day and day of week, a user is typically either at home or
at work. Specifically, during week days and working hours, i.e., 9
a.m. to 7 p.m., the user is assumed to be at work. While during
weekends and the remaining week day hours, the user is assumed
to be at home. Given this assumption, what is required to derive a
home/work profile is to determine the user’s home and work base
station. We make use of historical CDR data over a relatively long
period of time, i.e., a couple of months, and simply use the most
frequent base stations for the appropriate time (i.e., work or home)
to determine the respective base stations for home and work hours.
For example, if a user uses a base station most frequently during
9 a.m. to 7 p.m in a month period, his/her work hour zip-code
profile will be that base station’s zip-code. The home/work profile is
clearly quite scalable requiring only two zip-codes (and associated
historical information) to be maintained for each user.

Experiment: We evaluated the accuracy of the home/work zip-
code level profile. We first derived the users’ zip-code profiles as
described above using historical CDRs. We varied the amount of the
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Figure 4: Data processing pipeline of ABSENCE
training data used to evaluate its impact on our approximation by
1,2,4, and 8 weeks. We then used the derived profiles to predict users’
zip-code using the same amount of future CDRs. We measured the
percentage of users’ zip-codes that were correctly predicted (i.e.,
the hit rate - whether he/she makes calls in the estimated home/work
zip-code) using the user profiles.

Results: Table 1 shows the results of this evaluation. As shown
the duration of the historical (training) data does not significantly
improve the accuracy of the approximation. Given the computational
cost to consider this suggests that the home/work zip-code profile,
with monthly updating, will be the most suitable for ABSENCE.

1-week
training

2-week
training

4-week
training

8-week
training

Home/work 57.03% 57.92% 58.91% 56.05%
Table 1: Hit rate of zip-code approximations

4. SYSTEM OVERVIEW
In this section we describe ABSENCE and how the data is pro-

cessed. The logic blocks of the system are shown in Figure 4. From
left to the right, “raw usage data” (anonymized call detail records)
go through a pipeline, which consists of multiple stages: spatial
aggregation, variable-scale temporal aggregation, event detection
and false-alarm removal before the detected events are shown to the
operators. While we show this step for completeness in Figure 4, our
current focus is on developing an effective usage-based detection
system and we therefore do not consider this aspect. In Section 8
we do, however, validate ABSENCE against real service disruptions.

Spatial aggregation: We explored the need for spatial aggre-
gation to ensure the accuracy of estimation in Section 3. As we
described in Section 3.3, ABSENCE groups users based on their
profiled zip-codes (Section 3.5): users that are geographically close
are grouped together using their zip-code profile. Users in the same
area are often being served by the same set of network elements and
therefore likely to be impacted as a group. Moreover, events that
impact a group of geolocated users are more likely to be actionable
to network operators.

Temporal profile generation: After grouping the users, AB-
SENCE needs to extract the usage data of the group over time in
order to detect abnormal usage for the group. As mentioned in
Section 3.4, simply grouping usage into hourly bins is not optimal
for usage predictability and anomaly detection. Instead, if the hourly
usage is smaller than a predefined threshold (e.g., after midnight or
the spatial aggregation is small), ABSENCE groups multiple hours
of usage into a single bin in order to satisfy the usage threshold.

To realize this, ABSENCE needs a temporal profile for each spa-
tial aggregation to do the grouping. ABSENCE assumes a weekly

seasonality for the aggregations, i.e., the usage of an aggregation
repeats every week. To generate the temporal profile, ABSENCE
first uses hourly historical data to find a regressed weekly time series
such that every data point in the regressed weekly time series is the
median of the historical data points. Note that the historical time
series and the regressed weekly time series consist of hourly usages.
Having calculated the regressed weekly time series, ABSENCE then
runs a greedy algorithm (Algorithm 1) that groups consecutive hours
together until the total usage is larger than a predefined threshold
(i.e., K in algorithm 1) and repeats this until all the hours in the
weekly time series are grouped. If the last temporal bin of a week
appears to be too small then it will be combined with the first hours
of the following week until the threshold K is satisfied. The output
of the algorithm is a temporal profile which has each temporal bin is
at least the predefined amount of usage. Note that ABSENCE needs
to run this training process only once every several months given
that the temporal profile of the aggregation is usually stable.

Variable-scale temporal aggregation: After obtaining the tem-
poral profile for each spatial aggregation, ABSENCE uses the profile
and the hourly time series from the spatial aggregation to create
a variable-scale time series. The output of the variable-scale tem-
poral aggregation is a time series which has multiple temporal
granularities and each data point satisfies a predefined usage thresh-
old. This time series is used for event detection. We compare this
variable-scale approach with the plain hourly temporal aggregation
in Section 7.1. Note that ABSENCE currently aggregates usage data
on an hourly basis at the finest granularity.1

Algorithm 1 Generate temporal profile
Input: Weekly regressed usage time series T = (t0, t1, ..., t167) for 168 hours
in a week, threshold K.
Output: Temporal profile j and P = (p0, p1, ..., p j) as the starting hour of j
continuous segments of each profile bin

1: Initialize: i← 0, accumulate_usage← 0, j← 0, tag← 0
2: while i < 167 do
3: accumulate_usage← accumulate_usage+ ti
4: if ∑(accumulate_usage)≥ K then
5: p j ← tag, accumulate_usage = 0, j← j+1, tag← i
6: end if
7: i← i+1
8: end while
9: if j == 0 then

10: return 0, ()
11: else
12: if accumlate_usage == 0 then
13: return j, P
14: else
15: {remainder wrapping around to the beginning of the week}
16: p0← tag
17: return j, P
18: end if
19: end if

Event detection: After generating the variable-scale usage time
series of a group, ABSENCE appends the usage with the correspond-
ing variable-scale historical usage and feeds the entire time series
into a time series decomposition and event detection module that
analyzes the time series and outputs abnormal events. Due to the
large number of time series that needs to be processed, ABSENCE
adopts the additive time series decomposition approach, which is
a light-weight time series analysis algorithm and has been found
very effective in modeling economic data and recently in network
1While an hour might seem long from the perspective of detecting a
network outage, it does represent a reasonable tradeoff in the context
of network operations scale.
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traffic as well [23]. At a high level, the time series decomposition
technique de-constructs a given time series into the secular trend
component ({Tt}), the seasonal component ({St}), and the noise
component ({Nt}) [8]. In the additive model, the original time series
({Vt}) is the summation of these three components.

Figure 5 (b), (c), (d) show the corresponding components for
the time series in Figure 5 (a). The general idea of time series
decomposition is very simple – with a specified seasonality window
W , secular trend can be obtained through smoothing over long term
(multiples of W ), i.e., by centered moving average:

Tt =
W−1

∑
i=−W

Vt+i/2W

Note that to be able to decompose the variable-scale time series,
the seasonality window W here is set to the number of temporal
aggregations of the temporal profile generated, i.e., j in Algorithm 1,
and W varies for different spatial aggregations.

The seasonal trend can be obtained by averaging the phase value
(after removing secular trend) across seasons, i.e., by seasonal
moving average:

St =
K

∑
i=0

Vt−iW −Tt−iW

where K is the number of seasonal windows contained in the histori-
cal data. And the remainder becomes the noise component:

Nt =Vt −Tt −St

Note that time series decomposition can be applied to analyzing
both long range historical data and in a moving window fashion for
the recent data (as new data is appended to the time series).

In our approach, we further model the noise components, Nt ,
at different phases as zero-mean Gaussian variables with different
variance, σ2

t|W , where the phase t|W represents t mod W . We tag
the corresponding time series value, Vt , as anomalous (critical value
1.96 at 95% confidence interval) if

|Nt/σt|W |> 1.96 (1)

This is consistent with classic anomaly detection techniques. We
also apply an iterative process such that we remove the anomalous
points in the previous iteration from the trends and noise variance
computation, which makes our approach robust to bad data/known
anomalies.

An example of how the event detection works is shown in Figure 5.
The two dips (green dots) in Figure 5 (a) correspond to the two dips
in the noise component in Figure 5 (d) (red solid line) and those
two dips are smaller than the lower 95% confidence interval of the
noise component at the points (blue dashed line). This results in two
detected anomalies in the time series.

5. IMPLEMENTATION
Processing the anonymized CDRs is computational intensive (e.g.,

hundreds of millions of records every hour for data service and tens
of millions of records every hour for voice service) and normal serial
processing methodologies will not be scalable. Since CDRs can be
processed independently, we use a Hadoop Map-Reduce cluster to
process the data in parallel to speed up the process.

Running environment: As shown in Figure 6, ABSENCE con-
sists of four components: historical usage retrieval, hourly usage
retrieval, time series processing and user location profile retrieval.
ABSENCE runs on two environments: usage retrieval is done on a
Hadoop cluster and time series processing is done “locally”. The
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Figure 5: Trend, seasonal, and noise components

Hadoop cluster hosting ABSENCE consists of 100 nodes each with
32 cores CPU and 128GB RAM and runs on a HDFS file system.
The local environment is a single node in the Hadoop cluster.

Figure 6: ABSENCE components
Historical/hourly usage retrieval component: We use Apache

Pig (pig.apache.org), a platform that offers a high-level language
for expressing map-reduce programs, for the usage retrieval compo-
nents. The hourly usage retrieval component wakes up every hour to
extract the usage of the last hour while the historical usage retrieval
component is triggered every month to extract the usage of the last
months that is used as a historical usage baseline of the coming
month. The output of the historical/hourly usage retrieval compo-
nent is transferred to a local machine for time series processing.

User location profile retrieval: We build the user location pro-
file retrieval using native Hadoop Map-reduce. The location profile
retrieval component is triggered every month to construct the latest
location profile that is used for the following month. The user loca-
tion profile is stored on the Hadoop HDFS file system as the usage
aggregation components need the information. (Figure 6).

Time series processing component: This component is located
locally on a single node in the Hadoop cluster. The component
consists of light-weighted modules such as the time decomposition

470



module, the anomaly detection module, false-alarm removal module
etc.

6. EVALUATION SETUP
Obtaining ground truth about service disruptions is inherently

difficult. (We do, however, evaluate ABSENCE against known ser-
vice disruptions in Section 8.1.) To allow a systematic evaluation of
our approach we introduced synthetic service disruptions into data
obtained from a US mobile provider.

6.1 Data overview
We used CDR data collected in a large US mobile network from

July 2014 to December 2014 in our evaluation. We used all 6 months
worth of data to build up the historical data used in ABSENCE.
With 6 months of historical data and the weekly seasonal model,
we maintain 6 ∗ 4 = 24 usage histories for each of the nodes in
our geographical hierarchy to use as reference points for anomaly
detection in current usage data. This amount of historical usage
data is sufficient to maintain acceptable confidence intervals for the
time decomposition algorithm. The total amount of data used in our
evaluation is 45 TB. The volume of collected CDR data varies from
15-20 GB per hour, depending on user activity, with the monthly
volume of 7-8 TB. For the synthetic evaluations presented below, we
excluded a week’s worth of data from the 6 months data set and used
those days as “current usage data” in which the synthetic failures
were introduced.

6.2 Synthetic service disruptions
To allow for a systematic evaluation of ABSENCE we emulate ser-

vice disruptions due to both the network and the device failures. AB-
SENCE performs service disruption detection by identifying changes
in the expected usage data. As such, to emulate both network and
device failures, our approach is to remove the corresponding data
(i.e., data that would disappear if the failure had occurred) from the
CDR data for each synthetic scenario.

We mimic network failures at the granularity of a base station,
i.e., when a base station is down, the service at that base station
is lost. In the CDR data, every call record is associated with a list
of base stations that served the call, i.e., the “serving list”. When
we emulate the failure of a base station, we use the serving list to
remove call records associated with the base station in question.

We similarly emulate device failures by removing all call records
associated with the emulated device failure. For example, a firmware
bug could affect all devices from one manufacturer after a firmware
update and prevent users from making calls even when the network
is healthy. To introduce this type of failures, we remove call records
with the device make/model associated with the emulated failure.

To introduce different failure scenarios for our evaluation, we
combine the basic network and device failures described above with
geographic information at different granularities and a severity fac-
tor to be applied. We vary the severity of a failure by failing different
numbers of base stations or devices in the chosen aggregation, e.g.,
10% of base stations in a ZIP for less severe failures and 100% of
base stations in a ZIP for large outages.

6.3 Sensitivity to failure impact
ABSENCE detects anomalies based on variations in the expected

normal usage patterns. A key question to answer with our evaluation
of this approach is what degree of impact ABSENCE will be able
to detect. To answer this question we investigated two factors: (i)
failure impact ratio and (ii) absolute impact. Failure impact ratio is
defined as the ratio of the total amount of usage reduction during

the failure over the total amount of a normal usage, or

impact ratio =
total usage reduction
total normal usage

.

Absolute impact is defined as the total usage reduction during an
injected or detected event. For example, if during a 5-hour event,
4,000 out of 5,000 calls were lost, the absolute impact is 4,000 and
the impact ratio is 80%. The smaller the impact ratio is, the more
challenging it is for an anomaly detection system to identify it. The
larger the absolute impact is, the more important it is for operators
to pay attention to it. We use both metrics in evaluating ABSENCE
regarding the sensitivity and performance in detecting anomalies.

6.4 Failure scenarios
We consider two different geographical aggregation levels: city

and ZIP-code area. In term of devices, we consider two popular
mobile-device manufacturers namely A and B and two popular
mobile-device models, A-1 and B-1. Combinations of the two
geographical aggregations and two specific device types allow a
variety of test scenarios: city (e.g., all phones in Los Angeles),
city+device make (e.g., all A phones in Los Angeles), city + device
model (e.g., all A-1 phones in Los Angeles), ZIP code (all phones
in ZIP code 07921), ZIP code + device make (e.g., all B phones in
ZIP code 07921), etc. To come up with our final failure scenarios
we consider three additional attributes: the type of service, the time,
duration and the severity of the event (i.e., failure impact ratio).

In order to thoroughly evaluate ABSENCE we generate failure
scenarios randomly based on different aspects we want to evaluate.
Table 2 shows all aspects and the evaluation values from which we
randomly selected to make up our failure scenarios. The table also
shows an example scenario for each aspect.

We randomly chose 100 ZIP codes and 10 cities for the geograph-
ical aggregations to evaluate. We generated failures with different
impacts by varying the amount of failed base stations when generat-
ing the failures, i.e., the impact ratio. There are 11 impact ranges
each is 5% of impact ratio wide, i.e., [0%-5%], [5%-10%] etc.

We randomly picked 100 failures (i.e., 100 samples) for each
impact range, e.g., we picked 100 failures that have [10%-15%] of
impact, 100 failures that have [15%-20%] of impact, etc., until all
the impact ranges are covered. Note that for each impact range the
randomly generated failures should be uniformly distributed across
attributes. For example, 100 failures in the (ZIP code + device make)
aggregation could happen either to all A devices or B devices and
could last for 1,2,3 or 6 hours etc. This way, the set of generated
failures should uniformly cover many failure types across attributes
and therefore ABSENCE would have a set of diverse failure scenarios
to evaluate against.

After generating this “pool” of failure scenarios and using AB-
SENCE to detect them, we gather the results and break it down
into different dimensions based on the aspects in Table 2. In this
manner we generated a total of 11,000 synthetic failures across our
evaluation space. We present our evaluation results in Section 7.

6.5 Evaluation Metrics
We evaluated ABSENCE using two metrics: detection rate (%)

and loss ratio (%). Detection rate is defined as the ratio of cor-
rectly detected failures (true positive,TP) over the total amount of
introduced failures (true positive,TP + false negative,FN).

Detection Rate(%) =
T P

T P+FN
.

Detection rate quantifies how effective ABSENCE is. The higher the
detection rate, the more effective ABSENCE.
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Aspect Evaluated values Example of a failure
Geographical aggregation 100 ZIPs, 10 cities All devices in L.A. fails
Device make A, B All A devices in ZIP 07921 fails
Device model A-1, B-1 All A-1 devices in L.A. fails
Service Voice, LTE All devices in ZIP 07921 can’t make calls or can’t access the Internet
Start time quiet period (06:00 UTC), busy period (20:00 UTC) All devices in ZIP 07921 fails starting from 20:00 UTC
Duration 1, 2, 3, 6, 12 hours for busy; 8,10,12 hours for quiet Voice service in ZIP 07921 outages for 8 hours starting

from 06:00 UTC
Severity impact 0% to 55% of the total usage A failure that causes 20% reduction of the normal usage in

ZIP 07921
Table 2: Aspects and evaluated values of generated failures

Loss ratio is defined as the ratio of the total net-loss until detection
over the total amount of normal usage during the failure.

Loss Ratio(%) =
netloss until detection

normal usage during f ailure
.

For example, if the normal usage during a failure is 5,000 and
ABSENCE detects the failure when 1,000 calls get dropped then the
loss ratio will be 1/5 (20%). In short, for a long lasting failure, the
lower the loss ratio means the faster ABSENCE detected the failure.

7. EVALUATION RESULTS

7.1 Variable-scale decomposition
The variable-scale decomposition technique is designed to ensure

that ABSENCE uses sufficient usage data to enable accurate detec-
tion. To evaluate the effectiveness of this approach we evaluated
ABSENCE with and without the variable-scale decomposition tech-
nique. We focused our evaluation on ZIP code level aggregations
during quiet hours.We introduced failures starting from 03:00 UTC
(typically the start of network quiet time) and lasting for 8 hours for
voice service. The impact of the failures is in the range of 5% to
100%. We ran the two decomposition techniques (with and without
the variable-scale mechanism) over the same set of failures and
compare the detection rate of the two.

As shown in Figure 7a, the variable-scale decomposition tech-
nique improves the detection rate during the low usage period by
8-10x, e.g., ABSENCE detected 91% as opposed to 10% of failures
that affects more than 2,000 calls in 8 hours respectively with and
without the technique.

7.2 Synthetic Failure Evaluation
Overall results. As shown in Table 3 first row, out of 11,000

introduced failures for both Voice and LTE service, ABSENCE was
able to detect 9,676 with a detection rate of 88.0%. For failures
with an impact larger than 10%, ABSENCE was able to detect 97.7%
(8,064 out of 8,254 failures), and for failures that are larger than 20%
of impact, ABSENCE detected 99.0% (6,189 out of 6,254 failures).

Table 3 breaks down the detection rate by different aggregations.
Overall ABSENCE detected 98% of failures that have more than 10%
impact across different aggregations from large aggregations (e.g.,
city level - all users in LA) to smaller aggregations (e.g., (ZIP code
+ make) level - all Device A or B devices in a ZIP code). Next, we
look into different factors (i.e., failure impact ratio, absolute impact)
that affects the detection rate of ABSENCE. With each factor, we
also break down the results into different aggregations.

Failure impact ratio and detection rate. We would like to un-
derstand the effectiveness of ABSENCE as a function of the severity
of failures, i.e., the impact ratio, for different failure scenarios.

(i) Overall results: Figure 7b shows the overall detection rate
as a function of the impact ratio of failures across all aggregations
and service types. ABSENCE was able to detect 96% of failures

that have a 15%-20% of impact across all aggregations, services
and device types. For outages (with 50% of impact or more severe),
ABSENCE detected 100% of them. For failures that are less severe
(i.e., smaller than 10% of impact) ABSENCE detected 20%-67% of
them.

(ii) Failures at different aggregation levels: Figure 7c shows
ABSENCE’s detection rate for failures with small impact at different
aggregation levels: city, city + device make, city + device model,
ZIP code, ZIP code + device make. Overall, for failures with more
than 15% of impact, ABSENCE is equally effective across aggrega-
tions with a detection rate of 94% or better. This trend continues
for failures with higher impact and we omit the results due to space
constraints. For failures with lower impact (0%-5% and 5%-10%),
ABSENCE’s detection rate reduces to between 5% and 80%. For
those failures, ABSENCE was slightly more effective for large ag-
gregations such as city and city + device make.

(iii) Failures happen to different service types: Figure 7d shows
ABSENCE’s detection rate for failures occurring in LTE and voice
services. For failures with more than 15% of impact, ABSENCE’s
detection rate is high for both voice and LTE (i.e., around 97%).
For less severe failures (i.e., less than 15% of impact), ABSENCE
detected failures to LTE service slightly better than voice service.

(iv) Failures happen to different mobile device types: Figure 7e
shows ABSENCE’s detection rate for failures associated with two
popular device makes (A and B) and two popular phone models (A-1
and B-1) at city level. ABSENCE detected around 94% of failures
with 15%-20% of impact associated with those mobile device makes
and models.

(v) Failures break down by duration: Figure 7f shows AB-
SENCE’s detection rate for failures with different durations. Overall
ABSENCE is equally sensitive across durations of the failures: it
detected about 95% of failures with 15− 20% of impact for both
short and long-lasting failures. For failures with 0%-10% impact,
ABSENCE detected 10%-63% of them.

Absolute impact and detection rate. To understand how effec-
tive ABSENCE is in detecting failures ranked by the absolute size,
we looked into ABSENCE’s detection rate as a function of the abso-
lute impact of the failures. Figure 7g shows that for LTE ABSENCE
detected 94% of failures that cause more than 2,000 PDN connec-
tions to be dropped at the ZIP code level and 96% of failures at the
(ZIP code + device make) level. We omit similar results for voice
service because of space constraints.

Loss ratio of detected failures. To understand how quickly
ABSENCE can detect long-lasting failures, we obtained the loss
ratio (Section 6) of detected failures that last at least 6 hours for all
services across different aggregations. We are interested particularly
in long-lasting failures because those failures often cause larger
impact and early detections mean lower impact.

Figure 7h shows the CDF of the loss ratio of detected failures
during quiet hours (i.e., low usage period) and busy hours (i.e.,
peak usage period). In general, during busy hours 98% of the
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(a) Failure detection during low usage: with and
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(b) Overall detection rate vs. impact ratio
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(c) Small failures at different aggregation levels
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(e) Failures for popular device make/model (city
level)
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Figure 7: Detection rates

Break down Aggregation All failures ≥ 10% of impact ≥ 20% of impact
Total All aggregations 88.0% 97.7% 99.0%
Geographical break down City 89.6% 98.1% 99.0%

Zip code 87.5% 97.8% 99.4%
Service break down Voice 85.2% 96.5% 98.7%

LTE 90.7% 98.9% 99.3%
Geographical + device break down City + device make (e.g., A devices in LA) 88.9% 99.0% 99.3%

City + device model (e.g., A-1 devices in LA) 88.3% 97.3% 98.6%
ZIP code + device make (e.g, A-1 devices in 07921) 85.5% 96.3% 98.6%

Table 3: Overall results break down by different aggregations

failures were detected when there were less than 10% of the total
loss happens (i.e., if the issue is fixed at the detection time, 90% of
the usage would be recovered for 98% of the failures). During quiet
hours, 90% of the failures were detected when there were less than
10% of loss. Given that the detected failures are at least 6 hours,
10% loss suggests that the failures are mostly detected right after
the first hour of the failures.

Impact based event prioritization. Because of resource con-
straints, in an operational setting providers typically need to priori-
tize the events that they investigate. Because it is inherently usage

based, ABSENCE lends itself to an “operational knob” that operators
can tune to distinguish large impact events from the small impact
ones, so that they can rapidly respond to more severe conditions.
Here we evaluate the tradeoff through such a knob, in the form of a
“cut-off” threshold – the threshold above which events are defined
as of high priority – between the number of high priority events and
the detection rate (rate of high impact events to be included in the
high priority list).

Figure 7i shows the detection rate (Y1-axis) and the fraction of
synthetic events that are of high priority (Y2-axis) as functions to
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the threshold for the ZIP code level. We observe that if we only
focus on events that have an absolute impact of over 4,000 records,
ABSENCE achieves the detection rate of 97% among the 82% of the
events.

Implications: Our evaluation of ABSENCE shows that: (i) AB-
SENCE has a very high detection rate across all scenarios for failures
with medium to high impact (i.e., above 15%). (ii) ABSENCE can
detect failures relatively quickly (i.e., has a low loss ratio), thus
reducing the impact of failures. (iii) Prioritizing events based on the
absolute number of missing records provides a simple operational
knob that enables operators to tune the number of high priority
events generated by ABSENCE. These results suggest the prac-
tical feasibility of using ABSENCE to perform service disruption
detection at the scale of modern mobile networks.

8. OPERATIONAL VALIDATION
In this section, we validate service impacting events detected in

the operational data via ABSENCE with known historical service
outages. Specifically, we use events that resulted in anomalous
volumes in customer care calls as our known customer impacting
network events. Customers can call into customer care centers to
report service issues and to discuss other concerns. The vast majority
of customer calls relate to individual customer concerns - they may
be the result of individual customer device issues or user errors,
for example. However, in some situations, these customer calls
may be the result of a broader service impacting event. Network,
device type or application disruptions can thus result in a spike in the
number of customer complaints. These events - spikes in customer
care calls - are captured in a database along with their associated
underlying network/device/application root cause, and are used here
to provide a source of ground truth of service disruptions that we
use to compare with those detected by ABSENCE.

We first attempt to validate service disruptions detected by AB-
SENCE with customer complaint events over a corresponding time
period. We then investigate a number of specific use cases in more
detail to verify ABSENCE functionality.
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Figure 9: Alarm rate and true positive of ABSENCE

8.1 Comparison with customer complains
From the customer care database, we can extract customer com-

plaint events at a market level, i.e., which market the event is in and
the event’s start/end time. We obtained a list of a 19 such events
from the customer care database that happened to Voice and LTE
data services. Operations had confirmed that each of these was
a true service disruption. We then attempted to detect these with
ABSENCE using CDR aggregates for the corresponding dates.

We ran ABSENCE to get a list of detected events at the ZIP
code level and compared the detected events with the 19 customer
complaint events mentioned above. Customer complaint events
were aggregated at the market level (i.e., a market typically consists
of several geographically close cities), while we were detecting

events at the ZIP code level. As a result, before performing the
comparison, we mapped the ZIP code of ABSENCE detected events
to the corresponding market. We considered a match between an
event detected by ABSENCE and a customer complaint event if
the two events are spatially and temporally matching. Using this
approach, ABSENCE was able to detect all 19 customer complaint
events. We noted that ABSENCE also detected possible service
disruptions that are not included in the customer care database. Due
to lack of ground truth available in this study, it is challenging to
investigate these further.

8.2 Alarm rate and true positive rate
ABSENCE detected events that are not included in the customer

care database. Due to lack of ground truth it is challenging to
determine whether those events are false positives. However, to
make ABSENCE practical, the number of events per day (i.e., alarm
rate) should be reasonable for an operations team to handle while
the true positive rate should be maintained. To adjust the alarm
rate, ABSENCE uses different cut-off thresholds (i.e., amount of
usage impacted per hour) to filter out events with relatively small
impact, i.e., if the impact of an event is smaller than a certain
threshold, the event will not trigger an alarm. We used the 19
events in the customer database as the ground truth for the true
positive rate and varied the cut-off threshold to observe the alarm
rate of ABSENCE. Figure 9 shows the alarm rate and the true
positive rate as a function of the cut-off thresholds. As we can see,
both the alarm rate and the true positive decrease as the cut-off
threshold increases. To protect proprietary information, we show
the alarm rate and the cut-off threshold as relative numbers. If
ABSENCE only triggers alarms for events which impact greater than
4n calls/PDN connections per hour, then the operations team will
need to investigate around m such events per day and ABSENCE
detects all of the 19 events above (i.e., 100% true positive). We
confirmed that m is manageable by Operators and thus ABSENCE is
practical in an operational environment.

8.3 Use cases
In this section we explore a number of specific use cases where

ABSENCE was able to detect anomalies that also showed up in the
customer care database. In this section, ABSENCE used 4n as the
cut-off threshold for the number of calls or PDN connection per
hour.

(i) Voice service in a large metropolitan area:
This failure was on the voice service in several ZIP codes of

a large metropolitan area. Users in these areas were not able to
receive calls from landline devices. The event started at 16:00
UTC on a given Tuesday according to the customer ticket data.
Figure 8a shows the time series in UTC of the historical usage data
for voice services of one of the affected ZIP codes (dashed line)
for previous Tuesdays and the abnormal usage on the date of the
service disruption (red solid line). ABSENCE was able to detect
an anomalous event at 16:00 UTC (red point) as the usage falls
significantly outside of the range of the normal historical usages.

(ii) Voice service in a large metropolitan area:
This failure was on the voice service in several ZIP code areas

in another large metropolitan area. The failure was first evident
in customer ticket volume at 12:00 UTC on a Friday according to
the customer complaints and the reports by the operator. Figure 8b
shows the historical usage (dashed lines) of previous Fridays and
the usage of the day that the failure occurred (red solid line) for one
of the affected ZIP code areas. As we can see, there are drops in
the usage on the day of the failure and ABSENCE can detect the
anomaly at 14:00 UTC (red point) – two hours after it commenced.
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Figure 8: Use cases

Note that the sudden drop later in the day is due to the change in the
number of users in the area according to the change of the zip-code
profile.

(iii) Voice mail:
In this use case the failure happens to a much larger area (i.e,

all ZIP codes in a large metropolitan area). This failure started
around 18:00 UTC on a Monday and was associated with one of
the operator’s Voicemail services - a data service that is available
to only a subset of user devices. This use case is an example of the
failure of a particular service that impacted only particular device
types within a given area. ABSENCE detected a series of anomalies
happening to devices in the metropolitan area commencing at 18:00
UTC (when the failure itself commenced) (Figure 8c solid red line).

9. DISCUSSIONS
Special events: Special events and holidays may affect users’

usage and mobility pattern, which can be challenging for a pas-
sive monitoring approach. For example, people make less calls
on holidays, or during a sport event. Correlated usage reduction
in large scale can cause ABSENCE to generate false positives. If
users’ service consumption does not change but their mobility pat-
tern changes (e.g., gathering at a stadium and use the phones as
normal), ABSENCE will not generate false positives because the
location profile will handle this and their usages are counted toward
the profile location regardless of where they are.

Metrics to use: ABSENCE uses number of calls and number of
PDN connections as the metric for detecting service disruptions.
Those two metrics could quantify users’ experience in most cases,
e.g., if a base station fails and users could not attach or make call-
s/create PDN connections. Potentially, there are other metrics that
could be used such as duration of calls or number of Bytes download-
ed/uploaded. These metrics would capture other types of failures.
For example, a failure at the routing system in the network may
cause voice calls to be routed to voice mail instead of reaching the
callee. In this case the total duration of calls would be a better
indicator of a potential service impairment worthy of investigation.

New services in Data network: Network operators may intro-
duce new data services such as Wi-Fi offload. Such new services
may affect the usage captured in the CDRs, as load is (deliberately)
reduced. Since ABSENCE uses multiple months of historical usage
as the baseline, if Wi-Fi offload skews the usage, the baseline will
be rebuilt. After a sufficiently long period of training (typically 3-4
weeks if a weekly seasonal model is used), the new baseline will
include the Wi-Fi offload and ABSENCE will be able to operate in
the new environment.

10. RELATED WORK
There are quite a lot related work in the area of service disruption

detection including both commercial systems such as Keynote [2]
and Gomez [1] and various efforts by the research community [16,

11, 30, 28]. All of them share two limitations. First, their effec-
tiveness are typically limited by the coverage of deployed probes.
Second, they all need to inject unnecessary probing traffic to the sys-
tem, which could affect legitimate users. In the contrast, ABSENCE
detects service disruptions in a non-intrusive (passive) manner by
purely depending on the existing traffic from real users.

Our work also relates to various mobile network performance
studies. For example measurements from mobile devices have been
used to study the performance of mobile networks [20]. Several
studies have investigated protocol level performance aspects of mo-
bile networks [14, 22, 19]. While these detailed performance aspects
of mobile networks are related to our work, ABSENCE is a network
management tool dealing with the operational health of a mobile
network. As such ABSENCE is most related to various network
operations tools [29, 17, 24, 26, 18]. A framework for network
anomalies based on a principal component analysis approach has
been proposed in [29]. A performance troubleshooting tool [17]
and a service quality assessment mechanism [24] for IPTV net-
works have been developed. Service anomaly detection [26] and
troubleshooting tools [18] have been developed for ISP networks.
In contrast ABSENCE is focused on service disruption detection in
mobile networks and deal with the specific mobility and scalability
challenges of that environment. Production tools such as [7] is in-
stalled on user devices to collect users’ service experience yet they
are not available on most Samsung and iPhone popular models due
to privacy issues. ABSENCE in contrast works for all device models
without installing any software on the device.

11. CONCLUSION
We presented our work on ABSENCE, a service disruption detec-

tion system for mobile networks. ABSENCE makes use of customer
usage data, in the form of aggregated and anonymized call detail
records, to derive historical usage patterns for groups of customers.
Appropriate selection of these groups results in stable and accurate
predictions of usage patterns, allowing ABSENCE to detect devia-
tions as possible service disruptions. We presented a data driven
exploration of the design space. We performed a systematic eval-
uation of ABSENCE by introducing synthetic failures in data from
an operational mobile network and compared ABSENCE’s detection
results with known ground truth events from the mobile network.
ABSENCE is currently operating in a pre-production environment.
Our future plans include integration of ABSENCE with the operator’s
production environment and fine tuning the parameters to improve
the accuracy and utility of our approach in an operational setting.
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